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The current lake environmental problem of harmful cyanobacterial blooms cannot

be mitigated effectively despite numerous eutrophication control strategies, and

climate warming may have been considered as a potential key driver. However, it is

still unclear how climate change and associated natural processes influence

cyanobacterial development. Here we use a sedimentary pigment record from a

remote, alpine, small and eutrophic lake (Lake Mayinghai) on the Chinese Loess

Plateau and take themid-Holocene as an analog to explore the possible influences

of temperature, precipitation and terrestrial vegetation on in-lake and catchment

processes, algal compositional changes and cyanobacterial development. The

pigment data indirectly suggest that a distinctly low β-carotene to chlorophyll a

ratio during the mid-Holocene is likely due to an increase in non-nitrogen-fixing

colonial coccoid cyanobacteria at the expense of nitrogen-fixing filamentous

cyanobacteria. There are two probable synergistic driving mechanisms, of which

one is high temperatures and associated increased lake thermal stratification and the

other is high inorganic nitrogen supply and resultant increased lake nitrogen to

phosphorus ratio. This study provides implications for the potential influences of

future climate change on cyanobacterial development under a warmer, wetter and

re-forested environment on the Chinese Loess Plateau.
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Introduction

It was recognized that recent anthropogenic nutrient

pollution drives lake eutrophication and harmful

cyanobacterial blooms that threaten water quality and public

health (Huisman et al., 2005; Kudela et al., 2015; Hou et al., 2022).

However, considerable management strategies to reduce nutrient

loading often have not successfully mitigated this environmental

problem (Paerl and Otten, 2016; Huisman et al., 2018), and even

there is a long debate on whether reducing phosphorus

(Schindler et al., 2008, 2016; Paterson et al., 2011) or

controlling both phosphorus and nitrogen (Conley et al.,

2009; Scott and McCarthy, 2010; Paerl et al., 2016) is an

effective method. It was also found that cyanobacterial blooms

can occur in oligotrophic lakes (Ewing et al., 2020; Freeman et al.,

2020). Climate change and associated in-lake and catchment

processes are considered to be drivers of cyanobacterial blooms

(Smol, 2019; Reinl et al., 2021). Recent warming-driven

prolonged and intensified lake thermal stratification can cause

cyanobacterial blooms (Smol, 2019) whereas its associated

reduced nutrient suspension is not favorable to cyanobacterial

blooms (Reinl et al., 2021). An increase in precipitation can cause

high erosive nutrient input and lake eutrophication (Sinha et al.,

2017) but can also cause flushing and destratification to inhibit

cyanobacterial blooms (Reichwaldt and Ghadouani, 2012). These

climatic processes affect cyanobacterial development in

synergistic or antagonistic ways. It is unclear what the net

effect of climate change is and how climate change interacts

with current eutrophication control efforts to influence

cyanobacterial blooms (Paerl and Scott, 2010; Lürling et al.,

2018; Ho et al., 2019; Paerl and Barnard, 2020). Therefore, to

foster lake management in the warmer future, it is essential to

improve understanding of the influence of climate change and

associated natural processes on cyanobacteria without human

impact, and paleolimnology provides a valuable way to

investigate the impacts of past climate change on

cyanobacterial development under natural conditions.

Although lake properties and catchment landscapes may

complicate the processes of climate change and anthropogenic

eutrophication on cyanobacterial blooms (Qin et al., 2020; Reinl

et al., 2021; Paltsev and Creed, 2022), it was recognized that small

and nutrient-rich lakes are more sensitive to increases in

temperature while large and oligotrophic lakes are more

sensitive to changes in precipitation patterns and associated

nutrient supply (Kosten et al., 2012; Rigosi et al., 2014; Reinl

et al., 2021; Paltsev and Creed, 2022). Here, a remote, alpine,

small and eutrophic lake (Lake Mayinghai) on the Chinese Loess

Plateau was investigated to provide implications for predicting

the potential influences of future climate warming. This lake is

ideal to examine the roles of climate change on lake mixing

regimes, natural nutrient dynamics, phytoplankton biomass and

community composition. Firstly, alpine lakes on the Chinese

Loess Plateau are sensitive to increases in air temperature (Wang

et al., 2014; Yan et al., 2020) and associated enhanced lake

thermal stratification (Liu et al., 2017; Yan et al., 2022).

