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To better understand the anisotropic structure and mantle dynamics in and

around the Luxi uplift segment of the Tanlu fault zone in East China, we collect

waveformdata recorded at 47NCISP (Northern China Interior Structure Project)

portable seismic stations during November 2000 to August 2001. Using the

minimum transverse energy grid-search method of SKS wave splitting

measurement, effective splitting results at 35 stations are obtained. Our

results show that the fast wave polarization direction (FPD) in the study area

is dominated by a nearly E-W direction, with a range of 70°–116° and an average

FPD of N98°E, which is generally perpendicular to the trend of the Tanlu fault

zone. The splitting time varies from 0.6 to 1.5 s with an average of 0.94 s.

Although there are subtle differences in FPDs of different tectonic units, it is still

evident that larger splitting times amounting to ~1.2 s are located north of the

Luxi uplift, which is closely associated with the E-W horizontal flow in the big

mantle wedge (BMW). In contrast, smaller splitting times are visible between the

two branches of the Tanlu fault zone, indicating the existence of upwelling flow

in the BMW. These complex mantle flow suggests that the BMW structure has

played an important role in the deep dynamic processes beneath East Asia.
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Introduction

The NNE-SSW trending Tanlu fault zone is the largest active fault zone in eastern

China with a total length of more than 2,400 km in China (Figure 1). It starts fromGuangji,

Hubei Province on the North Bank of the Yangtze River in the south, passes through

Lujiang, Anhui Province, Suqian, Jiangsu Province, Tancheng, Shandong Province, and

Bohai Bay in the north, then it is divided into the Yilan-Yitong fault in the western branch

and the Dunhua-Mishan fault in the eastern branch (Figure 1) (e.g., Zheng et al., 1988; Xu

and Zhu, 1994; Zhu et al., 2004a; Deng et al., 2013). Since the Mesozoic, the Tanlu fault

zone has undergone complex evolution processes including strong left lateral displacement,

extension and compression (e.g., Xu and Zhu, 1994;Wang et al., 2000; Zhu et al., 2001; Ren

et al., 2002; Zhang et al., 2003a; Zhang et al., 2003b; Zhu et al., 2008). At the end of the
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Permian, the North China Craton collided with the South China

plate and formed the Dabie-Sulu orogenic belt (e.g., Yin and Nie,

1993; Li, 1994; Lin et al., 1998). During the Jurassic to the early

Cretaceous, the fault zone experiencedmany large-scale left lateral

translations (e.g., Xu, 1980; Xu and Zhu, 1994; Wang et al., 2000),

but it was in a tensile environment with a large number of volcanic

activities and extensional basins from the early Cretaceous to the

early Tertiary (e.g., Zhu et al., 2001; Zhang et al., 2003a; Zhu et al.,

2008). Since the late Tertiary, the fault zone showed a type of

dextral strike-slipping (e.g., Wang et al., 2000; Ren et al., 2002;

Zhang et al., 2003b; Zhu et al., 2004a). The Tanlu fault zone is still

active, and many small earthquakes frequently occurred on the

Luxi uplift segment of the fault zone (e.g., Yin et al., 2019; Lei et al.,

2020; Tian et al., 2020). Furthermore, the 1668 Tancheng M

8.5 earthquake also occurred there (Figure 1). Thus, it is

important to investigate the deep structure and dynamics of

the Tanlu fault zone. Although many investigations have been

carried out on the Tanlu fault zone (e.g., Chen et al., 2006; Meng

et al., 2019; Lei et al., 2020; Ma et al., 2020; Tian et al., 2020), the

formation mechanism and evolutional processes of the fault zone

are still unclear.

The results from geoscience cross section showed that the

Tanlu fault zone is a deep and large fault zone with steep fault

planes, suggesting that the lithosphere controls the upwelling of

mantle thermal material and magma intrusion (e.g., Ma et al.,

1991; Chen et al., 1993; Zhao and Xu, 2009; Liu et al., 2015).

Magnetotelluric soundings showed that the Tanlu zone is a strike-

slipping structure that cuts through the Moho and extends

downward to the upper mantle in the deep mantle, whereas in

the shallow mantle there are an extensional fault and a depression

basin (Ye et al., 2009; Zhang et al., 2010). Receiver function

analyses and deep seismic soundings showed that the Moho

and LAB (Lithosphere-Asthenosphere-Boundary) depth near

the Tanlu zone is ~32–35 and ~60–80 km, respectively (e.g.,

Chen et al., 2006; Zheng et al., 2008; Guo et al., 2012), whereas

ambient noise tomography showed obvious changes on the eastern

and western sides of the fault zone in the crust (e.g., Liu et al., 1987;

