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Reservoir parameter prediction is of significant value to oil and gas exploration and

development. Artificial intelligence models are developing rapidly in reservoir

parameter prediction. Unfortunately, current research has focused on multi-

input single-output prediction models. Meaning, these models use a large

amount of logging or seismic data to predict the petrophysical properties of a

single reservoir. Another prominent problem is that most mechanistic learning

studies have focused on using logging data (e.g., gamma ray and resistivity) tomake

predictions of reservoir parameters. Although these studies have yielded promising

accuracy, a great shortcoming is the inability to obtain such data in logs by seismic

inversion. The value of our researchwork is to achieve a complete description of the

reservoir using the elastic parameters from the seismic inversion. We developed a

deep learningmethod based on gated recurrent neural network (GRNN) suitable for

simultaneous prediction of porosity, saturation and shale content in the reservoir.

GRNN is based onGated Recurrent Unit (GRU), which can automatically update and

reset the hidden state. The input parameters to the model are compressive wave

velocity, shear wave velocity and density. The model is trained to fit nonlinear

relationships between input parameters and multiple physical parameters. We

employed two wells: one for testing and the other for training. 20% of the data

in the training wells were used as the validation set. In preprocessing, we performed

z-score whitening on the input data. During the training phase, the model

hyperparameters were optimized based on the mean absolute error (MAE) box

plots of the validation set. Experiments on the test data show that the model has

superior robustness and accuracy compared to the conventional recurrent neural

network (RNN). In theGRNNprediction results of the test set, theMAE is 0.4889 and

the mean squared error (MSE) is 0.5283. Due to the difference in input parameters,

our prediction isweaker than the researchmethodusing loggingdata.However, our

proposed method has higher practical value in exploration work.
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FIGURE 1
Workflow. The log data is separated into training, validation, and test sets after being standardized. GRNN model construction and
hyperparameter optimization. Test model generalization and predict reservoir physical properties.

FIGURE 2
RNN structure. Each structural unit accepts both the input data and the hidden state of the previous unit, and outputs the predicted value at the
current moment.
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Introduction

Prediction and analysis of porosity, water saturation, and

shale content in reservoir delineation, geological modelling and

well location distribution play an important role in reservoir

delineation, geological modelling and well location distribution

in the process of oil exploration and development (Eberhart-

Phillips et al., 1989; Pang et al., 2019). These reservoir

parameters are generally derived from logging data or core

data (Segesman, 1980). However, the physical parameters in

logging cannot characterize the distribution of reservoir

parameters in unknown intervals or the entire work area,

and are subject to cost constraints (Gyllensten et al., 2004).

Therefore, empirical formulas or models are needed to calculate

and predict (Goldberg and Gurevich, 2008). Due to the complex

conditions of geology, logging data often exhibit strong

nonlinear relationships between them, and this nonlinear

relationship may never be exactly obtained at the theoretical

level (Ballin et al., 1992). Traditional forecasting methods have

their own limitations for accurate prediction of reservoir

parameters (Hamada, 2004; Chatterjee et al., 2013). The

effects of longitudinal and transverse velocities on porosity

and shale content are thought to have some correlation, but

are difficult to predict quantitatively (Han et al., 1986).

Continuous sound velocity logging methods can only

qualitatively identify water-saturated rock masses (Hicks and

Berry, 1956). Laboratories can measure high-quality physical

FIGURE 3
Compute the hidden state of the GRU model. Update gate z
chooses whether to update the output hidden state ht with hidden
state ~ht. Reset gate r decides whether to ignore the hidden state
ht−1 of the previous time step.

FIGURE 4
Well A logging curve.

Frontiers in Earth Science frontiersin.org03

Zhang et al. 10.3389/feart.2022.984589

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.984589


properties, but at an additional time and cost (Gomez et al.,

2010). Therefore, numerical models of the petrophysical

properties of the formation need to be established for

reservoir characterization from measurable data (Tian et al.,

2012). The prediction of the distribution of reservoir quality

(i.e., porosity, water saturation, and shale content, etc.) has

important implications for estimating the development value of

reservoirs (Timur, 1968).

