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In recent years, the easternmargin of Ordos Basin has attractedmuch attention as a

keybase for unconventional natural gas exploration. Thepore-fracture structure is an

important physical property of shale and provides places and channels for methane

storage and migration. In this study, an integrated method of X-ray diffraction, total

organic carbon (TOC), vitrinite reflectance (Ro), scanning electronmicroscopy (SEM),

and low-temperatureN2 adsorptionwas performed to reveal themicrostructure and

heterogeneity of coal-bearing organic shale in the southeast Ordos Basin. The result

indicated that the studied shale belongs to the category of organic-rich shalewith an

average TOC content of 8.1% and reaches the dry gas stage with amean Ro value of

2.41%. Hysteresis loop suggests the shapes of pore structure in shale samples are

dominated by inkbottle, cylindrical pores or parallel-plate. A positive correlation

between kaolinite and pore surface area indicates that kaolinite contributes greatly to

micropores with a large specific surface area. Intense hydrocarbon generation

promotes gas to escape from organic components’ surfaces, thereby increasing

the pore volume. Coal-bearing shaleswith high brittlenessmay containmore natural

microfractures, increasing specific surface area and pore volume. The bocking effect

of minerals in microfractures may reduce pore connectivity and connectivity and

enhance shale heterogeneity. The pore volume and specific surface area of coal-

bearing shale are closely related to the fractal dimensions. The high complexity of the

shale microstructure may lead to the formation of more micropores, resulting in a

decrease in the average pore size. Besides, organic and clay-hosted pores in coal-

bearing shalewithhighmaturitymaywell be themain storage space formethane, but

the methane is mainly stored in organic pores in marine shale.
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Introduction

Due to the exhaustion of fossil energy and the deterioration

of environment, the exploitation and utilization of coal

measures co-associated resources have attracted great

attention of coal geologists and energy enterprises in recent

years (Hamawand et al., 2013; Zou et al., 2019; Wang et al.,

2020; Li et al., 2022a). Coal and its associated resources are

mainly composed of solid and fluid resources. Coal-bearing

unconventional natural gas is low-carbon clean energy with

extensive distribution and outstanding resource potential

(Uysal et al., 2000; Dai et al., 2012; Huang et al., 2016; Yu

et al., 2022). Therefore, it is of great practical significance to

develop unconventional gas resources in coal to supply fossil

energy and improve the environment. The two kinds of natural

gas occurring in coal measures are mainly composed of coalbed

methane and shale gas, and the latter is primarily distributed in

organic-rich shale reservoirs (Jarvie et al., 2007; Ross and

Bustin, 2009; Hao et al., 2013). Organic shale is a

heterogeneous material composed of organic matter and

mineral components, and methane molecules exist in shale’s

microscopic pore structure in free and adsorbed states (Bowker,

2007; Heller and Zoback, 2014). The shale porosity and the

nature of pore-fracture connections are the key factors

determining the shale gas seepage and migration (McGlade

et al., 2013). Although the pore size of the shale matrix is very

small, the large specific surface area of the pores is conducive to

methane adsorption. Under suitable pressure and fracture

conditions, the pores can promote the migration of shale

(Shan et al., 2015). Meanwhile, Shale has a heterogeneous

structure and composition, mainly manifested in the

difference between mineral composition and organic

structure (Klaver et al., 2015; Tang et al., 2015; Yang et al.,

2017). These heterogeneities determine the pore networks and

connectivity of the pore-fracture system in the gas shale

reservoir. Therefore, understanding the microstructure and

heterogeneity of coal-bearing shale plays an important role

in revealing the occurrence of methane.

Recently, a lot of substantial progress has been made in the

characterization and analysis of the microstructure of organic

shale and coal reservoirs (Valenza et al., 2013; Li et al., 2015; Saif

et al., 2017; Yang et al., 2018; Zhu et al., 2019; Yang et al., 2020;

Arif et al., 2021). On the one hand, the characterization of

reservoir microstructure by fluid injection experiment is

recognized as a reliable method to reveal pore structure

parameters quantitatively. On the other hand, observing pore

types and distribution at the micro/nanoscale by electron

microscope is a key technique for qualitative characterization

of shale microstructure. Loucks et al. (2009) suggested that the

volume and distribution of organic matter and its relationship

with pore volume and permeability are helpful to understand

the petrophysical properties of mudstone better. Curtis et al.