Li et al., 2011; Meng et al., 2019; Ma et al., 2020). Several Pn

anisotropic tomography models showed segmented features of

lithospheric deformation under the Tanlu fault zone, but their

results focused on the lithospheric lid (e.g., Gu et al., 2016, 2020;

Yin et al., 2019; Miao et al., 2021). To better understanding the

upper-mantle deformation and dynamics, many SKS splitting

measurements in eastern China illustrated some significant

results (e.g., Zheng et al., 1994; Zhao et al., 2005, 2011; Chang

et al., 2009, 2012; Gao et al., 2010; Wu et al., 2012; Yang et al.,

2019). However, different researchers adopted different data sets

and methods, thus there are some subtle contrasts in the upper

mantle structure, which leads to hard understand the mantle

dynamics of the Tanlu fault zone. Therefore, in this study, we

collect the SKS waveform data from densely portable seismic

stations in the Luxi uplift segment of the Tanlu fault zone, and

measure the reliable anisotropic features by SKS splitting method.

Our results provide new insights into the dynamics of the upper

mantle around the Tanlu fault zone in eastern China.

Geological setting

The Tanlu fault zone is a large-scale NNE-SSW trending

deep fault in eastern China, which runs through the North China

basin and crosses different geological structural units, and plays

an important role in the deformation process of Mesozoic and

Cenozoic basins. The Tanlu fault in the Mesozoic era is a strong

left lateral strike slip fault (e.g., Xu and Zhu, 1994; Zhu et al.,

2001; 2004a). Since the Cenozoic, it has shown strong

compressive properties and dextral strike slip characteristics

(e.g., Wang et al., 2000; Ren et al., 2002; Zhang et al., 2003b;

Zhu et al., 2004a), reflecting the change of tectonic stress field

since the Cenozoic in eastern Chinese mainland.

Our present study area is located at 118° -120°E and 36°

-38°N, belonging to the middle part of the Tanlu fault zone. The

geological structure of the study area is relatively complex. The

main geological units are the North China basin, the Luxi uplift,

FIGURE 1
Tectonic map of the Luxi uplift segment of the Tanlu fault
zone and the distribution of seismic stations used in this study.
Triangles denote 47 NCISP portable seismic stations (www.iris.
edu), of which two black triangles denote Stations 071 and
144 used in Figure 3. The red circle denotes the epicenter of the
1668 Tancheng (TC) M 8.5 earthquake. The inset shows the
location of the study region. NCC, the North China Craton. The red
lines denote major active faults (Deng et al., 2002).
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and the Jiaoliao uplift (Figure 1). There are the same crystalline

basements in the Luxi uplift and the North China basin, their

tectonic evolution process has significant differentiation since the

Cenozoic (Li et al., 2007). The basement of the North China basin

developed to be extensive rifting in the Cenozoic, and then

turned into a period of thermal silence (e.g., Zhu et al., 2001;

Guo et al., 2012). The Luxi uplift entered a period of intense

crustal movements with typical mantle derived magmatic

activities in the Mesozoic and Cenozoic (e.g., Lin et al., 1996;

Qiu et al., 2001; Zhu et al., 2004b). The Mesozoic intrusive rocks

are widely distributed and of various types (Zhang et al., 2007),

whereas the Cenozoic magma is mainly composed of diabase and

basalt (e.g., Niu et al., 2004; Qiu et al., 2005). Furthermore, the

results inferred from xenoliths in this area showed mantle partial

melting, invasion and upwelling since the Cenozoic (e.g., Niu

et al., 2004; Qiu et al., 2005).

Data and method

The waveform data used in this study were recorded at the

47 dense portable seismic stations of the NCISP (Northern China

Interior Structure Project) array during November 2000 to

August 2001 (Chen et al., 2006). These portable stations were

deployed across the Luxi uplift segment of the Tanlu fault zone

(Figure 1). Figure 2 shows the spatial distribution of

133 teleseismic events with epicenter distances larger than 83°

and magnitudes greater than 5.5. It is visible that these events

have good azimuth coverage around the study area.