Modern reservoir characterization has evolved from the use

of experts to analyze and interpret log data to the application of

artificial intelligence to automatically identify predictions

(Soleimani et al., 2020). Machine learning methods such as

artificial neural network, K-proximity, support vector machine

and function network have been widely used in the field of

petroleum exploration due to their high efficiency and accuracy.

This helps to solve many technical problems such as reservoir

identification (Aminian and Ameri, 2005; Wang et al., 2017),

reservoir fluid prediction (Oloso et al., 2017; Mahdiani and

Norouzi, 2018), permeability prediction (Tahmasebi and

Hezarkhani, 2012; Al-Mudhafar, 2019; Al Khalifah et al.,

2020) and rock strength and geomechanical properties

(Tariq et al., 2016; Tariq et al., 2017). Computer-based

machine learning methods can effectively handle nonlinear

problems and predict reliable reservoir property values

(Kaydani et al., 2011).

Deep learning is an important branch of machine learning,

which has gradually become a research hotspot in recent years

(Lecun et al., 2015; Guo et al., 2016; Zhang et al., 2020). Research

has proved that deep learning techniques are prominent at

dealing with complex structures in high-dimensional spaces

(Michelucci, 2018), and have been used in image recognition

(Shuai et al., 2016), speech recognition (Saon et al., 2021) and

language translation (Jean et al., 2014) and have achieved

excellent results. In recent years, many scholars have applied

it to the field of seismic exploration (Lin et al., 2018; He et al.,

2020). For example, reservoir fracture parameter prediction (Xue

et al., 2014; Wang et al., 2021; Yasin et al., 2022), lithology

identification (Al-Mudhafar, 2020; Alzubaidi et al., 2021;

Saporetti et al., 2021) and seismic inversion (Li et al., 2019;

Cao et al., 2021), etc.

Classical back-propagation (BP) neural networks have been

studied for prediction on well logging data (Al-Bulushi et al., 2012;

Verma et al., 2012). Since the data information extracted by

neurons is not transmitted in the same hidden layer, fully

connected neural network is not suitable for effective prediction

of sequence data. For data with sequence information, Recurrent

Neural Network (RNN) (Mikolov et al., 2010; Zhang et al., 2017)

can learn the relationships and laws within the data and make

preferable predictions. RNNs consist of high-dimensional hidden

states with nonlinear dynamics (Sutskever et al., 2011).

FIGURE 5
Well B logging curve.
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Among the different variants of RNNs, one that has attracted

tremendous attention is the network formed using Gated

Recurrent Unit (GRU)—Gated Recurrent Neural Network

(GRNN) (Chung et al., 2014). The learning curves of GRNN

on many datasets demonstrate significant advantages over

standard RNN and are able to avoid the vanishing and

exploding gradient problems of standard RNN when dealing

with long sequences (Bengio et al., 1994). GRNN has been

applied to log parameter prediction and lithology

identification (Zeng et al., 2020), and to predict mass

production in conglomerate reservoirs (Li et al., 2020). Some

scholars have tried to combine GRNN with convolutional neural

network to predict porosity (Wang and Cao, 2021).

We have noticed two neglected problems in the research on

reservoir physical parameter prediction bymechanical learning. One

issue is that the research programs can only predict a single reservoir

parameter (Rui et al., 2019; Chen et al., 2020). The other issue is that

the investigations are limited to parameters specific to the logs as

model inputs (Ahmadi and Chen, 2019; Okon et al., 2021). This

means that it is not possible to predict reservoir physical parameters

for the whole work area and lacks practical value.

In this paper, the GRU-based GRNN model is used to

simultaneously predict the physical parameters of the

logging data. The structure and principle of GRU are

analyzed, and a prediction model is founded by using the

nonlinear relationship between elastic parameters

[compressive wave velocity (Vp), shear wave velocity (Vs)

and density Den(Den)] and physical parameters [porosity

(Por), water saturation (SW) and shale content Vsh(Vsh)].

The error is compared with the traditional RNN method, and

the influence of the correlation between elastic parameters and

physical parameters on the prediction results of the model is

analyzed.