Secondly, Chinese Loess Plateau lies in the northernmost part

of the East Asian summer monsoon domain (Figure 1A), and

lakes are sensitive to changes in monsoonal precipitation (Chen

et al., 2015; Chen et al., 2021) and associated natural nutrient

dynamics (Liu et al., 2017). Thirdly, Chinese Loess Plateau is

known as a region of severe soil erosion due to loess loose and

collapsible properties, which causes high nutrient delivery into

water bodies and evenmakes the Yellow River crossing the region

(Figure 1A) as one of the most nutrient-laden world’s large rivers

(Chen et al., 2004; Yu et al., 2010; Fu et al., 2017), and lakes are

sensitive to catchment nutrient processes. We use sedimentary

pigments, which comprise mainly chlorophylls and carotenoids

produced by photosynthetic organisms and can be used as

excellent proxies for past algal production and community

compositional changes (Leavitt and Hodgson, 2001), and take

the mid-Holocene thermal maximum as an analog to explore the

influences of temperature, precipitation and terrestrial vegetation

on in-lake and catchment processes, algal compositional changes

and cyanobacterial development.

Materials and methods

Lake properties

Lake Mayinghai (112°12′9″E, 38°52′2″N, 1772 m a. s. l.,

Figure 1A) is a remote, alpine, small and eutrophic lake in the

northern LvliangMountains, Chinese Loess Plateau, northern China.

It has a maximum water depth of 6.4 m, a surface area of ca. 0.6 km2

and a catchment area of ca. 6 km2 (Figure 1B). The pelagic lake-water

annual average total phosphorus and total nitrogen concentrations

are 39 and 708 μg l−1, respectively. The nitrogen to phosphorus ratio

is 18, and the lake is currently phosphorus and nitrogen co-limited

(Guildford and Hecky, 2000). The lake is influenced by a typical

monsoonal climate (i.e., warm, wet summers and cold, dry winters),

and the average annual precipitation is 657.3 mm, 70% of which

occurs between June and September. The lake is fed primarily by

precipitation, with no perennial water inflow, and lake water is lost

through evaporation and groundwater outflow. There is no surface

outflow today, but it was possible at the southwestern end of the lake

(Figure 1B) during previous phases of high lake levels and drained

southward into the Fen River, the Yellow River’s second largest

tributary. The lake is ice-covered from December to March,

overturns from April to May and from August to November, and

experiences stratification in June and July (Zhang et al., 2022). Lake

algal community composition comprises mainly diatoms (62%),

chlorophytes (22%), cyanobacteria (10%) and cryptophytes (3%)

(Zhang et al., 2012). Diatoms are dominated by Cyclotella,

Aulacoseira, Fragilaria and Navicula sensu lato spp.. Chlorophytes

consist mainly of Chlorella, Oocystis, Ankistrodesmus, Ulothrix and

Scenedesmus spp.. Cyanobacteria includes Aphanocapsa,Oscillatoria,
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Phormidium, Lyngbya andAnabaena spp.. The catchment vegetation

is mainly shrubs and herbs, together with some mixed broadleaved-

coniferous forests (Xu et al., 2017; Huang et al., 2021).

