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At present, more than 90% of China’s oil production equipment comprises rod

pump production systems. Indicator diagram analysis of the pumping unit is not

only an effective method for monitoring the current working condition of a rod

pump production system but also the main way to prevent, detect, and rectify

various faults in the oil production process. However, the identification of the

pumping unit indicator diagram mainly involves manual effort, and the

identification accuracy depends on the experience of the monitoring

personnel. Automatic and accurate identification and classification of the

pumping unit indicator diagram using new computer technology has long

been the research focus of studies for monitoring the pumping unit working

condition. In this paper, the indicator diagram is briefly introduced, and theAlexNet

model is presented to distinguish the indicator diagram of abnormal wells. The

influence of the step size, convolution kernel size, and batch normalization (BN)

layer on the accuracy of the model is analyzed. Finally, the AlexNet model is

improved. The improved model reduces the calculation cost and parameters,

accelerates the convergence, and improves the accuracy and speed of the

calculation. In the experimental analysis of abnormal well diagnosis, the data

are preprocessed via data deduplication, binary filling, random line distortion,

random scaling and stretching, and random vertical horizontal displacement. In

addition, the image is expanded by transforming several well indicator diagrams.

Finally, data sets of 10 types of indicator diagrams are created for better adaptability

and application in the analysis and classificationof indicator diagrams, and the ideal

application effect is achieved in actual working conditions. In summary, this

technology not only improves the recognition accuracy but also saves

manpower. Thus, it has good application prospects in the field of oil production.
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Introduction

Rod pump production systems constitute the predominant equipment in crude oil

exploitation. Owing to the specific nature of their structural characteristics and working

environment, their failure rate is high. Therefore, it is crucial to understand the working

state of the pumping unit as well as to analyze and rectify faults in a timely and accurate
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manner (Li et al., 2013a; Reges et al., 2015). The indicator

diagram is a closed curve composed of the load-versus-

displacement curves. In the working process of the rod

pumping unit, the obtained indicator diagram can be used to

qualitatively analyze the working condition of the pumping unit,

adjust the working parameters in a timely manner, and detect

and eliminate faults. However, in actual production, the

recognition and classification of the indicator diagram mainly

involves manual effort, and the recognition efficiency is low.

Deep learning, a new area of machine learning with successful

applications in computer vision, speech recognition, and other

fields, provides a new idea for solving problems such as image

classification (Zhang, 2000; Xu et al., 2007; Bezerra et al., 2010;

Sun et al., 2012; Li et al., 2013b),. As the analysis of the indicator

diagram can be regarded as a type of image classification, it is

technically feasible and of great practical significance to study the

application of convolutional neural networks (CNNs) to the

automatic identification and classification of the indicator

diagram (Luan et al., 2011; Li, 2015).

Diagnosis of abnormal wells based on
AlexNet model

In recent years, the use of computer technology for the

diagnosis of abnormal wells has attracted considerable

research attention. For example, expert systems, support

vector machines, and fuzzy theory are used in the diagnosis of

abnormal wells (Krizhevsky et al., 2012; Krizhevsky, 2014). These

methods involve artificial feature extraction, i.e., feature

extraction using classification methods such as pattern

classification. However, the extraction process is manual and

hence suffers from information loss and extraction errors, which

affect the performance of the subsequent classification

algorithms. In deep learning, a large amount of historical data

can be used to automatically extract and learn features, which

compensates for the shortcomings of manual feature extraction.

According to the characteristics of the indicator diagram, the

CNN algorithm is an innovative and widely applicable tool for

the diagnosis of abnormal wells.

Figure 1 shows the AlexNet network model. The network

model for image recognition consists of four basic elements:

convolution layer, pooling layer, fully connected layer, and

activation function (Xu et al., 2020). The pooling layer

generally follows the convolution layer, and the fully

connected layer is located at the end of the network to output

the final feature vector. The activation function determines

whether the neurons are activated for transmitting

information. The main function of the convolution layer is to

extract the features of the input indicator diagram. The core idea

of convolution involves the local receptive field and weight sharing

convolution process. After the convolution layer extracts the

features, the generated feature map is passed to the next layer.