Shear-wave splitting technique is one of the important methods

to study the anisotropy of the upper mantle. When S wave passes

through the anisotropicmedium in themantle, it will split into a pair

of fast and slow waves with orthogonal polarization directions. The

fast wave direction φ and splitting time δt are used to describe the

anisotropy of the upper mantle. In this study, the SC method

(minimum transverse energy grid search method; Silver and

Chan, 1991) is used to obtain the anisotropic structural

characteristics under each station in the Luxi uplift segment of

the Tanlu fault zone. The anisotropic parameters and their errors

can be determined by calculating the results from a single event in

different directions. For multiple teleseismic events recorded at the

same station, the anisotropic parameters under the station can be

processed using the similar method of Vinnik et al. (1989). Most of

the SKS splitting measurements in eastern China show that the

splitting time is ~0.5–1.5 s (e.g., Chang et al., 2009, 2012; Wu et al.,

2012; Yang et al., 2019). Thus, we perform a grid search for fast wave

direction from −90° to 90° in step of 1° and splitting time from 0 to

3 s in step of 0.05 s, respectively. The uncertainties are estimated by

the 95% confidence areas using the F-test. The SKS waveform time

window used for splitting measurements contains at least one full

SKS phase. The bandpass filter frequency is from 0.04 to 0.5 Hz,

which contains the S wave dominant frequency of 0.125 Hz. Details

of the calculation procedures can be found in the work of Lu et al.

(2020). Figure 3 shows examples of shear-wave splitting results at

Stations 071 and 144 (see Figure 1 for the station locations). It can be

seen from Figure 3 that the energy of the transverse component

becomes very small after anisotropic correction, the pattern of the

particle motion changes from elliptical to nearly linear, and the

initial phase of the fast and slow waves after correction also becomes

basically the same, suggesting that the anisotropic splitting

parameters can be obtained using this method.

Results

In this study, 819 pairs of splitting parameters of 47 portable

stations are analyzed using the SC method (Silver and Chan, 1991).

The measurements are ranked into good, fair, null and poor using

three parameters (Liu et al., 2008), 1) Ror, the signal to noise ratio

(SNR) on the original radial component, 2) Rot, the SNR on the

original transverse component, 3) Rct, the SNR on the corrected

transverse component. If the result is good, then Ror ≥ 10, Rot ≥ 2,

and Rct/Rot ≤ 0.7. If the result is fair, then 3 ≤Ror ≤ 10, Rot ≥ 2, and

Rct/Rot ≤ 0.7. If the result is null, then Ror ≥ 3 and Rot < 2. If the

result is poor, then Ror < 3. To ensure the reliability of our results,

the measurements are checked manually based on the following

criteria. For good and fair measurements, the particle motion is

corrected from ellipse before to linearity after anisotropy removal.

FIGURE 2
Epicentral distribution of teleseismic events used in this study.
The size and color of the dots denote the event magnitude and
focal depth, whose scales are shown at the bottom and on the
right, respectively. The red star denotes the center of our
study region.
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However, for null measurements, the particle motion keeps linear

due to the absence of shear-wave splitting or shear-wave orientation

parallel or perpendicular to the polarization direction of the

incoming waveform (Barruol et al., 1997; Qiang et al., 2017;

Yang et al., 2019). After careful manual selection with the criteria

as described above, invalid splitting results of 12 stations are

removed, whereas the effective splitting parameters of 35 stations

are retained, as shown in Table 1 and Figure 4. For the station

recording multiple events, the good and fair measurement is

obtained by averaging the splitting results from all the events.

For details, see Vinnik et al. (1989). It is visible from Figure 4

that the FPD is nearly E-W, though there exist some detailed

differences. Figure 5 shows histograms of teleseismic events and

stations with the FPD and splitting time. The FPD in the study area

is mainly near E-W direction, with a range of 70°–116° and an

average FPD of N98°E, which is largely perpendicular to the trend of

FIGURE 3
Two examples of the SKS splitting analyses at Stations 071 (A–D) and 144 (E–H) as shown in Figure 1. (A,E)Original and corrected radial (R) and
transverse (T) SKS seismograms. (B,F)Original (left) and corrected (right) fast (red) and slow (black) waves. (C,G)Original (left) and corrected (right) SKS
particle motion patterns. (D,H) Contour plots of transverse energy. The red cross represents the optimal splitting parameters.
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TABLE 1 The obtained valid SKS splitting results at 35 seismic stations around the Luxi uplift segment of the Tanlu fault zone.

Station code Latitude (°N) Longitude (°E) FPD φ (°) FPD error Δφ(°) Splitting time δt(s) Splitting time error Δδt(s) Number of events