Sediment archives

A 1,490 cm-long core (MYH14B) was retrieved from the

deepest part of Lake Mayinghai (Figure 1B) using UWITEC

piston coring equipment from the lake ice in January 2014. An

age-depth model was developed based on radiocarbon dating of

18 plant macrofossils and two charcoal fragments (see

Supplementary Material), which improves the age model

published in Cheng et al. (2020). Radiocarbon dates were

measured at Beta Analytic Inc. (United States). The

calibration of radiocarbon ages into calendar ages is based on

OxCal 4.4 software (Bronk Ramsey, 2009) and IntCal

20 calibration curve (Reimer et al., 2020). The classical age-

depth modelling with a smoothing spline (smoothing

parameter = 0.4) in the software package Clam 2.3.5 (Blaauw,

FIGURE 1
The geographical background of Lake Mayinghai. (A) Map of China showing the location of Lake Mayinghai (blue dot) on the Chinese Loess
Plateau, which is in the northern East Asian summer monsoon region, with the green dashed line indicating the modern boundary between the East
Asian summer monsoon and the westerly climate systems. (B)Map of Lake Mayinghai showing the lake bathymetry with the coring site (red dot) and
the 10 m-interval contour topography of its catchment and surrounding area.
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2010) was selected to generate a smooth curve between dated

levels (Trachsel and Telford, 2017) in R platform (R

Development Core Team, 2022). The age model shows that

this sequence covers approximately the entire Holocene

(Figure 2).

Pigment analysis

Pigment analysis was carried out on 216 samples, taken

every 4 cm for the topmost 30 cm and between 700 and

1,490 cm depth, every 8 cm between 600 and 700 cm

depth, and every 16 cm between 30 and 600 cm depth due

to high sediment accumulation rates in this interval. The age

resolution between samples is ca. 10–20 years between 0 and

500 cm depth (ca. 400 cal year BP-present), ca. 30–40 years

between 500 and 700 cm depth (ca. 1,100–400 cal year BP),

ca. 20–40 years between 700 and 800 cm (ca.

1,800–1,100 cal year BP), ca. 40–80 years between 800 and

1,100 cm (ca. 5,300–1,800 cal year BP), ca. 100–120 years

between 1,100 and 1,200 cm (ca. 7,500–5,300 cal year BP),

ca. 50–70 years between 1,200 and 1,300 cm (ca.

9,100–7,500 cal year BP) and ca. 50 years between

1,300 and 1,490 cm (ca. 11,400–9,100 cal year BP).

Standard procedures were adopted for chlorophyll and

carotenoid pigment analyses (Leavitt and Hodgson, 2001;

McGowan, 2013). Pigment analysis was conducted at the

University of Nottingham (United Kingdom) following

Moorhouse et al. (2014). Pigment samples were frozen

at −18°C and freeze-dried shortly before analysis.

Approximately 0.2 g sediment was extracted overnight

at −4°C in an acetone: methanol: water (80:15:5) solution.

Extracts were filtered with a 0.22 μm PTFE filter, dried

under N2 gas, re-dissolved in an acetone: ion-pairing

reagent: methanol (70:25:5) mixture (ion-pairing reagent is

0.75 g tetra butyl ammonium acetate, 7.7 g ammonium

acetate and 100 ml water), and injected into the high-

performance liquid chromatography (HPLC) unit. The

HPLC system comprised an Agilent 1,200 series quaternary

pump, an autosampler, an ODS Hypersil column (205 mm ×

4.6 mm; 5 μm particle size), a photo-diode array detector, and

the Chemstation software. The separation method was

modified from Chen et al. (2001). Solvent A was methanol:

0.5 M ammonium acetate (80:20), solvent B was acetonitrile:

FIGURE 2
Age-depth model of the Lake Mayinghai core MYH14B [improved from Cheng et al. (2020)].
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water (90:10) and solvent C was ethyl acetate. After injection

(100 μl) a gradient program (1 ml min−1) began isocratically

with 100% solvent A, ramped to 100% solvent B in 4 min and

then to 25% solvent B and 75% solvent C over 34 min, held

isocratically for 1 min, returned to 100% solvent A in 4 min, and

finally ran isocratically for 9 min. Pigments were identified by

comparing spectra and peak retention times with commercial

standards (DHI Denmark), and peak areas were calibrated to

calculate pigment concentrations. Pigment concentrations are

expressed as nanomoles per gram total organic carbon in the

sediment (nmol g−1 TOC) (see Supplementary Material). TOC

analysis was conducted at Lanzhou University (China).