(2012) used a combined focused ion beam and scanning

electron microscopy to study the evolution model of

secondary organic pores in the Woodford Shale with

different degrees of thermal maturity. Tang et al. (2015)

studied the effect of material composition on the pore

structure of marine shale with high maturity, indicating that

the high organic matter content in marine shale will enhance

the heterogeneity of the pore system. Yu et al. (2019) stated the

contribution of the molecular structure of clay minerals and

organic matter to microscopic pores in coal-bearing shale. Liu

et al. (2018) used an NMR fluid typing method to build a

classification of pore size in shale reservoirs. Kuila et al. (2014)

indicated that porosity in clay is the fundamental contribution

of mudstone nanostructure, and no open nanoscale porosity

existed in the immature mudstone. Studied the effect of

lithofacies on the nanopore structure of marine shale,

suggesting that Organic matter is likely to be the main

contributor to nanopores rather than clay minerals. In

addition to the above studies, there are still plenty of

petroleum geologists who have done a lot of work on the

microstructure of organic shale (Clarkson et al., 2012a; Pan

et al., 2017; Gao et al., 2020; Garum et al., 2020). However, some

controversies related to the origin and main influencing factors

of pores in shale still exist in petroleum geology.

As the largest superimposed basin in China, Ordos Basin has

long been considered a multi-energy basin with abundant fossil

energy and mineral resources. A set of upper Paleozoic coal-

bearing shales in the southeast Ordos Basin is widely considered

a potential area for shale gas exploration and development (Li

et al., 2022b; Zhang et al., 2022). The coal-bearing shale gas

resources of the Shanxi-Taiyuan Formation are in the range of

2800–3200*108 m3 in the Daning-Jixian block, southeastern

Ordos Basin (Zeng et al., 2022). Therefore, it is of great

application value to study the microstructure of coal-bearing

shale reservoir and its shale gas enrichment in this area. Given

this, in this study, we first clarify the material composition of

coal-bearing shales from the Shanxi Formation in southeast

Ordos Basin using X-ray diffraction (XRD), total organic

carbon content (TOC), and vitrinite reflectance (Ro). Then,

we characterize the pore structures of shale samples using

scanning electron microscopy (SEM), low-temperature N2

adsorption, and fractal technology. Finally, we discuss the

influences of shale material composition on pore type, size

and distribution and their implications for methane storage.

Samples and methods

Samples

In this work, a total of 10 coal-bearing shale samples were

obtained from a shale gas well in the Daning-Jixian block, southeast

Ordos Basin (Figure 1A). The burial depth of these samples ranges

from 2118 m to 2209 m, and this depth interval is the main
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concentration horizon of coal-bearing shale. All samples belong to

the Lower Permian Shanxi Formation of late Paleozoic, representing

potential source rocks consisting of dispersed organic matters

during the sedimentary period of coal measures (Figure 1B). All

fresh samples are sealed and stored in airtight bags to prevent

weathering before the experiment. The samples were performed on

a comprehensive mineralogical and petrophysical testing method,

including XRD experiment, TOC analysis, Ro measurement, SEM

FIGURE 1
Geological map (A), after Ju et al. (2021) and stratigraphic information (B) of the southeast Ordos Basin.

TABLE 1 Geological information and major mineral composition of shale samples.