Methods

Figure 1 depicts the study’s workflow. We first normalize the

model’s input data. Well B is utilized to test the model’s

generalizability while Well A is used as training data. Create a

GRNN model fit for regression tasks, then tune the

hyperparameters. The trained model is used to predict the

physical properties of the reservoir after being tested in Well B.

RNN

Before introducing GRU, we need to introduce the classic

RNN. RNN is a neural network with a hidden state and an output

sequence, as shown in Figure 2. The input to the network is a

variable-length sequence x � (x1, ..., xT). The hidden state

update of the RNN at each time step is given by:

ht � f(ht−1, xt) (1)

where f is the nonlinear activation function. It can be a simple

function in the form of a sigmoid or a logically complex

structural unit (Graves, 2012).

The RNN learns the probability distribution p(xt|xt−1, ..., x1)
at time step t by training on the sequence of the previous t − 1

time steps. For example, when using the softmax activation

function, the resulting multinomial distribution (1-of-K

encoding) is:

p(xt,j � 1
∣∣∣∣xt−1, ..., x) �

exp(wjht)
∑K

j′�1exp(wj′ht)
(2)

FIGURE 6
GRNN architecture suitable for property parameter
prediction.
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where j � 1, ..., K. wj is the row vector of the weight matrix W.

From these probabilities, the probability distribution of sequence

x can be calculated:

p(x) � ∏
T

t�1
p(xt|xt−1, ..., x1) (3)

By iterative sampling at each time step, p(x) can be

continuously updated with new sequences.

GRU

Figure 3 describes the specific structure of the GRU.

GRU has two important gating units—reset gate and update

gate. In the j-th hidden unit, the reset gate rj is

calculated by:

rj � σ([Wrx]j + [Urht−1]j) (4)

where σ is the sigmoid function. Wr and Ur are the weight

matrices in the hidden units. x and ht−1 are the sequence of inputs
and the state of the previous hidden unit. [.]j is the j-th element

of the vector.

The calculation method for the update gate zj is similar:

zj � σ([Wzx]j + [Uzht−1]j) (5)

The final hidden state hj is calculated by:

htj � zjh
t−1
j + (1 − zj)~h

t

j (6)
where

~h
t

j � ϕ([Wx]j + [U(r ⊙ ht−1)]j) (7)

where ~h
t

j is the candidate hidden state. ϕ is the tanh activation

function. This formula shows that as the reset gate rj approaches

0, the hidden layer state gradually forgets the previous hidden

state ht−1. This allows the hidden state to filter out important

information, making the information transfer more efficient.

The update gate controls the ratio of previous hidden states

to candidate hidden states. When the update gate zj tends to 1,

the model tends to keep only the hidden state of the previous time

step. At this time, the information of xt is almost ignored, thus

FIGURE 7
Box plot. Themodel is trained using thewell A data, and the network hyperparameters are adjusted according to theMAE values of the validation
set. (A) learning rate, (B) hidden units, (C) dropout rate, (D) algorithm.

TABLE 1 Comparison of prediction results for Well B.

Model Average MAE Average MSE

RNN 0.4955 0.5342

GRNN 0.4889 0.5283
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skipping the input information of this time step. Conversely,

when zj is close to 0, the new hidden state htj is close to
~h
t

j. If the

update gate for the entire sequence is close to 1, then the hidden

state at the starting time step can be preserved and passed to the

end of the sequence. According to the additive feature of Eq. 6,

the GRU learns new information while retaining important

features. In addition, this additive implementation enables

shortcut paths that can bypass multiple time steps, thus

making it easier to back-propagate errors and reducing the

difficulties associated with gradient disappearance. The model

parameters (weights and biases) are tuned in a similar way to

traditional feedforward neural networks. During the training

period, the objective function from the training set is

minimized by the optimization algorithm. GRNN proceeds

through a forward and backward propagation process during

the training. During backpropagation, the weights and biases are

updated with the corresponding error terms.

GRNN uses GRU to adjust the information transfer in

RNN, so that the sequence model can retain effective

information for a long time, forget irrelevant

information, and effectively avoid the problems of

gradient disappearance and explosion. In this research,

GRNN is used to predict reservoir physical parameters.