Approximately 1.0 g freeze-dried sediment was treated with

10% HCl to remove total inorganic carbon, rinsed to remove

remaining HCl, and then re-dried. Approximately 0.2 g re-

dried sediment was wrapped using aluminum foil and

measured in the Jena HT 1,300 TOC analyzer. TOC

concentration was calculated relative to total dry sediment.

Results and discussion

Mid-Holocene algal compositional
changes and cyanobacterial development

Pigment preservation in the LakeMayinghai sediment record

can be qualitatively assessed according to pheophytin a and

fucoxanthin concentrations. Pheophytin a is a general, more

stable degradation product of chlorophyll a, and its nearly

consistent level throughout the sequence (Figure 3B) suggests

that a high chlorophyll a to pheophytin a ratio during the mid-

Holocene (ca. 7,300–5,450 cal year BP) was driven more by high

production than low degradation. Despite the possibly different

degradation degrees of pigments, fucoxanthin is an instable

pigment and highly prone to degradation, with its final

degradation product colorless and undetectable (Reuss and

Conley, 2005), its presence throughout the sequence and no

significant change during the mid-Holocene (Figure 3I) is an

FIGURE 3
Pigments from the Lake Mayinghai core MYH14B. The pink bar indicates the mid-Holocene period with a distinctly low β-carotene to
chlorophyll a + echinenone ratio.
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excellent indicator of good pigment preservation. So, degradation

could be considered negligible for interpretation of the pigment

assemblage data.

It should be emphasized that chlorophyll a and echinenone co-

eluted in this study, because their peak areas cannot be separated in

the chromatogram, but echinenone was a minor component and we

calibrated to chlorophyll a alone. Chlorophyll a is a ubiquitous,

dominant pigment in all photosynthetic algae and higher plants

(Leavitt and Hodgson, 2001; McGowan, 2013). Echinenone and

canthaxanthin are usually minor pigments in filamentous

cyanobacteria (Jeffrey et al., 1997; Egeland et al., 2011), and

canthaxanthin concentration was generally low and less than

40 nmol g−1 TOC in this sequence, even with a decrease during

the mid-Holocene (Figure 3H), suggesting a similar change in

echinenone concentration. However, chlorophyll a + echinenone

concentrations were much higher (243 nmol g−1 TOC on average)

during the mid-Holocene. This confirms that high chlorophyll a +

echinenone concentrations can represent high chlorophyll a

concentration and indicate high chlorophyll a production during

the mid-Holocene (Figure 3A). β-carotene is also derived from all

algae and higher plants, but it is dominant in chlorophytes and higher

plants and usually minor in other algal groups (Jeffrey et al., 1997;

Egeland et al., 2011). Low β-carotene concentration during the mid-

Holocene (Figure 3D) is not consistent with high chlorophyll a

concentration, and the ratio of β-carotene to chlorophyll a +

echinenone is distinctly low during the mid-Holocene (Figure 3E).

β-carotene is much more stable than chlorophyll a, and given the

primary signal of chlorophyll a for production, high temperature-

induced β-carotene degradation during the mid-Holocene can also

be negligible. However, high temperature-induced thermal

stratification was favorable to pigment preservation. Thus, the low

β-carotene to chlorophyll a ratio was attributed to pigment sources

rather than preservation qualities. Moreover, given that there was no

clear change in terrestrial organic input during the mid-Holocene as

indicated by the C/N ratio (Figure 4E), terrestrial inputs of

chlorophyll a and β-carotene from higher plants were consistent

during the mid-Holocene, so the distinctly low β-carotene to

chlorophyll a ratio is indicative of algal compositional changes,

and high chlorophyll a concentration indicates high algal production.