Samples Depth
(m)

TOC
(wt%)

Quartz
(%)

Clay
(%)

Feldspar
(%)

Calcite
(%)

Dolomite
(%)

Siderite
(%)

Pyrite
(%)

Anatase
(%)

SY1 2118 0.80 34.9 57.8 4.4 0.0 0.0 2.9 0.0 0.0

SY2 2127 5.40 29.4 58.3 2.2 0.0 0.0 2.8 5.0 2.4

SY3 2128 5.00 28.0 62.0 1.0 0.0 0.0 2.7 6.2 0.0

SY4 2134 0.10 58.6 23.4 6.5 0.0 10.6 0.8 0.0 0.0

SY5 2146 36.70 17.6 32.2 0.4 3.5 18.3 1.3 25.1 1.7

SY6 2152 1.70 38.8 48.8 7.0 0.0 2.4 3.1 0.0 0.0

SY7 2165 9.40 48.1 45.8 1.3 0.0 0.0 0.0 3.3 1.5

SY8 2166 10.80 43.9 44.3 1.0 0.0 4.1 0.0 5.2 1.5

SY9 2168 8.30 41.3 48.8 0.9 0.0 0.0 0.0 7.4 1.5

SY10 2209 2.70 65.1 28.6 3.7 0.0 0.0 1.1 0.0 1.5
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test, and N2 adsorption. The detailed geological information of coal-

bearing shale samples is listed in Table 1.

Materials and methods

Quantitative whole rock analysis was applied to reveal the

mineral composition of the shale samples, which was performed

on X-ray diffraction based on the Chinese Oil and Gas Industry

Standard (SY/T5163-2010). TOC analysis was conducted in

PetroChina Research Institute of Petroleum Exploration and

Development using a Leco CS-230 analyzer referring to the

Chinese National Standard (GB/T476-2008). Vitrinite

reflectance measurement was conducted by an AXIO Imager

Mlm microphotometer produced by the ZEISS company at the

China University of Mining and Technology. Approximately

30 values were measured for each shale sample and then averaged

to ensure the accuracy of the experimental results.

FE-SEM imaging of shale samples was conducted using a

HITACHI SU8020 field emission scanning electron microscopy.

The sample was cut into ~10×10×5 mm blocks, and carbon

plating was carried out on the sample surface to improve

electrical conductivity. Then, the equipment was repeatedly

adjusted to make the images of the microscopic pore-fracture

structure of shale clearer and more readable. Low-pressure N2

adsorption was performed in PetroChina Research Institute of

Petroleum Exploration and Development using an automatic

specific surface area analyzer developed by Quantachrome

company, according to the Chinese National Standard (GB/

T19587-2004). The specific surface area, pore size, and pore

volume of samples were calculated using the

Barrett–Joyner–Halenda (BJH) model (Groen et al., 2003).

Fractal theory and technology of porous media have also been

used to characterize the pore-fracture structure of shale samples to

describe the connectivity and density of porousmedia quantitatively.

Detailed principles and calculation methods of shale samples were

illustrated in Yang et al. (2014) and Cai et al. (2017).

Results and analysis

Mineral and organic composition

According to the XRD results, the mineral composition and

clay mineral ratio of the shale samples are listed in Tables 1, 2.

The minerals of coal-bearing shales from the Shanxi Formation

consist of quartz, clay, feldspar, dolomite, siderite, pyrite,

together with a few anatase and calcite (Table 1; Figure 2A).

Precisely, the quartz content ranges from 17.6 to 65.1%,

averaging 40.6%; the clay content ranges from 23.4 to 62%,

averaging 45%. The feldspar content varies from 0.4 to 2.8%,

with a mean value of 2.8%; the siderite content has an average

value of 1.5%. Calcite and dolomite occur only in a few shale

samples and are present in very low concentrations. Pyrite is

developed in most shale samples with an average of 5.2%, and

anatase also appears in some samples with a low average content

of 1.0% (Table 2; Figure 2A). As for the clay minerals, the mixed-

layer illite-smectite (I/S) content range from 16 to 59%, averaging

31.6%, and the illite content varies from 15 to 35.6%, with a mean

value of 25.4%. Kaolinite content ranges from 3.7 to 50%

averaging 38.3%, and smectite content varies from 1.7 to

8.0%, having a mean value of 4.7% (Figure 2B).

TOC content of shale samples ranges from 0.1 to 36.7%, with

an average of 8.1% (Figure 3). The TOC results suggest that the

studied shale belongs to organic-rich shale (TOC > 2.0%). Ro

values of some shale samples vary from 2.32 to 2.48% averaging

2.41%, indicating coal-bearing shale has reached the stage of dry

gas generation with a potential for hydrocarbon generation.