Logging parameters can be regarded as sequence

information. The ability of GRNN to explore effective

information adaptively is more suitable for the task of

reservoir parameter prediction.

Data description and model

The experimental data we utilize are from the work area of

the sandstone reservoir. The datasets used to predict reservoirs

Por, SW, andVsh are fromWell A andWell B, and their log data

are shown in Figures 4, 5. Well A contains 80% of the training

data and 20% of the validation data. Well B is the test set. Well A

has a depth range of 2,100–2,275 m and includes 1,597 sample

points. Well B has a depth range of 2,150–2,325 m and includes

2,298 sample points. In this process, the model is only updated

with gradients based on the training set, and the performance on

the test set is used as a measure. We focus on the prediction

performance on the test set.

FIGURE 8
Comparison of prediction errors of GRNN and RNN for well B during iteration. (A) MAE, (B) MSE.
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Before model training, to ensure that the model can

effectively adjust the weights and biases, we normalize the

data with z-score (mean 0, variance 1):

xscaled � x − �x

xstd
(8)

where xscaled is the normalized data, x is the actual data, �x is the

mean of the actual data, and xstd is the standard deviation of the

actual data. Normalized preprocessing can limit the range of data

variation, thereby improving model convergence speed and

training accuracy.

Establish GRNN model

In this study, we used Python version 3.7.0 to implement the

model via the Tensorflow platform.

Figure 6 presents the design framework of the GRNNmodel.

The input data of the model is Xi � {xVp, xVs, xDen} which is the

sequence composed of Vp, Vs and Den corresponding to each

logging data sample point. Since we generally can only collect

elastic values by seismic inversion during the actual development

process, these elastic parameters were chosen as input data. Xi is

normalized and passed to the hidden layer. In the GRU structure

of the hidden layer, two activation functions (refer to Figure 3)

are used, sigmoid and tanh. The output of the sigmoid function is

mapped in the interval, which is monotonically continuous,

stable in optimization, and easy to derive. The output mean of

Tanh is 0, and the convergence speed is faster than that of

sigmoid. On the whole, GRNN replaces each hidden unit in a

typical RNN with GRU, so as to realize the memory and

forgetting of information flow. Each GRU needs to accept the

hidden state and input data of the previous unit to update, so the

first GRU needs to initialize the unit state with h0. h1 is the

FIGURE 9
Fitting effect of GRNN on well A.
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hidden state for output to the next GRU after the first GRU

finishes processing data. The flow of information like this goes all

the way to the last GRU. Finally, the predicted sequence Yi �
{ypro, ySW, yVsh} is output through the fully connected layer with

three output units which are the corresponding prediction targets

Por, SW and Vsh.

Compared with the classical BP neural network, GRNN is

preferable at mining the information between sequences. And

due to the structure of GRU, GRNN can filter unimportant

information to a certain extent, retain the characteristic

information of logging data, and improve the prediction

accuracy of physical parameters.

Result and discussion

Fitting and generalization

When a model is trained, if it performs well on the

training set but cannot predict accurately on the new test set

data, then the model has no real value. In machine learning,

this type of problem is called overfitting (Ying, 2019).

However, if there is not enough data or the complexity

of the model is lower than that required for fitting, the

model cannot predict accurately even on the training set

and is equally useless. This type of problem is called

underfitting (Jabbar and Khan, 2015). In the case of

supervised learning, whether it is overfitting or

underfitting, it is necessary to pay attention to avoid it

when debugging the model.

Generalization ability is very important for any machine

learning model. We are always interested in how well a model

predicts unknown data, because this can reflect the practical

value of the model. Therefore, all evaluation indicators are

subject to test data. Among the techniques for overfitting, a

common method is dropout (Mianjy and Arora, 2020),

i.e., randomly turning off neurons at a certain ratio (between

0 and 1) during each iteration. In the GRNN network, the

Dropout value can be set in the hidden layer.