Based on the difference of main phytoplankton sources

between chlorophyll a and β-carotene as described above, the

low ratio of β-carotene to chlorophyll a + echinenone is possibly

FIGURE 4
Comparison of Holocene pigment data from Lake Mayinghai (A–C) with Ti/Ca (D) (Shen et al., 2018; Cheng et al., 2020) and C/N (E) (Cheng
et al., 2020; Li et al., 2020) from the same core, terrestrial vegetation biomes from nearby Lake Gonghai (F) (Xu et al., 2017), mean annual precipitation
in northern China (mainly East Asian summer monsoon precipitation) (G) (Chen et al., 2015) and global mean annual temperature (H) (Kaufman et al.,
2020).
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linked to a reduction in chlorophytes and/or an increase in other

algal groups. Pheophytin b is a general degradation product of

chlorophyll b that is a dominant pigment in chlorophytes and

higher plants (Jeffrey et al., 1997; Egeland et al., 2011).

Pheophytin b is highly stable (Reuss and Conley, 2005), and

its nearly consistent concentration suggests no clear change of

chlorophyte production during the mid-Holocene (Figure 3F).

Lutein is also a major pigment in chlorophytes and higher plants,

and it is known as a biomarker for macrophytes (Bianchi and

Finlay, 1990). Despite high precipitation during the mid-

Holocene (see below), this lake was hydrologically open with

surface outflow modulating the water balance, making an

increase in water level and a shift from the dominance of

macrophytes to phytoplankton unlikely. This is supported by

the aquatic pollen data that show Typhaceae and Myriophyllum

were consistently extremely low during the mid-Holocene (Ren

et al., 2022). Thus, there was no clear change of macrophytes

during this period. Lutein co-eluted with zeaxanthin. Zeaxanthin

is usually a major pigment in total cyanobacteria (Egeland et al.,

2011). The decrease in lutein + zeaxanthin concentrations

suggests that total cyanobacteria might have a decline during

the mid-Holocene (Figure 3G), which was synchronous with

canthaxanthin, indicating a large contribution of the decrease in

filamentous cyanobacteria. Fucoxanthin is a major pigment in

diatoms, chrysophytes and synurophytes (Jeffrey et al., 2011).

The concentrations of fucoxanthin and its derivative indicate no

significant change of the production of siliceous algae during the

mid-Holocene (Figure 3I). Alloxanthin is a particular, major

pigment in cryptophytes. Its concentration remained consistent

during the mid-Holocene (Figure 3J), indicating no change of

cryptophyte production. Collectively, given the clear evidence of

the nearly consistent production in chlorophytes, siliceous algae

and cryptophytes and the decline in the production of

filamentous cyanobacteria, it is possible that the mid-

Holocene high chlorophyll a concentration and low β-

carotene to chlorophyll a ratio could be driven by an increase

in colonial coccoid cyanobacteria.

Cyanobacterial response to mid-
Holocene climate and environmental
changes

Holocene temperature changes have not been reconciled

(Marcott et al., 2013; Liu et al., 2014b; Marsicek et al., 2018;

Kaufman et al., 2020; Bova et al., 2021; Osman et al., 2021).

However, Marcott and colleagues’ temperature reconstruction

relies more on northern mid-latitude marine sites (Marcott et al.,

2013), Marsicek and colleagues’ reconstruction focuses on

northern mid-latitude terrestrial sites (Marsicek et al., 2018),

and Bova and colleagues’ reconstruction lays emphasis on

tropical marine sites (Bova et al., 2021). Thus, we adopt the

temperature reconstruction from the Temperature 12 k database

that comprises a large number of both terrestrial and marine sites

across the world (Kaufman et al., 2020). This reconstruction

exhibits high temperatures during the mid-Holocene

(Figure 4H), and confirms the traditional view of mid-

Holocene thermal maximum (Shi et al., 1994). Our pigment

result of the mid-Holocene low β-carotene to chlorophyll a ratio

is associated with the thermal maximum. High temperatures

would have promoted cyanobacterial growth directly, because

cyanobacteria reach their maximum growth rates at higher

temperatures than eukaryotic algae (Paerl, 2014; Huisman

et al., 2018) and high temperatures also reduce lake ice cover

and prolong their growing-season period (Smol et al., 2005).