Pore type and morphology

The typical N2 adsorption-desorption curves of the studied

samples are shown in Figure 4, and the isothermal curves are

similar to the inverse “S” shape. These representative curves show

that different samples developed different pore types, which

resulted in a diverse variation trend of the curves. When the

relative pressure is high, the isothermal adsorption curve rises

rapidly, showing a downward concave trend, and the adsorption

and desorption process has irreversibility. Subsequently, the

adsorption and desorption curves are separated to form

hysteresis loops (Bu et al., 2015; Yu et al., 2020). Based on the

classification of Sing and Williams (2004), the adsorption-

desorption curves of shale samples in the study area can be

roughly divided into two types, namely, type B and type C. Type

B refers to an adsorption-desorption curve with an obvious

hysteresis loop (Figure 4C). Type C is the adsorption curve

and desorption curve approximately consistent, and a slight

hysteresis loop exists (Figures 4A,B,D). Generally, the shape of

the hysteresis loop can be applied to interpret the morphology of

pores in shale samples (Clarkson et al., 2012b; Yang et al., 2021).

The shape of the hysteresis loop is relatively wide, indicating that

the pore type is mainly the shape of a thin neck and wide-body

inkbottle (such as SY1). While the shape of the hysteresis loop is

not obvious, indicating that the pore type is mainly cylindrical

pore or parallel plate (such as SY5).

SEM images show that the pores in coal-bearing shale can

be divided into three types: intergranular pores,

intragranular pores and organic pores (Loucks et al., 2012).

Organic pores are generally round or oval, distributed

independently in shale matrix, and have relatively poor

connectivity (Zeng et al., 2022; Figure 5A). Intergranular

pores and intragranular pores are commonly developed in

clay minerals, and pores are generally irregular and narrow in

shape (Figures 5B–E). Some pores and fractures in clay

minerals form several microchannels in the shale matrix
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with good connectivity (Figures 5B,D). Organic pores are

formed by hydrocarbon generation and expulsion of organic

matter under a proper temperature and pressure

environment. Besides, we also found that a large number

of microscopic fractures developed in the shale matrix. On

the whole, the connectivity between fractures is poor, and

some fractures are filled with clay minerals. The shape of

some fractures is arc or root, which indicates that they are

affected by tectonic stress to a certain extent (Figures 5B,F).

Microfractures in shale are mainly caused by matrix

TABLE 2 Clay mineral composition, pore parameters, and Ro values of shale samples.

Samples I/S
(%)

Illite
(%)

Kaolinite
(%)

Smectite
(%)

I/S
ratio

Surface
area
(m2/g)

Pore
volume
(cm3/g)

Average
pore
size
(nm)

Ro
(%)

SY1 39.3 30.1 26.3 4.3 16 11.5 0.037 12.9

SY2 36.0 19.0 37.0 8.0 10 6.636 0.005 1.173 2.48

SY3 35.0 23.0 37.0 5.0 10 8.517 0.006 1.167

SY4 59.0 35.6 3.7 1.7 12 6.66 0.02 12.14

SY5 16.0 30.0 50.0 4.0 12 4.639 0.003 0.818 2.32

SY6 31.6 26.6 37.0 4.7 11 9.524 0.03 12.76

SY7 28.0 20.0 49.0 3.0 14 8.731 0.007 1.155

SY8 18.0 27.0 50.0 5.0 11 7.511 0.006 1.17 2.44

SY9 21.0 28.0 45.0 6.0 8 0.294 0.001 3.487

SY10 32.0 15.0 48.0 5.0 9 0.587 0.002 1.024

FIGURE 2
Major mineral (A) and clay mineral (B) composition of shale samples.
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shrinkage during diagenesis or tectonic compression stress in

the later stage. Meanwhile, some regular octahedral pyrite

particles are enriched in the shale matrix, confirmed by the

pyrite content in the whole rock component (Figure 5E).

