
Spatiotemporal forecasting
model based on hybrid
convolution for local weather
prediction post-processing

Li Xiang1, Jie Xiang1, Jiping Guan1*, Lifeng Zhang1,
Zenghui Cao2 and Jilu Xia3

1College of Meteorology and Oceanology, National University of Defense Technology, Changsha,
China, 2College of Cryptographic Engineering, Information Engineering University, Zhengzhou, China,
3College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha,
China

Future weather conditions can be obtained based on numerical weather

prediction (NWP); however, NWP is unsatisfied with precise local weather

prediction. In this study, we propose a spatiotemporal convolutional network

(STCNet) based on spatiotemporal modeling for local weather prediction post-

processing. To model the spatiotemporal information, we use a convolutional

neural network and an interactive convolutional module, which use two-

dimensional convolution for spatial feature extraction and one-dimensional

convolution for time-series processing, respectively. We performed

experiments at several stations, and the results show that our model

considerably outperforms the traditional recurrent neural network–based

Seq2Seq model while demonstrating the effectiveness of the fusion of

observation and forecast data. By investigating the influences of seasonal

changes and station differences, we conclude that the STCNet model has

high prediction accuracy and stability. Finally, we completed the hour-by-hour

local weather prediction using the 3-h forecast data and attained similar results

to the 3-h local weather prediction that efficiently compensated for the

temporal resolution of the forecast data. Thus, our model can enhance the

spatial and temporal resolutions of forecast data and achieve remarkable local

weather prediction.
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1 Introduction

Weather has always affected people’s production and lives, and some harsh weather

events even pose a serious threat to people’s life and normal order of society (Aryal and

Zhu, 2021; Villén-Peréz et al., 2020). Weather forecasts offer crucial support for people to

know future weather conditions. According to complex physical dynamics laws, NWP has

successfully simulated atmospheric motion and evolution; thus, it has become an

OPEN ACCESS

EDITED BY

Wei Zhang,
Utah State University, United States

REVIEWED BY

Zhenyu Lu,
Nanjing University of Information
Science and Technology, China
Chunsong Lu,
Nanjing University of Information
Science and Technology, China
Hamid Karimi,
Utah State University, United States

*CORRESPONDENCE

Jiping Guan,
guanjiping@nudt.edu.cn

SPECIALTY SECTION

This article was submitted to
Atmospheric Science,
a section of the journal
Frontiers in Earth Science

RECEIVED 27 June 2022
ACCEPTED 31 August 2022
PUBLISHED 27 September 2022

CITATION

Xiang L, Xiang J, Guan J, Zhang L, Cao Z
and Xia J (2022), Spatiotemporal
forecasting model based on hybrid
convolution for local weather
prediction post-processing.
Front. Earth Sci. 10:978942.
doi: 10.3389/feart.2022.978942

COPYRIGHT

© 2022 Xiang, Xiang, Guan, Zhang, Cao
and Xia. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 27 September 2022
DOI 10.3389/feart.2022.978942

https://www.frontiersin.org/articles/10.3389/feart.2022.978942/full
https://www.frontiersin.org/articles/10.3389/feart.2022.978942/full
https://www.frontiersin.org/articles/10.3389/feart.2022.978942/full
https://www.frontiersin.org/articles/10.3389/feart.2022.978942/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.978942&domain=pdf&date_stamp=2022-09-27
mailto:guanjiping@nudt.edu.cn
https://doi.org/10.3389/feart.2022.978942
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.978942


important tool (Charney et al., 1990). The NWP idea was first

proposed in the early 20th century (Bjerknes, 1904).With the fast

development of computer technology, NWP models have made

breakthroughs in forecast accuracy and forecast duration

(Richardson, 2007). However, NWP has some unavoidable

errors, including initial condition error and calculation error

(Ehrendorfer, 1997). Data assimilation is used for the correction

of initial condition, which uses various data, such as station data,

radar data, and satellite remote-sensing data, to offer a more

precise initial state of the atmosphere (Reichle, 2008; Wang et al.,

2000). The most representative approaches include three-

dimensional variational approaches and filtering approaches.

Some studies also enhance the model calculation process to

reduce the calculation error of NWP. As a new approach,

ensemble forecasting enhances the predictability of weather

forecasts by developing multiple forecast objects to simulate

atmospheric evolution (Zhu, 2005).

Weather prediction post-processing has been practiced to

obtain more accurate weather forecasts. Typical post-processing

approaches for weather prediction include model output

statistics (MOS) (Glahn, 2014; Qishu et al., 2016), Kalman

filter (Nerini et al., 2019), anomaly numerical correction with

observations (Peng et al., 2014), and model output machine

learning method (MOML) (Li H. et al., 2019). With the

successful practice of deep learning in the field of

meteorology, a post-processing approach for weather

prediction based on deep learning has been proposed.