The main function of the pooling layer is to compress the feature

map and eliminate the influence of the space conversion of the

indicator map. The last layer of the CNN is generally the fully

connected layer, whose function is to convert the feature map of

the input indicator diagram extracted by the previous convolution

layer and pooling layer into the feature vector output. Thus, the

diagnosis of abnormal wells is completed.

The AlexNet experiment involves 80 iterations. The model is

saved once every 10 iterations, and the accuracy, number of

iterations, and loss error of the model are recorded. The accuracy

of the network model is gradually stable after more than

20 iterations, and the recognition accuracy of the model test

set is 97.3%, as shown in Figure 2A. Similarly, after around

FIGURE 1
AlexNet network model.
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FIGURE 2
AlexNet training process. (A) Accuracy rate (B) Loss function (C) Confusion matrix.

FIGURE 3
5*5 Convolutional training process. (A) Accuracy rate (B) Loss function.
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20 iterations, the loss value gradually becomes stable and reaches

convergence; the loss of the test set is around 0.02, as shown in

Figure 2B. As can be seen from the confusion matrix shown in

Figure 2C, the diagnostic accuracy of the AlexNet model for

abnormal wells is relatively high. According to the diagnosis, error-

prone situations that occur include fixed valve leakage, insufficient

FIGURE 4
3*3 Convolutional training process. (A) Accuracy rate (B) Loss function.

FIGURE 5
2*2 convolution training process. (A) Accuracy rate (B) Loss function.

TABLE 1 Performance comparison of three convolution kernel sizes.

Size
of convolution kernel

Number of iterations
to convergence

Test accuracy (%) Parameters Memory (MB)

5*5 20 96.9 32,741,674 127

3*3 20 97.4 49,352,746 191

2*2 20 97.1 63,571,290 248
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TABLE 2 Influence of step size on network performance.

Model/step size Number of iterations
to convergence

Test accuracy (%) Parameters Memory (MB)

5cs1 20 96.5 196,153,386 766

1cs2_4cs1 20 97.2 49,352,650 192

2cs2_3cs1 20 97.9 14,487,594 56

3cs2_2cs1 20 94.9 7,409,706 28

4cs2_1cs1 20 93.6 5,312,458 20

1cs3_4cs1 18 95.8 21,827,530 85

2cs3_3cs1 18 87.5 6,098,986 23

FIGURE 6
Comparison of step accuracy. (A) Accuracy map of training set (B) Accuracy map of test set.

FIGURE 7
Comparison of step loss rate. (A) Loss value of training set (B) Loss value of test set.
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liquid supply and gas influence, and slow closing of the moving valve.

However, the test set comprising nearly 1700 data includes less than

40 error data. Thus, the AlexNet network achieves high accuracy in

indicator diagram classification for abnormalwell diagnosis. Finally, the

evaluation indexes of the model are as follows: accuracy rate, 96.58%;

precision rate, 97.18%; recall rate, 95.97%; and F1 score, 96.22%.

Improvement of AlexNet model

Owing to the highmemory consumption and low accuracy of

the AlexNet model, the model is improved accordingly. The

influence of various parameters on the diagnosis accuracy of

abnormal wells is studied in detail. The model is optimized in

terms of the convolution kernel size, batch normalization (BN)

layer, and step length, and the parameters suitable for the diagnosis

model of abnormal wells are selected. The early stopping method

and dropout layer are used to prevent overfitting of the model. The

number of iterations/epochs is set to 80, and the accuracy and error

of the training and test sets are recorded once per epoch.

Influence of convolution kernel size on
network model

1) 5*5 convolution kernel

The network model converges after around 20 iterations, and

the loss converges to 0.08 for the test set. Figure 3 shows the good

fitting performance of the network model.