Pore size distribution

Based on the N2 adsorption, the curves of incremental pore

volume versus pore size from the typical shale samples are

presented in Figure 6. The pore volume and average pore size

of the studied shale samples ranged from 0.001 cm3/g to

0.037 cm3/g and from 0.82 nm to 12.76 nm, averaging

0.012 cm3/g 4.78 nm, respectively (Table 2). Within the

effective pore size characterized by N2 adsorption (1–100 nm),

the curves of pore size distribution are mostly multi-peak

distribution but also appear single-peak distribution. The pore

volume of most samples increased sharply in the range of

10–100 nm, and the variation curve of the pore volume of a

few samples was not obvious (Figures 6A–D). The pore surface

area of samples varies from 0.294 m2/g to 11.5 m2/g, with a mean

value of 6.46 m2/g (Table 2). The curves of pore surface area

FIGURE 3
TOC content of shale samples.

FIGURE 4
Typical low-temperature N2 adsorption-desorption curves of the studied shale samples.
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FIGURE 5
Microstructure images of coal-bearing shale in the eastern Ordos Basin, (A)Organic pores, (B) pore-fracture system in shale matrix, (C,D) pores
in clay minerals, (E) intergranular pores of pyrite, (F) fractures in shale matrix.

FIGURE 6
Incremental pore volume versus pore size of typical shale samples.
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versus pore size show that the increment of specific surface area

decreases with the increase of pore size. The pore surface area

increment is the largest in the range of 1–10 nm, indicating that

the smaller the pore size is, the larger the specific surface area is.

Meanwhile, the peak value of the increment of pore surface area

is also concentrated in the range of 1–10 nm (Figure 7).

According to pore surface area and volume distribution

curves, pores in shale represented by SY5 are mainly pores

with a pore size less than 10 nm, while pores in shale defined

by SY1 are mainly pore with pore size between 10–100 nm.

Fractal analysis

In this work, based on the fractal theory (FHH model), we

used the equation described to calculate shale fractal dimensions.

The linear fitting coefficients (R2) of all shale samples are greater

than 0.95, indicating that the studied samples possess fractal

characteristics (Table 3; Figure 8). Besides, all detailed linear

equations and fractal dimensions of the studied samples are listed

in Table 3. Generally, the values of fractal dimension D range

from 2 to 3, and D values are affected by the geometric

irregularity and roughness of the surface. The fractal

dimensions of the first part (D1) vary from 2.0524 to 2.6325,

averaging 2.3641, and that of the second part (D2) range from

2.4061 to 2.8177 with a mean value of 2.7006. These results

indicate that the pore structure of the studied shales is complex

with strong heterogeneity. More importantly, the larger the

D1 value is, the more irregular and rougher the pore surface

is. The larger the D2 value is, the more complex the pore

structure is (Yang et al., 2017).

Discussion

Influence of mineral and organic
composition on pore structure

Organic matter content and mineral composition in shale are

the key factors affecting pore structure and distribution in shale

matrix. The relationships between pore structure and shale

composition are presented in Figure 9. Clay mineral contents

show a good correlation with pore specific surface area, especially

kaolinite and I/S contents (Figures 9A,B). Kaolinite is positively

correlated with specific surface area (R2=0.5433), while I/S is

negatively correlated with specific surface area (R2=0.6318).

Kaolinite derived from feldspar usually occurs in coal-bearing

shales as layered aggregates, with many nanopores developed

between the layers, increasing specific surface area. I/S usually

present a folded section with few nanopores, and its spatial pore

structure is affected by the I/S ratio. As for the pore volume, TOC

and quartz contents present a positive relationship with pore

volume, and no correlation exists between clay content and pore

volume (Figures 9C,D). In the high-maturity shales, the

FIGURE 7
Incremental pore area versus pore size of typical shale samples.
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molecular structure of organic matter is pyrolyzed to generate

methane. Gases escape from the surface of organic components,

producing a large number of gas pores. The increase of quartz

content may lead to brittle fracture of shale and an increase in

pore volume. I/S content shows a positive relationship with

average pore size, while kaolinite negatively correlates with the

average pore size (Figures 9E,F). These relationships suggest that

kaolinite is conducive to developing small pores, while more large

pores exist in I/S. This understanding is consistent with the

correlation between clay minerals and specific surface area.