Parameter setting

We use well A logging data to train the model and analyze the

effect of different parameter settings on the results. Three

network parameters of GRNN are selected: learning rate (α),

number of hidden units (nunit), Dropout rate (rdrop). We set a

series of values, and when the value of one parameter changes,

the other parameters remain the same. Record the performance

of models α (0.001, 0.005, 0.01, 0.02), nunit (16, 32, 64, 128), rdrop
(0, 0.2, 0.4, 0.8). Besides that, try different optimization

algorithms: RMSprop (Zou et al., 2019), Adam (Bock and

Weiß, 2019), Adamax (Kingma and Ba, 2014), and Adagrad

(Duchi et al., 2011). A group of ideal hyperparameters are

obtained in this manner.

We train the model with different hyperparameters and

choose mean absolute error (MAE) and mean squared error

(MSE) as metrics:

MAE � ∑N
i

∣∣∣∣∣y(i)
label − y(i)

pred

∣∣∣∣∣
N

(9)

MSE � ∑N
i (y

(i)
label − y(i)

pred)
2

N
(10)

where y(i)
label represents the true label value of the sample

sequence, y(i)
pred represents the model’s predicted value for the

sequence, and N is the number of samples.

Boxplots are drawn based on the prediction error on the

validation set, as shown in Figure 7. Boxplots show 75% and

25% quantiles, medians, outliers, maximum and minimum

values. It can be seen that outliers will exist in most cases.

Outliers may come from the initial stage of training when the

model fitting ability is inferior, and there is a large gap between

the predicted value and the true value. The optimal

hyperparameters chosen based on the smallest median are

α � 0.001, nunit � 64, and rdrop � 0 and the optimization

algorithm is Adamax.

Comparison with RNN

To evaluate the accuracy of the GRNN model for

simultaneously predicting Por, SW, and Vsh for well B, we

FIGURE 10
PPMCC matrix for different logging parameters in the raw
data of well A.
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use RNN to conduct comparative experiments. GRNN

evolved from RNN, and the GRU structure was added to

the hidden layer in RNN. Typical RNNs lack the function of

extracting useful information and forgetting irrelevant

information. For a fair comparison, the parameters of

GRNN and RNN are set the same. The mean MAE and

mean MSE values of the experimental results are reported

in Table 1. The average MAE of the GRNN prediction model

is 0.4889, and the average MSE is 0.5283, which is slightly

lower than that of the RNN. This shows that the error of

simultaneous prediction of physical parameters is bearable.

Figures 8A,B show the changes of MAE and MSE when

GRNN and RNN predict well B. It can be seen that after

20 iterations, both MAE and MSE errors, GRNN is at a lower

level overall.

Fitting and prediction of logging data

We use the trained GRNN model to predict Well A and

observe the effect of the model fitting the training set, as

shown in Figure 9. For the prediction results of Por, the

fitting effect of the 0-value part is deficient mainly in the

depth range of about 2,200–2,225 m in the middle section.

This is due to the fact that the segment was treated as a

0 value for low Por when interpreted by an expert. For the

prediction results of SW, the low SW in the depth of

2,175–2,200 m and the high SW in the depth of

2,200–2,225 m do not achieve the ideal fitting effect. The

fitting error of Vsh is mainly distributed in the depth range of

2,265–2,275 m. The fit of the model to the target curve is

generally acceptable. We assume that the magnitude of the

FIGURE 11
Prediction effect of GRNN on well B.
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error is related to the correlation between the training

attribute and the predicted attribute. The Pearson Product

Moment Correlation Coefficient (PPMCC) for these

attributes was therefore calculated (Emerson, 2015).

Figure 10 presents the PPMCC matrix calculated from

Well A data. PPMCC helps analyze the degree of correlation

between variables. The closer the coefficient is to 1, the

stronger the positive correlation between the two

variables. Conversely, if the coefficient is closer to −1, it

indicates that the two variables are more negatively

correlated. When the coefficient is close to 0, it is

considered that there is little connection between the

variables. As shown by the figure, the correlation

coefficients of Por for Vp, Vs, and Den are −0.36, −0.13,

and −0.54, respectively. Porosity is more sensitive to density

and exhibits a negative correlation, has a low negative

correlation to P-wave velocity, and has only a weak

negative correlation to S-wave velocity. The correlation

coefficients of SW to Vp, Vs and Den are 0.08, −0.06, and

0.30, respectively. It shows that there is basically no

correlation between water saturation and P-wave velocity

and S-wave velocity, and only has a weak positive correlation

with density. The correlation coefficients of Vsh to Vp, Vs,

and Den are −0.38, −0.59, and 0.40, respectively. It shows

that the shale content is negatively correlated with both the

compressional wave velocity and the shear wave velocity, and

the correlation degree with the shear wave velocity is higher.