Grönquist et al. (2021) propose a mixed model that employs

only a subset of the original weather trajectories linked to a post-

processing step using deep investing neural networks, enabling

themodel to account for nonlinear relations that are not captured

when using current numerical models or post-processing

approaches.

For local weather prediction, the discretization of the

numerical calculation process and the limitation of

computational resources make the resolution of the forecast

results unable to meet the requirements of a certain station.

Conventional meteorological stations can observe local

meteorological elements and become a dependable means to

explain the real local atmospheric state (Feng et al., 2004). Chen

et al. (2020) proposed an end-to-end post-processing approach

for understanding the mapping relation between the NWP

temperature output and the observation temperature field

based on a deep convolutional neural network (CNN) to

update forecast output. Their results show that the corrected

temperature field of NWP using the deep CNN has a lower root

mean square error (RMSE) than the errors obtained when using

MOS andMOML. At the same time, meteorological observations

are used to predict meteorological elements. In addition to

machine learning, including the support vector machine

(Cifuentes et al., 2020), multilayer perceptron, long short-term

memory (LSTM) network, and stacked LSTM, were used for air

temperature prediction (Li C. et al., 2019; Roy, 2020), and several

experiments have shown that the deep learning model has more

accurate prediction results than machine learning methods.

Using multisite observation data, the changing trends of

meteorological elements can be built in the time dimension

and the distribution characteristics meteorological elements

can be determined in space. Based on the graph neural

network, Lin et al. (2022) proposed a conditional local

spatiotemporal graph network. Based on the characteristics of

spherical meteorological signals, a local conditional graph

convolution kernel computing unit was developed to complete

the temperature prediction of the station with an error of less

than 2 °C.

The spatiotemporal prediction model can utilize both the

spatial distribution characteristics and the temporal evolution of

the atmospheric state; therefore, it is extensively used in the

meteorology field. Instead of using convolutional LSTM (Shi

et al., 2015), Zhang et al. (2021) proposed a novel multi-input

multi-output recurrent neural network model based on

multimodal fusion and spatiotemporal prediction for 0–4-h

precipitation nowcasting; this model has evident benefits in

heavy precipitation nowcasting. Because convolution is a

position-invariant filter, Shi et al. (2017) proposed a trajectory

gate recurrent unit model, which can actively understand the

location-variant structure of recurrent connections for

precipitation nowcasting. To predict lightning, Geng et al.

(2019) proposed a data-driven lightning prediction model

based on a deep neural network that extracts spatiotemporal

features of the simulations and observations through dual

encoders and uses a spatiotemporal decoder to make forecasts.

Yu et al. (2021) proposed a novel air-temperature forecasting

framework that integrates the graph attention network and a

gated recurrent unit. The graph network is used to examine the

topological structure of the environmental data network for

spatial dependence modeling, and the gate recurrent unit cell

is adopted to evaluate the dynamic variation of environmental

data to model temporal dependence.

NWP data face the challenge of meeting the requirement for

local weather prediction because of the existence of errors and

low spatial resolution. The historical station data represent the

current local weather state. Although the historical station data

can be used to predict the local atmosphere, it is challenging to

obtain the characteristics of nonlinear change trend in the

atmosphere. NWP is designed to simulate this process,

providing future weather data. However, NWP is based on

discretized numerical calculation, so the results of NWP are

grid data with errors, making it difficult to obtain accurate local

weather results. Thus, the use of NWP data combined with

historical station data can provide their complete respective

benefits and accomplish the task of local weather prediction.

In this study, we propose a novel spatiotemporal prediction

model to complete local weather prediction post-processing.

We use historical station data to offer the historical state of

local atmosphere and use the forecast data to provide the future
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atmospheric change trend as the background information. The

time series comprising meteorological elements changes

continuously. We discard the traditional recurrent neural

network and the emerging transformer networks and use the

one-dimensional convolution filter to extract the local

correlation of the time series. Meanwhile, we build a

hierarchical framework to extract temporal correlations at

numerous temporal resolutions. To extract spatial features of

the forecast data, we extracted the grid point data from the

forecast data with the station located at the center and used the

CNN we constructed to extract the spatial features of forecast

data. Because various spatial distributions are extracted for

various stations, our model can be used to perform

experiments at several stations simultaneously.

2 Data description

2.1 Historical station data

Historical station data are near-surface meteorological

elements observed at the surface meteorological stations.