Meanwhile, warming-induced intensified and prolonged thermal

stratification and increased lake stability provided a competitive

advantage for the development of cyanobacteria, because they

have buoyancy to regulate their positions in the water column

(Smol, 2019; Reinl et al., 2021; Sivarajah et al., 2021). Moreover,

the currently dominant colonial coccoid Aphanocapsa in Lake

Mayinghai (Zhang et al., 2012) and the common bloom-forming

colonial coccoid Microcystis, both of which cannot fix nitrogen,

are more sensitive to temperature than nitrogen-fixing

filamentous cyanobacteria such as Anabeana (Jöhnk et al.,

2008; Wu et al., 2010; Rigosi et al., 2014). Meanwhile, colonial

coccoid Aphanocapsa and Microcystis have a generally smaller

cell volume and higher surface area to volume ratio than

filamentous Anabeana (Napiórkowska-Krzebietke and Kobos,

2016), and thus colonial coccoid cyanobacteria have higher

buoyancy and benefit more from enhanced thermal

stratification (Smol, 2019). So, the increase in non-nitrogen-

fixing colonial coccoid cyanobacteria at the expense of

filamentous cyanobacteria was likely linked to high

temperatures during the mid-Holocene.

Robust pollen-based precipitation reconstruction from Lake

Gonghai, ca. 5 km apart from Lake Mayinghai, shows that mean

annual precipitation, consisting mainly of the East Asian summer

monsoon precipitation, reached the maximum during the mid-

Holocene in this region (Figure 4G) (Chen et al., 2015). The East

Asian summer monsoon intensity can be represented by the

amount of precipitation in northern China (Liu et al., 2014a;

Chen et al., 2015), which is located in the northern monsoonal

region (Figure 1A), and thus high summer monsoon intensity

also occurred during the mid-Holocene. The mid-Holocene low

β-carotene to chlorophyll a ratio in Lake Mayinghai is associated

with high precipitation and high summer monsoon wind

intensity. Winter monsoon wind intensity can be ignored due

to the lake ice cover (Zhang et al., 2022). Given the consistent lake

level (see above) and the consistent wind-shielding catchment

forest (as shown by a consistently low steppe component in

Figure 4F), high monsoon wind intensity, which would weaken

lake stratification, did not favor cyanobacterial development.

High precipitation would have brought more nutrients into

the lake through high surface runoff and catchment erosion,

favoring lake eutrophication and cyanobacterial development
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(Sinha et al., 2017). However, this effect can be modulated by

catchment landscape properties (Paltsev and Creed, 2022).

Although the C/N ratio (Cheng et al., 2020; Li et al., 2020)

shows that there was no clear change in terrestrial organic input

during the mid-Holocene (Figure 4E), the Ti/Ca ratio, an

excellent proxy for terrestrial siliciclastic input (Shen et al.,

2018; Cheng et al., 2020), shows that there was fluctuating but

generally higher inorganic elemental input during the mid-

Holocene (Figure 4D). This may be linked to high organic

matter decomposition and high chemical weathering during

the process of soil development under optimal climatic

conditions. Thus, the intensity of catchment erosion was

strong during the mid-Holocene, and high precipitation-

induced runoff overrode the hindering effect of dense

terrestrial forest cover on catchment erosion. On the other

hand, this lake was open with surface outflow modulating the

water and nutrient balance. This would induce a low water

residence time and a low steady-state concentration of

nutrients during the mid-Holocene, which did not favor

cyanobacterial development. Collectively, the increase in non-

nitrogen-fixing colonial coccoid cyanobacteria may be partially

linked to high precipitation-induced inorganic nutrient input

during the mid-Holocene, but this cannot explain the decline in

filamentous cyanobacteria.