Moreover, there is a certain degree of positive correlation

between shale content and density. In general, Vp, Vs, and

Den have a certain correlation to Por, SW, and Vsh, but the

correlation is not high. Especially for SW, it is almost only

possible to extract valid information for prediction

through Den.

Finally, we present the prediction results for the test set

well B, as shown in Figure 11. The predicted results for Por are

basically in line with the logging curve. The overall effect of

SW prediction is inferior, as analyzed in the previous PPMCC.

Due to the weak correlation, it is difficult to make accurate

predictions. Nevertheless, the trend of change can be predicted

to a certain extent. The prediction effect for Vsh is better,

which is also due to the stronger correlation with the elastic

parameter.

FIGURE 12
Reservoir elastic parameters from inversion. (A) P-wave
velocity, (B) S-wave velocity, (C) density. FIGURE 13

Prediction of reservoir physical properties. (A) Por, (B) SW, (C)
Vsh.
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Prediction of reservoir physical
parameters

Through the inversion method, we obtained the elastic

parameters of the actual work area, as shown in Figure 12.

Figures 12A–C are the compressional wave velocity, shear

wave velocity and density of the reservoir, respectively. We

use the trained GRNN model to predict the physical

parameters of the actual working area, as shown in

Figure 13. Figures 13A–C are the prediction results of Por,

SW, and Vsh of the reservoir, respectively. To verify the

reliability of the results predicted, we inserted well C. The

extrapolation effect is acceptable, as evidenced by the

prediction results next to the well being fairly consistent

with the true physical property parameters of the well logs.

Even the SW, which has the lowest correlation with elastic

characteristics, is still capable of making accurate predictions.

The prediction results of this profile show that there are high

Por, low SW, and low Vsh sections at a depth of about

1.18–1.20 s in the time domain. The characteristics of this

profile suggest that this depth range has the potential for oil

and gas development.

Conclusion

The prediction of physical parameters such as porosity,

permeability, and saturation is an important work in

reservoir prediction. Nowadays, many scholars try to apply

deep learning to physical property prediction. However, most

of the current work is to use the electrical parameters with

high correlation to predict the logging parameters instead of

the elastic parameters that can be obtained in the actual work

area, and only use various models to predict a single

parameter. This lacks application value for reservoir

prediction.

This paper describes how to apply the GRNN model to the

simultaneous prediction of reservoir physical parameters

(porosity, water saturation, and shale content). GRNN is a

special recurrent neural network that enables sequence

information to be transmitted between the same hidden

layers. The structure of the gate control unit enables it to

store and forget information, and realize the extraction and

control of information flow. GRNN can simultaneously

predict physical parameters using longitudinal wave

velocity, shear wave velocity and density, and the

prediction error is smaller than that of RNN. The model

predicts well B in the test set with an average MAE and an

average MSE of 0.4889 and 0.5293, respectively. The Pearson

product moment correlation coefficients of the elastic

parameters and physical parameters used in the model are

calculated, and the results show that the correlation between

the elastic parameters and the physical parameters is not high.

In particular, water saturation has almost only a positive

correlation with density. Nonetheless, the models can still

fit their nonlinear relationship in high dimensions. The

GRNN model can also predict and reconstruct the missing

sections of the log. In future work, attempts will be made to

change the structure of the network as well as the properties of

the input data to improve the prediction accuracy. The

prediction of various physical property parameters of

reservoirs has guiding significance for oil and gas

exploration. The application of elastic parameters to

achieve physical property prediction has general value for

actual exploration work in different work areas.

Our suggested method for predicting reservoir parameters

still has several limitations. The accuracy of the seismic

inversion decides the effectiveness of the prediction. A local

optimum rather than a global optimum may be the result of

model training.
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