These data are usually recorded at specific intervals. For each

station, our historical station data are recorded as X

X � xl
n{ } l � 1, 2, . . . , L, n � 1, 2, . . . , N (1)

FIGURE 1
Spatial distribution of meteorological stations in China. The blue dots represent the stations.

FIGURE 2
Spatial distribution of meteorological stations in Hunan
Province.
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where L denotes the length of the observed time series (the time

interval is usually 1 or 3 h) andN denotes the number of observed

meteorological elements. The meteorological elements comprise

temperature, air pressure, precipitation, dewpoint temperature,

wind direction and speed, and total cloud cover, etc.

We used meteorological station data in China, which is

obtained from the National Climatic Data Center of the

United States. Figure 1 shows more than 400 stations across

China from which data records were obtained. The time

interval for most of the data is 3 h, and the time interval for

a small amount of data is 1 h. To make up for the missing values

in the data, we use the linear interpolation approach as the

supplement. To investigate the performance of the model we

proposed in a certain area with several stations, we selected

13 stations in Hunan Province (Figure 2). After removing the

wrong station records, we used the collected 11 stations to

jointly build a dataset, which can make the model appropriate

for use in multistation weather prediction. To complete the

local weather prediction, we use the historical station data

before the start forecast time as part of the input and the

data after the start forecast time as the ground truth of

prediction.

2.2 Numerical weather prediction data

NWP is a quantitative and objective forecasting approach.

Under certain initial and boundary conditions, NWP predicts the

state of atmospheric motion for a specific period in the future by

solving the hydrodynamics and thermodynamics equations,

which explain the weather evolution process. Owing to the

discretization of numerical calculation, the numerical weather

forecast data are grid point data and it is challenging to precisely

generate the atmospheric state for nongrid points. The elements

of NWP comprise temperature, humidity, snowfall depth, total

cloud cover, etc. NWP can generate the atmospheric state for a

certain time in the future, and we assume that the forecast time

series length is T. At the same time, the NWP data also have time

intervals. If the time interval is 3 h, the maximum time limit of

each forecast is 3*T. We record forecast data as p

P � pl′
n′,w × h{ }l′�1,2,...,L′

n′�1,2,...,N′, w�1,2,...,W, h�1,2,...,H (2)

where L′ denotes the length of the forecast time series,N′ denotes
the number of meteorological elements, and W × H denotes the

grid size of the forecast.

The National Centers for Environmental Prediction (NCEP)

operational Global Forecast System (GFS) forecast grids are used

as another part of the input in our study (National Centers for

Environmental Prediction et al., 2015). The GFS data are

presented on a 0.25 by 0.25 global latitude–longitude grid,

which comprises time steps at a 3-h interval from 0 to 240 h

and a 12-h interval from 240 to 384 h. Model forecast runs occur

at 00, 06, 12, and 18 UTC every day. We selected data from

January 15, 2015 to January 31, 2018, to construct the dataset.

Because the forecast error increases with time, we select a forecast

period of 72 h for each forecast event.

3 Methodology

3.1 Data preprocessing

3.1.1 Historical observation data
For each station, we use the historical station data of 72 h

before the initial forecast time, including 2-m temperature, 2-m

dewpoint temperature, air pressure, wind direction, and wind

speed. We normalize each meteorological element using zero-

mean normalization, which is a normalization approach

employing mean and standard deviation, to enhance the

convergence ability of the model. At each station, numerous

meteorological elements are recorded. The model input

considerably affects the performance of the model.

Eliminating unnecessary input features can decrease the

complexity of the model and avoid noise to a certain extent,

making the model more effective (Chakraborty et al., 2017).To

extract more appropriate meteorological elements as input

features, we investigated the effect of various meteorological

elements on forecast elements based on random forest.

Random forest is an ensemble classifier, which is built

randomly and contains several decision trees, and its output is

evaluated using the votes of each tree (Rigatti, 2017). Random

forest can be used for solving classification and regression

problems. For a certain feature, random forest determines the

importance of the feature by adding noise to the feature; the

larger the loss of the model, the more critical the feature after the

addition of noise. We take a meteorological element as the target

and other meteorological elements as the input to investigate the

importance of the input variable to the target variable. Taking

the 2-m temperature as the target, the results are shown in

Table 1.

TABLE 1 Importance scores of variables.