2) 3*3 convolution kernel

FIGURE 8
Improved AlexNet network model. In this study, VGG, LeNet, and other models are used for comparison.

TABLE 3 Comparison of two models.

Model Test accuracy (%) Number of parameters Memory (MB)

AlexNet 97.3 5,700 myriad 230

Improved AlexNet 97.9 1,400 myriad 56
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TABLE 4 Transformation of indicator diagram.

Conversion type of
indicator diagram

Indicator diagram Indicator diagram with
180° rotation

Conversion of normal indicator diagram

normal hexane indicator diagram normal hexane indicator diagram

Conversion of indicator diagram of upper bump pump and lower bump pump

indicator diagram of down-impact pump indicator diagram of bump pump

Conversion of indicator diagram of moving valve leakage and fixed valve leakage

indicator diagram of valve leakage indicator diagram of fixed valve leakage

Conversion of indicator diagram of insufficient fluid supply and slow closing of
valve

indicator diagram of insufficient liquid supply indicator diagram of valve closing delay

indicator diagram of insufficient liquid supply indicator diagram of valve closing delay
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The network model converges after around 20 iterations, and

the deviation is small. The 3*3 convolution kernel achieves better

performance than the 5*5 convolution kernel, as shown in

Figure 4. Hence, the 3*3 convolution kernel is a better choice。

3) 2*2 convolution kernel

There is a certain gap between the 2*2 and 3*3 convolution

kernels in terms of the fitting and accuracy, as shown in Figure 5.

Hence, the usage rate of the 2*2 convolution kernel is low in

common network models.

4) Comparative analysis of experiments

The size of the convolution kernel influences the

performance of the network model. From the aforementioned

experiments, the 3*3 convolution kernel is selected because it has

the highest accuracy, relatively small number of parameters, and

moderate memory consumption. Table 1 compares the

performances of the three convolution kernel sizes.

Influence of step size on network model

As can be seen from Table 2, the 2cs2 _ 3cs1 model

outperforms the AlexNet model in terms of the accuracy,

number of parameters, and memory consumption.

Influence of BN layer on network model

In the training and testing processes of the network model,

any change in the network input will affect the accuracy of

the model. In particular, in the case of the deep network

model, the number of iterations until convergence will

increase (Huang, 2007; Yang, 2011). In the training

process, if the distribution of the input in the previous

layer changes significantly, the model will suffer from

poor adaptability, which leads to difficulty in adjusting the

parameters. Using the BN layer can reduce the dependence

on data initialization and prevent problems caused by it

(Chen et al., 2014; Yuan and Hu, 2015; Xu et al., 2019).

The experiment uses the AlexNet network model to add the

BN layer in order to test the influence of the BN layer on the

abnormal well diagnosis model. The number of iterations is 80,

the initial learning rate is 0.01, and the batch size is 16.

Figures 6A,B show the accuracy curves of the abnormal well

diagnosis model before and after adding the BN layer for the

training and test sets, respectively. Figures 7A,B show the loss

value curves of the abnormal well diagnosis model before and

after adding the BN layer for the training and test sets,

respectively. As can be seen from the curve of the training set,

the loss value of the model with the BN layer decreases faster as

the number of iterations increases, and the loss value is

minimized when the number of iterations is around 10. Thus,

adding the BN layer accelerates the convergence of the network

model and makes it easier to extract the characteristics of image

information. For the test set, the loss value of the model changes

relatively smoothly. In general, the loss value of the model with

the BN layer decreases faster than that of the model without BN

layer. As can be seen from the accuracy change diagram, the

model with the BN layer can achieve the highest accuracy faster,

which can effectively reduce the training time to a certain extent.

Abnormal well diagnosis model based on
improved AlexNet

The improved AlexNet model uses the 3*3 convolution

kernel instead of the 11*11 or 5*5 convolution kernel, which

reduces the calculation cost and number of parameters and

accelerates the convergence. Figure 8 shows a schematic of the

improved AlexNet network model.