Relationship between shale brittleness
and pore structure

The brittleness of shale determines the development of

natural fractures and the formation of a complex network,

probably related to pore structure parameters. Shale brittleness

was calculated by the following equation described in Rybacki

et al. (2016).

BRIT � Vquartz

Vquartz + VCalcite + VClay
× 100% (1)

TABLE 3 Fitting equation and fractal dimensions of shale samples.

Samples Eq. 2 R2 D2 Eq. 1 R2 D1

SY1 y = −0.3968x + 1.4207 0.9988 2.6032 y = −0.3675x + 1.3742 0.9988 2.6325

SY2 y = −0.184x + 0.3213 0.993 2.8160 y = −0.7051x + 0.2444 0.9589 2.2949

SY3 y = −0.1823x + 0.5189 0.9839 2.8177 y = −0.8268x + 0.487 0.9601 2.1732

SY4 y = −0.3773x + 0.8548 0.9984 2.6227 y = −0.4093x + 0.8178 0.9998 2.5907

SY5 y = −0.2899x - 0.9166 0.9895 2.7101 y = −0.506x - 0.9838 0.9922 2.494

SY6 y = −0.3758x + 1.2817 0.9976 2.6242 y = −0.3866x + 1.2452 0.9998 2.6134

SY7 y = −0.1986x + 0.6326 0.9895 2.8014 y = −0.6892x + 0.5816 0.9791 2.3108

SY8 y = −0.1942x + 0.3574 0.9856 2.8058 y = −0.6767x + 0.2953 0.97 2.3233

SY9 y = −0.2011x + 0.3265 0.9698 2.7989 y = −0.8441x + 0.3635 0.9944 2.1559

SY10 y = −0.5939x - 2.9052 0.9773 2.4061 y = −0.9476x - 2.8117 0.9521 2.0524

FIGURE 8
Fractal results calculated by N2 adsorption of typical shale samples.
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Where V stands for mineral mass fraction, BRIT stands for

brittleness index of shale.

The brittleness indexes of all samples ranged from 31.1 to

71.5%, with a mean value of 46.7%. The average brittleness index

is higher than 45%, indicating that the reservoir has a certain

potential for fracturing and reconstruction. In this study, shale

brittleness shows a positive relationship with specific surface area

(Figure 10A), indicating the more brittle the shale is, the more

microcracks are likely to develop in the matrix thus increasing

the specific surface area of the pores. Similarly, there is a positive

correlation between brittleness and pore volume (Figure 10B).

This trend indicates that fracture channels are commonly

developed in shale with high brittleness, increasing pore

volume. However, no correlation between shale brittleness and

average pore size suggests that shale brittleness has no direct

effect on pore size distribution in the studied samples

(Figure 10C).

Effect of shale composition and brittleness
on fractal dimension

To reveal the influence of shale composition on the fractal

dimension, the relationship between fractal dimension and

organic matter and mineral contents is shown in Figure 11.

Due to the abnormally high TOC value in the SY5 sample, this

point was removed for correlation analysis in this study. TOC

content positively correlated with D2 characterizing the pore

structure complexity, and has a negative relationship with

D1 representing the pore surface irregularity (Figures 11A,B),

suggesting the increase of organic matter content results in a

more complex pore structure and more regular surface.

Additionally, quartz and feldspar contents negatively

correlate with D2 values, and no relationship exists

between quartz, feldspar, and D1 values (Figures 11C,D).

These relationships suggest that the increase of homogeneous

FIGURE 9
Pore structure parameters versus shale composition.
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minerals such as quartz and feldspar probably play a pore-

blocking role in the pore system and reduces the shale pore

structure’s complexity. However, clay minerals possess a

positive relationship with D2 values and no obvious

correlation with D1 values (Figures 11E,F). This suggests

that clay minerals have a more complex structure and thereby

increase the heterogeneity and complexity of shale pore

structure. Besides, the brittleness indexes exhibit a negative

correlation with D2 values, indicating that brittle shales

produce more natural microfractures and have a more

effective pore system. This relationship increases the

spatial connectivity of the pore structure, which in turn

naturally decreases D2 values. Overall, the more developed

the microscopic pore-fracture system for porous shale, the

more homogeneous the reservoir. However, the blocking

effect of minerals in the pore-fracture system will reduce

the connectivity of the reservoir, which will complicate the

fractal dimension of the pore structure.