Predictor Abbreviation Score

2 m dewpoint temperature td 0.319

surface pressure p 0.206

Cloud c 0.098

Month m 0.086

Hour h 0.077

Day d 0.064

Year y 0.058

wind direction wd 0.050

wind speed ws 0.042
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3.1.2 Numerical weather prediction grid data
For NWP data, we selected the variables consistent with the

forecast target elements. We did not select upper-air

meteorological elements because the observation data obtained

from stations are all near-surface data and the selected variables

can well reveal the future state of the forecast target elements. We

must extract the grid forecast data associated with each station. In

this study, as shown in Figure 3, we extract the grid point data of

1° × 1° that is 9 × 9 with the station located at the center. Then, we

use the CNN we constructed to propose the feature extraction

that can extract more spatial distribution information of NWP

and fully reflect the atmospheric state near the station. At the

same time, zero-mean normalization is used to normalize

the data.

3.2 Spatiotemporal convolution network

Based on the CNN and interactive convolution module, we

built a spatiotemporal convolutional network (STCNet) to obtain

the local weather forecast, as shown in Figure 4. The CNN is used

to extract the spatial features of each forecast moment via two-

dimensional convolution and convert the forecast data into time-

series features. The interactive convolution module is used to

process time series (Liu et al., 2021), which is done using one-

dimensional convolution. First, for obtaining the historical

station data, we use meteorological elements with high

contributions as input using random forest; then, the input is

processed by the interactive convolution module to generate

features related to forecasting times. Second, for obtaining the

forecast data, we use the CNN module to extract spatial features

and use the interactive convolution module to update the time-

series dimension for generating forecast features. These

operations are presented as follows:

Xf � ICM X( )and (3)
Pf � ICM CNN P( )( ), (4)

where X denotes the historical station data comprising

meteorological elements with high contributions and p

denotes the forecast data.

For features Xf, Pf obtained from the two branches of our

proposed model, we develop a gating module as a fusion module

for feature fusion. We propose a gating unit K to weigh the

contribution of various features, and feature weights are assigned

using the gating unit. Finally, we fuse the features to generate the

final prediction results using a fully-connected layer:

K � sigmoid W p Xf +W p Pf( ), (5)
Y � 1 − K( ) ⊙ W p Xf( ) +K ⊙ W p Pf( ), and (6)

Y′ � Linear Y( ), (7)
where W denotes the one-dimensional convolution, K denotes

the gating unit, and Y denotes the final fusion feature. Using

temporal convolution, one-dimensional convolution can update

the time-series relation and map features to hidden dimensions,

FIGURE 3
Extraction of GFS grid forecast data for a station.

FIGURE 4
Overall structure of the spatiotemporal convolutional
network.
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whereas the fully-connected layer only implements linear

mapping, so we choose one-dimensional convolution. sigmoid

is the sigmoid function that maps the value to [0, 1], ⊙ is the

Hadamard product, and Linear denotes the fully-connected

layer.

We can convert the fusion process into the following

formulas:

Y � W p Xf( ) +K ⊙ W p Pf −W p Xf( )and (8)
K � sigmoid W p Xf +W p Pf( ). (9)

The above shows that the fusion process is similar to the

Kalman filter approach. We use the forecast feature Xf of the

historical station data and feature Pf of the forecast data to

generate the optimal estimate. The largest difference

compared to the Kalman filter approach is that the gain

matrix K is generated by learning.

3.3 Convolutional neural network

CNNs have always played a crucial role in computer vision

(Chua, 1997). Convolution kernel has a local receptive field that

can capture local features and conduct spatial downsampling to

continuously extract more detailed features (O’Shea and Nash,

2015). For forecast grid data, we can perform convolutional

operation to extract the meteorological element information

from the forecast data. Traditionally, to generate the future

atmospheric state of a certain station, we usually replace

atmospheric state of the station with the adjacent grid data or

use the adjacent grid data to interpolate to this station. In this

study, by exploiting the local receptive field and spatial

downsampling of convolution kernel, we build a module to

extract feature information of forecast data near a station and

match it with historical station data.

For a certain station, we selected a grid of 9 × 9, i.e., 1° × 1°, as

the forecast information of meteorological elements near the

station. Using the multilayer convolution operation, we

constructed a CNN to extract features from the forecast grid

data at each time t, then expand output into one-dimensional

information, and finally pass through the fully-connected layer.

The Relu activation was used between each layer, and the full

structure of CNN is shown in Figure 5.

3.4 Interactive convolution module

For realizing time-series forecasting tasks, recurrent

neural networks are traditionally used (Shi et al., 2017; Li

C. et al., 2019). A recurrent neural network is an iterated

multistep evaluation approach that suffers from error

accumulation. At the same time, gradient disappearance/

explosion and information constraints also hinder the

application efficiency if the model (Rangapuram et al.,

2018). Therefore, we discard the recurrent neural network

and use the interactive convolution module (ICM), which

employs the convolution filter to capture the time-series

changes in a short time (Liu et al., 2021).