The experimental results of the two models on the test set

data are summarized in Table 3. The number of parameters

and memory size of the AlexNet model are 57 million and

230 MB, respectively. The minimum memory consumption

of the improved AlexNet is 56 MB. Compared with AlexNet,

the number of parameters is reduced by more than 43 million

and the memory consumption is reduced by 174 MB. Finally,

the diagnostic classification accuracy of abnormal wells

using the two models on the test set is listed in the table.

As can be seen, the accuracy of the improved AlexNet

is 97.9%.

TABLE 5 Classification of indicator diagram.

Category Number Label Storage path Category Number Label Storage path

Normal work 837 1 img/1 Slow closing of swimming valve 743 6 img/6

Insufficient fluid supply 719 2 img/2 Piston outlet pump barrel 730 7 img/7

Gas influence 919 3 img/3 Valve Leakage 342 8 img/8

Up-impact pump 628 4 img/4 Fixed valve leakage 342 9 img/9

Lower bump pump 589 5 img/5 Sand effect and insufficient liquid supply 270 10 img/10
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TABLE 6 Diagnostic results of indicator diagram.

Enter indicator diagram Diagnostic conditions Actual operation

Gas influence Gas influence

Insufficient for liquid Insufficient for liquid

Pump normal Pump normal

Sucker rod break Sucker rod break

Gas influence Gas influence

Gas influence Insufficient for liquid
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Experimental analysis of deep
learning model

Experimental data preparation

In deep learning, owing to the small number of samples of

training data, under-fitting will occur while training the network

model (Wen et al., 2016; Zhang et al., 2016; Lu and Goodson,

2017; Xu et al., 2018). Therefore, an image expansion method

based on the characteristics of the indicator diagram is proposed.

Table 4 summarizes the transformation of the indicator diagram.

For an actual oil well, the abnormal indicator diagram data

are less whereas the normal indicator diagram data are more. To

ensure the generalization ability of the model and the balance of

data, the normal indicator diagram is randomly deleted.

Creation of data sets

In this study, 10 types of indicator diagrams are collected, and

10 folders are created accordingly, as shown in Table 5. The indicator

diagram data in Table 5 from Shengli Oilfield in China, there have

been tens of thousands of rod pumping wells. Due to serious sand

production, high water cut, strong corrosion, high viscosity of crude

oil, insufficient liquid supply and other reasons, downhole accidents

such as rod breaking, pump leakage and sand sticking often occur.

Each indicator diagram is saved in a .txt file and named with a

picture path tag, such as img/1/a001.jpg 1, for the model to read.

After storage, the sequence is randomly disrupted; 70% is

randomly selected as the training set and the remaining 30%

is employed as the test set by using the method of leaving the set.

Application of improved AlexNet model to
indicator diagram analysis

The trained CNN is used to analyze and diagnose the

indicator diagram of the pumping unit, which is input to the

improved AlexNet network model to judge the working

condition type. The judgment results are shown in Table 6:

As can be seen from the table, the accuracy of the improved

model in the judgment of the working condition is 83.3%, which

is basically consistent with the actual working condition,

indicating that the improved model has good application

prospects in actual working condition analysis.

Conclusion

In this study, an improved AlexNet model with a total of five

convolution layers and a 3*3 convolution kernel was employed. In the

first two convolution layers, the step size was 2, and in the last three

convolution layers, the step size was 1. The pooling layer used was the

maximum pooling layer, and the step size was 2. The BN layer was

added behind convolution layers 1 and 2. Moreover, the memory

consumption of the improved AlexNet model was reduced

considerably, which accelerated the convergence and resulted in

high accuracy in the analysis of actual working conditions. Finally,

a comparison of the model parameters and calculation cost showed

that the performance of the improved AlexNet model is superior.

(Duan et al., 2018).
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