Heterogeneity of shale microstructure
and its implication for methane storage

For understanding the heterogeneity of shale

microstructure, the relationship between fractal dimension

and pore structure parameters of coal-bearing shale samples

is presented in Figure 12. The average pore size shows a

negative association with D1 values (Figure 12A), suggesting

the mesopore has a rougher and more irregular pore surface

than the micropore. This fact is because micropores are round

or oval pores formed by hydrocarbon generation, while

mesopores are intergranular and intragranular pores of

minerals. However, a negative correlation exists between

average pore size and D2 values (removed outlier,

Figure 12B), indicating that the complexity of shale

microstructure may lead to the formation of more

micropores, resulting in a decrease in the average pore

size. Besides, a negative correlation occurs between pore

volume and D1 values, suggesting the more irregular the

shale surface, the more pores with small size develop, thus

reducing the total pore volume of shale (Figure 12C). There

was no obvious correlation between the D2 values and the

pore volume, indicating that the complexity of shale pore

structure is not necessarily related to pore volume

(Figure 12D). It is worth noting that there is no significant

correlation between specific surface area and fractal

dimensions in this study, which is likely limited by the

number and nature of shale samples.

On the other hand, the D1 values on behalf of the pore

surface of coal-bearing shale (averaging 2.36) are lower than that

FIGURE 10
Pore structure parameters versus brittleness index in shale.

Frontiers in Earth Science frontiersin.org11

Yu et al. 10.3389/feart.2022.978982

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.978982


of marine shale from South China (Longmaxi shale with a mean

value of 2.79, Yang et al., 2016). This fact shows that the pores of

marine shale with high maturity have more irregular surfaces

than coal-bearing shale. Organic pores are developed in marine

shale with high maturity, and the surface of organic pores is

rougher than that of clay-hosted pores. Additionally, the

marine shale has an average D2 value of 2.57 (Liang et al.,

2015; Zhang et al., 2017), and the average D2 value of coal-

bearing shales is 2.70. Similar D2 values indicate that the pore

structures of marine shale and coal-bearing shale are equally

complex. In nature, due to the intense hydrocarbon generation

of marine shale in South China, many organic pores are

generated, which is enhanced the complexity of pore

structure. However, the coal-bearing shales in North China

have high clay content and numerous clay-hosted pores,

making up for the lack of organic pores and presenting a

high D2 value. As for the shale gas storage, organic and

clay-hosted pores in coal-bearing shale with high maturity

may be the main storage space for methane, while the

methane is mainly stored in organic pores in marine shale.

FIGURE 11
Relationship between shale composition, brittleness and fractal dimension.
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Conclusion

(a) Kaolinite positively correlates with pore surface area,

suggesting that many nanopores formed between the

layers result in an increase in specific surface area. The

positive relationship between organic matter and pore

volume indicates that hydrocarbon generation promotes

the formation of gas pores and increases pore volume.

(b) Coal-bearing shales with a high brittleness are probably rich in

natural microfractures, which contribute to the increase of specific

surface area and pore volume. However, no obvious relationship

exists between average pore size and brittleness index.

(c) The more developed the pore-fracture system for porous

shale, the more homogeneous the reservoir is. However, the

blocking effect of minerals in the pore-fracture system

decreases pore connectivity, complicating pore

arrangement and enhancing shale heterogeneity.

(d) The pore volume and specific surface area of coal-bearing

shale are closely related to the fractal dimensions. The high

complexity of the shale microstructure may lead to the formation

ofmoremicropores, resulting in a decrease in the average pore size.

(e) By comparing the pore fractal characteristics of marine and

coal-bearing shales, organic and clay-hosted pores in coal-

bearing shale with high maturity may be the main storage

space for methane. In contrast, methane is mainly stored in

organic pores in marine shale.
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