The detailed structure of the ICM is shown in Figure 6. First,

we downsample the sequence to generate two subsequences using

odd–even splitting operation, and the downsampling process is

recorded as

Xodd � X2i−1, i � 1, 2, . . . , L/2and (10)
Xeven � X2i, i � 1, 2, . . . , L/2, (11)

where Xodd, Xeven denotes the subsequences after downsampling.

Downsampling the original sequence in the temporal dimension

allows us to investigate dynamic information at different

temporal resolutions.

According to the ability of convolution to extract time

information from time series, we develop a convolution

extraction network, as shown in Figure 7, that comprises a

series of one-dimensional convolutions, LeakyRelu activation,

and a dropout layer. Time-series data represent continuous

change within a short duration, which can be effectively

captured by convolutions.

To compensate for the information loss during downsampling,

we use an interactive learning technique, which exchanges

information between subsequences by learning affine

transformation parameters. As shown on the right side of

Figure 6, first, we transform Xodd and Xeven extracted using the

convolution extraction network into the form of exp, and then

FIGURE 5
Structure of convolutional neural network. Conv2d
represents the two-dimensional convolution, where the
parameters represent the input channel, output channel, and
convolution kernel size. The parameters of maxpool
represent the pool size, and the parameters of linear represent the
input and output dimensions.
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interact to Xeven and Xodd with the element-wise product. Second,

by repeating the convolution operation, Xs
odd and Xs

even are

projected to the hidden state and then added to Xs
odd and

Xs
even. The detailed operations are as follows:

Xs
odd � Xodd p exp ϕ Xeven( )( ), Xs

even � Xeven p exp ψ Xodd( )( )and
(12)

Xodd′ � Xs
odd + ρ Xs

even( ), Xeven′ � Xs
even + η Xs

odd( ), (13)

where ϕ, ψ, ρ, andη are all convolution extraction networks.

Finally, after repeated downsampling, the sequences of

various time resolutions are updated via convolution feature

extraction and interactive learning. Then we rearrange the

subsequences by reversing the odd–even splitting operation

and concatenate them into a new sequence representation,

which is added to the original sequence through a residual

connection (He et al., 2016). Further, the final output is

generated through the connected layer. The specific operations

are given as follows:

X′ � Xodd′ , Xeven′( )and (14)
Xout � Linear X +X′( ), (15)

where X′ denotes the new sequence representation, Xout denotes

the final output, and Linear represents the fully-connected layer.

3.5 Loss function

In this study, the historical station data and GFS forecast data

are fused for local weather prediction and we process the two

types of data separately. Further, we build the loss function based

on intermediate supervision (Bai et al., 2018). In addition to

supervising the final output results of the model, we supervise the

two intermediate processing results of historical station data and

GFS forecast data. The loss function is specifically expressed as

follows:

L � αL1 pobs − ptrue( ) + βL1 pgfs − ptrue( ) + L1 p − ptrue( ), (16)

FIGURE 6
Structure of the interactive convolution module.

FIGURE 7
Structure of the convolution operation. Conv1d represents
the one-dimensional convolution, where the parameters
represent the input channel, output channel, and convolution
kernel size.
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where L1 () denotes the Loss1 loss function and pobs and ptrue
denote the intermediate processing results of historical station

data and GFS forecast data, respectively, which are mapped from

high-dimensional space to one-dimensional space using linear

mapping. αandβ represent the trade-off parameters for various

losses, we set both of them to 0.2.

4 Experiment

4.1 Data split

Since the forecast error increases with time, the longer the

forecast period, the larger the error. For each forecast result, we

only use the first 24 time values of forecast data as the input of

NWP data and at the same time, use the 72 time values of

historical station data before the start forecast time as

another part of the input to build a sample. The next 72-h

historical station data after start forecast time is used as ground

truth. At the same time, we have selected 11 stations and we can

get 48 samples per day. We have generated 50,000 samples in

total. Specifically, the data from January 15, 2015 to November

30, 2016 are used as the training set, the data from December 1,

2016 to June 30, 2017 are used as the validation set, and the data

from July 1 2017 to January 31 2018 are used as the test set.

Finally, we divide the data set into the sets of training, validation,

and test by time with a ratio of 6:2:2.