Pollen-based biome reconstruction from nearby Lake

Gonghai shows that, although terrestrial forest cover was

consistently dense (as shown by a constantly low steppe

component in Figure 4F), deciduous forests reached the

maximum at the expense of coniferous forests during the

mid-Holocene (Figure 4F) under optimal climatic conditions

(Xu et al., 2017). The Lake Mayinghai mid-Holocene low β-

carotene to chlorophyll a ratio is coeval with maximum

deciduous forest cover. As mentioned above, the potential

influences of dense forest cover in reducing wind speed

(Vautard et al., 2010) and erosion intensity (Fu et al., 2017)

were consistent during the mid-Holocene. However, deciduous

forests and coniferous forests covering the catchment have

different effects on lake trophic state (Klimaszyk and Rzymski,

2011). Deciduous broadleaf forests have higher defoliation,

higher leaf litter decomposition, and higher soil carbon and

nitrogen concentrations than evergreen coniferous forests

(Aerts and Chapin III, 2000; Chen et al., 2016; Zhang et al.,

2017). Thus, combined with precipitation-induced high erosion

intensity as indicated by the Ti/Ca ratio (Figure 4D), maximum

deciduous forests would have provided high inorganic carbon

and nitrogen supplies to the lake, and the lake possibly became

phosphorus limited during the mid-Holocene. Cyanobacteria

evolve CO2-concentrating mechanisms and possess several

inorganic carbon uptake systems (Huisman et al., 2018), so

inorganic carbon concentration may be not significant. It is

widely accepted that, although cyanobacteria can store the

nutrients compared to eukaryotic algae (Reinl et al., 2021),

both phosphorus and nitrogen are primary nutrient elements

for controlling cyanobacterial development (Paerl et al., 2016;

Qin et al., 2020) and nitrogen becomes evenmore important than

phosphorus in summer (Ma et al., 2015; Xu et al., 2015). High

nitrogen concentration, low phosphorus concentration and high

nitrogen to phosphorus ratio are traditionally considered

unfavorable to cyanobacterial development (Tilman et al.,

1982; Jeppesen et al., 2005; Schindler et al., 2016). However, it

is recently found that high nitrogen to phosphorus ratio can shift

the cyanobacterial composition from nitrogen-fixing

cyanobacteria to non-nitrogen-fixing cyanobacteria (Paerl and

Otten, 2016; Huisman et al., 2018). Filamentous Anabaena can

fix nitrogen for their long-term survival and thrives under low

nitrogen conditions (Chia et al., 2018), whereas non-nitrogen-

fixing colonial coccoid Microcystis develops under high nitrogen

and low phosphorus environments (Chia et al., 2018; Wan et al.,

2019). So, the increase in non-nitrogen-fixing colonial coccoid

cyanobacteria at the expense of filamentous cyanobacteria was

likely linked to catchment vegetation modulation during the

mid-Holocene.

Conclusion

This study uses pigments from a Holocene sediment core of

Lake Mayinghai on the Chinese Loess Plateau to explore the

influences of mid-Holocene climate and environmental changes

on algal compositional changes and cyanobacterial development.

A distinctly low β-carotene to chlorophyll a ratio during the

mid-Holocene is likely driven by an increase in non-nitrogen-

fixing colonial coccoid cyanobacteria. The driving factors are

high temperatures, high precipitation and high terrestrial

deciduous forest cover during the mid-Holocene. High

temperatures may have promoted the development of non-

nitrogen-fixing colonial coccoid cyanobacteria in direct (by

increasing their growth rates) and/or indirect (by increasing

thermal stratification) ways. Dense deciduous forest in the

catchment may have provided high inorganic nitrogen supply

and thus increased lake nitrogen to phosphorus ratio under the

influence of precipitation-induced high erosion intensity. High

nitrogen to phosphorus ratio favored non-nitrogen-fixing

colonial coccoid cyanobacteria at the expense of nitrogen-

fixing filamentous cyanobacteria. These three factors affected

cyanobacterial development in a synergistic way during the mid-

Holocene on the Chinses Loess Plateau. This study provides

implications for the potential influences of future climate change

on cyanobacterial development in this region. In the future,

when temperatures go up, the East Asian summer monsoon will

be intensified, precipitation will increase in this region, and

vegetation will be recovered (IPCC, 2021). Future lake

management should take into consideration the in-lake

processes influenced by higher temperatures and the

catchment processes modulated by increased precipitation

and terrestrial vegetation.
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