4.2 Evaluation indicators

To compute and estimate the performance of the various

approaches, we used RMSE, mean absolute error (MAE), and

accuracy (Acc). The RMSE is a common indicator for estimating

regression problems, and MAE can be used to evaluate the

deviation of the predicted value from the actual value. For a

certain meteorological element p, because the total forecast time

is T = 24, P ∈ RT×1 is a one-dimensional vector; therefore, RMSE

and MAE are defined as

RMSE �

																												
1
N

∑N
1

1
T

Pn
pre − Pn

true( )t Pn
pre − Pn

true( )
√√

and (17)

MAE � 1
N

∑N
1

1
T
|Pn

pre − Pn
true|, (18)

where Ppre denotes the prediction finding vector, Ptrue represents

the true value vector, t is the matrix transpose notation, N

denotes the total number of samples, and T represents the

total forecast time.

Accuracy is a metric used for classification tasks. For

regression tasks, we can convert the evaluation into a binary

classification problem by setting a threshold. We set the

threshold to σ, positive samples represent |Ppre − Ptrue|<σ,
denoted as NP, and negative samples represent |Ppre − Ptrue|≥
σ, denoted as NG; therefore, the accuracy is expressed as

ACC � NP

NG +NP
× 100%. (19)

For various meteorological elements, the threshold σ has

various values. According to (Li H. et al., 2019; Chen et al., 2020),

σ is set to 2 °C to evaluate the post-processing method for

temperature forecasting. Accordingly, we set σ as 2 °C for

temperature and dewpoint temperature experiments.

4.3 Baseline methods

To confirm the effectiveness and superiority of our model, we

use various approaches to perform comparative experiments. First,

we use the sequence-to-sequence model (Seq2Seq) for comparison.

The Seq2Seq model is an encoder–decoder architecture widely used

in natural language processing (Sutskever et al., 2014). Encoders and

decoders are usually based on recurrent neural networks, which can

be used to process time-series data. Therefore, the Seq2Seq model is

widely used in meteorology for short-term precipitation forecasts

(Zhang et al., 2021), other meteorological elements forecast, etc.

(Geng et al., 2019) (Kong et al., 2022).

Second, we only use historical station data and forecast

data, combined with the ICM, to build observation-based

interactive convolution network (obs-CNet) and GFS-based

interactive convolution network (gfs-CNet) for investigating

the functions of two types of data for local weather

prediction and the effectiveness of our proposed fusion

module.

4.4 Training details

We select the Adam optimizer and set the initial learning rate

to 1 × e−3. At the same time, we select an exponential learning rate

decay technique to increase the stability of training and set

gamma to 0.97 (You et al., 2019). The batch size is set to

64 and the loss function is set to L1 loss. All models are

implemented based on PyTorch.

5 Results

5.1 Performance of the proposed model
with respect to meteorological elements

We perform experiments for 2-m temperature prediction.

Based on random forest, we chose the 2-m dewpoint

temperature, surface pressure, and 2-m temperature. The

performances of various approaches using the test set are
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presented in Table 2. This table shows that the MAE and

RMSE of the GFS forecast data are the largest, the Acc is the

smallest, indicating that the GFS forecast data have a large

error, and all approaches have a certain enhancement

compared with the GFS data. The local weather prediction

based purely on historical station data is better than that based

on GFS forecast data, but its performance is poor because

there is no prior information on the future atmospheric state.

Based only on GFS forecast data, good results can be obtained,

which demonstrates that GFS forecast data play a crucial role

in explaining future elements for local weather forecasting. By

fusing the two types of data, we can generate local weather

forecast from the historical station data under the future

atmospheric state’s background to generate better results.

The results based on the Seq2Seq model outperform the

above approaches on all metrics. Further, our proposed

model achieves the best results with the smallest values of

MAE and RMSE and an accuracy of 80%.

To further investigate the performance of various

approaches, Figure 8 shows the trend of RMSE and Acc

with respect to the forecast time to reveal the detailed

TABLE 2 Comparison of different methods regarding 2-m
temperature forecasting.

Model MAE RMSE Acc(%)

GFS 2.2525 2.8953 53.53

obs-CNet 2.1702 2.9315 58.54

gfs-CNet 1.5062 1.9845 72.57

Seq2Seq 1.4147 1.9170 75.88

STCNet 1.2506 1.6904 80.11

FIGURE 8
Accuracy and RMSE of different methods regarding 2-m
temperature forecast with respect to forecast time.

TABLE 3 Comparison of different methods regarding 2-m dewpoint
temperature forecasting.

Model MAE RMSE Acc(%)

GFS 2.1757 2.8554 56.37

obs-CNet 2.0587 2.9865 64.09

gfs-CNet 1.3730 1.8707 77.40

Seq2Seq 1.3781 1.8704 76.95

STCNet 1.2339 1.6730 80.86

FIGURE 9
Accuracy and RMSE of different methods regarding 2-m
dewpoint temperature forecast with respect to forecast time.
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forecast performance of various approaches. In terms of Acc,

the Acc of GFS forecast data is the worst, which has been

retained at 0.55. The obs-CNet based on historical station data

has a good initial prediction effect, but with an increase in the

forecast time, the forecast accuracy rate reduces substantially.

Compared with the original forecast data, the gfs-CNet based

on forecast data has an enhancement of > 0.2, indicating that

the deep learning network plays a specific role in correcting

the forecast errors. The fusion model of the historical station

data and GFS forecast data exhibits the best performance. The

Seq2Seq model can attain higher Acc than gfs-CNet,

particularly at the initial stage of forecasting. Further, our

proposed model attains the best performance, where the initial

accuracy rate is retained above 0.9 and the final prediction

accuracy rate can be maintained at ~0.75, with a slower decay

rate than the Seq2Seq model. Similar results are obtained

regarding the RMSE. The forecast results of GFS are poor,

while the error generated by the obs-CNet model increases

rapidly with the forecast time. The Seq2Seq model and our

proposed STCNet model perform well, where our proposed

model exhibits the smallest error.

Under the condition that the water vapor content in the air

remains unchanged and the air pressure is constant, the

temperature at which the air is cooled and reaches

saturation is called the dewpoint temperature that can

show the water vapor content of the atmosphere. We

further investigated the performance of our proposed

model and other approaches regarding 2-m dewpoint

temperature forecasts. The 2-m temperature, surface

pressure, and 2-m dewpoint temperature were chosen using

random forecast. The performances of various approaches for

the test set are shown in Table 3. At the same time, Figures

9A,B show the trend of RMSE and Acc of various models

regarding the 2-m dewpoint temperature forecast with the

forecast time, respectively. Similar the results of temperature

forecasting, our proposed STCNet model shows the best

performance, and its error has remained stable and

minimal, not higher than 2 °C when the forecast time

reaches 72 h. The proposed STCNet model can attain

> 90% Acc at the initial stage and > 70% Acc with an

increase in the forecast time.

The comparison of different approaches above indicates

the effectiveness and rationality of our proposed model.

Figure 10 shows two cases of the variation trend of

predicted and actual values in the forecast period. As

shown in Figure 10A, when the future 2-m temperature

FIGURE 10
Comparison of the predicted and actual values using different methods.
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exhibits periodic variation without abrupt changes, all

approaches can predict the periodicity of future 2-m

temperature. However, our proposed model is more

accurate at extreme values in future 2-m temperature. As

shown in Figure 10B, when the future temperature exhibits

abrupt changes, obvious errors are observed in the GFS

forecast data, and it is challenging to generate good results

depending on the forecast data. It is also very difficult to

predict sudden changes in future temperaature only

depending on historical station data, especially when the

forecast time is very far from the starting forecast

time.Based on the fusion of historical station data and

NWP data, we can obtain a more accurate trend of future

atmospheric changes, which shows that the fusion method is

appropriate and meaningful. Meanwhile, our proposed model

can attain better result than the Seq2Seq model.

5.2 Evaluation of model performance on
different months and stations

Owing to the nonlinearity of atmospheric motion and the

influence of various weather processes, the weather forecast

results have differences in time evolution and spatial

distribution (Dirren et al., 2003). Therefore, to fully evaluate

different approaches, we performed comparative experiments for

several months and at different stations. Additionally, we

performed a corresponding study on the 2-m temperature

prediction.

The RMSE of different approaches in different months is

shown in Figure 11A. The obs-CNet model is better than the

GFS forecast data in several months but substantially worse

than the GFS forecast data in some months. The gfs-CNet

model shows a considerable improvement over the GFS

forecast data, and error is even reduced by half in June,

July, and August. Further, our proposed STCNet model

shows the best performance and better stability than other

FIGURE 11
RMSEs of different methods for 2-m temperature forecasting
in different months and at different stations.

TABLE 4 Comparison of different methods regarding hourly 2-m
temperature forecasting.

Model MAE RMSE Acc(%)

obs-CNet 2.1794 2.9553 58.49

gfs-CNet 1.5665 2.0597 70.87

STCNet 1.3357 1.7818 77.91

FIGURE 12
Comparison of the forecast and actual values with respect to
hourly 2-m temperature forecasting.
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models, particularly in the second half of the year, indicating

that seasonal changes have little influence on our model.

Figure 11B shows the performances of models regarding

RMSE at various stations; our proposed model consistently

exhibits the best performance among all the stations while the

RMSE does not vary extensively. This shows that our model

can be applied to many stations at the same time, implying

that our model has strong robustness and can complete the

forecast at many stations at the same time, thus saving

computing resources.

5.3 Hourly forecast based on 3h interval
forecast data

Owing to the consumption of computing resources and a

large storage capacity, it is challenging to generate detailed

forecast data in time and space, which is also the reason why

it is difficult to generate local weather forecasts within short

time intervals. Thus, based on the GFS forecast data with an

interval of 3 h, combined with the hourly historical station

data, we completed the hourly local weather forecast for the

furure 72-h to investigate the suitability of increasing the

temporal and spatial resolutions of the forecast data. Because

each output of a recurrent neural network corresponds to an

input, it is challenging for a Seq2Seq model to achieve this

task (Yin et al., 2017). Our proposed model is based on

hybrid convolution, where one-dimensional convolution is

used to process the time series; therefore, it is competent for

this task.

Based on hourly historical station observations and GFS

forecast data at 3-h interval, we have completed the local

weather forecast for the future 72-h at 1-h interval. We

completed investigations regarding 2-m temperature

prediction using the STCNet model and obs-CNet model,

and the performance for the test set is shown in Table 4. The

table shows that the GFS forecast data have considerably

improved the hourly temperature forecast. Although the time

resolution is lower than the forecast demand, it can still offer

future weather background information. At the same time,

the results of our proposed model show an improvement in

the temporal resolution and realize remarkable hourly local

weather prediction. Compared with the 3-h interval forecast

of STCNet model, the RMSE of local weather forecast at 1-h

interval is increased only by 0.09, while the accuracy rate is

only reduced by 2.2%, showing that our proposed model can

complete the high-frequency forecast of the local weather

when the temporal and spatial resolutions of the forecast data

are inadequate.

Figure 12 shows the variation of the predicted and true values

in the hourly temperature forecast. The two forecast results reveal

that our model not only captures the periodicity of the

temperature changes but also attains more precise results,

particularly around extreme values. In case of an abrupt

temperature change (as shown in Figure 12B), the STCNet

model can capture the change well, generating results

consistent with the real change trend.

6 Conclusion

In this study, we propose a deep learning model STCNet

based on spatiotemporal modeling to achieve local weather

prediction. Because the recurrent neural network is

influenced by the accumulation of errors and faces a

gradient disappearance/explosion challenge, we discard the

traditional recurrent neural network and select the

convolution networks for local weather prediction task.

Through the extraction of spatial information using two-

dimensional convolutions and the capture of time series via

one-dimensional convolutions, we build a convolution-based

spatiotemporal model. The main contributions of our study

are as follows. 1. We have achieved the usage and fusion of

multiple data. A large difference exists between historical

station data and forecast data. The former present the

historical information of a single station, and the latter

comprise the future grid point information in a specific

range of area. The successful fusion provides good local

weather forecast results. 2. We experimented on many

stations simultaneously, which shows that our model can

be used to process data from multiple stations

simultaneously and exhibits high robustness. 3. Based on

the 3-h forecast data, we can also complete the hourly local

weather forecast. Under the spatial and temporal resolution

limitations of forecast data, we can enhance the temporal

resolution and achieve the local weather forecast that

fully makes up for the errors and low resolution of NWP

model.

To fully confirm the forecasting ability of our proposed

model, we performed 72-h meteorological element forecasts at

11 stations. Simultaneously, we compared the performance of

our model with those of the Seq2Seq, obs-CNet, and gfs-CNet

models. Additionally, we determined the influence of

historical station data and GFS forecast data on forecasting.

Using the 2-m temperature forecast as an example, our

experiments demonstrate that the proposed model is

superior to the Seq2Seq model, and the optimal forecast

results can be generated based on the fusion of historical

station data and GFS forecast data. Then, the analysis of RMSE

obtained using different methods for various months and

stations shows that our proposed model is the most stable

between various months and has the smallest error among all

stations, indicating that our model can be applied to various

stations and in different seasons. Finally, we made hour-by-

hour forecasts based on GFS forecast data with an interval of

3 h. The results show that our model can still have small errors
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and high accuracy and the accuracy is only 2.2% lower than

the 3-h forecast, indicating that our proposed model can make

up for the inadequate spatial and temporal resolutions of

NWP data.

Generally, our proposed model fully employs

historical station data and NWP data for local weather

prediction and at the same time makes up for the lack of

temporal and spatial resolutions of GFS forecast data to

generate more refined forecasts. In actual weather

prediction, there will be a significant practical applications.

In the future, we will complete multielement comprehensive

forecasting based on multistation forecasting and enhance the

forecasting influence for extreme events in the weather

process.
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