Good/Fair/Null

003 36.36 119.56 93.0 9.0 0.9 0.2 1 - -

004 36.45 119.56 97.0 7.0 1.2 0.2 2 2 -

009 36.36 119.47 83.0 10.0 0.9 0.2 1 1 -

014 36.27 119.36 84.0 16.0 0.7 0.3 1 - 1

021 36.36 119.23 104.0 22.0 0.8 0.1 1 - 1

022 36.45 119.24 102.0 12.0 0.8 0.3 1 - 2

028 36.46 119.13 92.0 10.0 0.8 0.2 - 1 1

033 36.38 119.01 97.0 16.0 0.6 0.2 1 1 -

034 36.46 119.03 105.0 12.0 0.6 0.2 - 1 1

039 36.37 118.89 104.0 22.0 0.9 0.1 1 - 1

045 36.39 118.78 99.0 22.0 0.8 0.2 1 - 1

046 36.45 118.78 103.0 20.0 1 0.5 - 1 -

051 36.37 118.67 106.0 9.0 1.2 0.4 1 - 1

057 36.36 118.58 94.0 16.0 0.9 0.2 1 1 3

058 36.46 118.56 104.0 22.0 0.8 0.2 1 - -

064 36.47 118.46 97.0 12.0 0.8 0.2 1 - -

069 36.38 118.33 106.0 22.0 0.8 0.3 1 1 1

070 36.45 118.37 98.0 19.0 0.8 0.4 1 - 1

071 36.56 118.32 103.0 12.0 1.1 0.4 1 - -

077 36.58 118.23 102.0 16.0 1 0.4 1 - -

078 36.64 118.27 105.0 9.0 1.2 0.3 1 - -

087 36.74 118.33 72.0 19.0 0.8 0.4 1 - 1

088 36.74 118.2 105.0 6.0 1.4 0.2 1 - -

095 36.83 118.37 105.0 2.0 1.4 0.1 - 1 -

096 36.84 118.23 106.0 7.0 1.2 0.3 1 1 -

101 36.91 118.34 104.0 3.0 1.4 0.1 1 - -

102 36.91 118.22 108.0 6.0 1.5 0.3 1 - -

113 37.1 118.35 89.0 18.0 0.9 0.2 - 1 -

119 37.19 118.36 108.0 15.0 1 0.5 - 1 -

125 37.27 118.37 98.0 16.0 0.6 0.2 1 - -

126 37.29 118.24 116.0 22.0 0.9 0.4 - 1 -

131 37.38 118.33 89.0 16.0 0.6 0.2 - 1 -

137 37.46 118.36 70.0 11.0 0.9 0.3 - 1 -

143 37.53 118.37 100.0 21.0 0.8 0.4 1 - -

144 37.55 118.23 84.0 5.0 0.9 0.1 1 - -
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the Tanlu fault zone. To straightforward see the variation of splitting

times beneath the stations, Figure 6 distinguishes the extent of

splitting times beneath the stations in colors. The splitting time

varies from 0.6 to 1.5 s with an average of 0.94 s, and most of them

are fallen between 0.7 and 1.1 s. To clearly illustrate more details of

our measurements, Figure 7 and Table 1 show our splitting results

including all null measurements beneath the stations recording an

individual event. The null results indicate shear-wave orientation

parallel or perpendicular to the polarization direction of the

incoming waveform (Wüstefeld and Bokelmann, 2007). Most

null measurements in our study region are distributed in the

Luxi uplift and Tanlu fault zone (Figure 7), suggesting the

existence of complex anisotropic structure (Yang et al., 2019).

In the North China basin to the west of the Tanlu fault zone,

the effective splitting results of 8 stations are obtained (Figure 4).

From north to south, the FPDs change from near E-W to NWW-

SEE, and then gradually change to E-W again. The average FPD

and splitting time are N94°E and 0.8 s, respectively.

In the north part of the Luxi uplift, the FPDs of 9 stations are

relatively consistent, with an average direction of N101°E. The

splitting times under these stations are the largest, ~1.2 s on

average, in the whole study area. The FPDs of these stations in the

eastern Luxi uplift are similar to those in the north. Their

splitting times become relatively smaller, but they tend to

increase gradually from west to east, which are consistent with

those from Wu et al. (2012).

Within the Tanlu fault zone, the average FPD and splitting

time of 4 stations are N99°E and 0.7 s, respectively, which are

almost the same as those in the North China basin. Smaller

splitting times are distributed between the two branches of the

Tanlu fault zone, similar to the North China basin (Figures 4, 6),

which is closely associated with the partial melting and hot

mantle upwelling (e.g., Tian et al., 2009; Zhao et al., 2009; Lei,

2012; Wei et al., 2012, 2015; Lei et al., 2020).

To the east of the Tanlu fault zone and the south of the

Jiaoliao uplift, the effective splitting results of 6 stations are

obtained (Figure 4). It is visible that the FPDs change from

nearly E-W in the west to NWW-SEE in the east, and the splitting

time gradually increases.

Discussion

Origin of anisotropy in the Tanlu fault zone

Previous studies showed that the anisotropy of the upper

mantle is mainly caused by the orientation arrangement of

olivine lattice resulting from the lithospheric deformation and/

or asthenospheric flow (e.g., Hess, 1964; Christensen, 1984;

Nicolas and Christensen, 1987). However, crustal anisotropy

can reflect the alignment of fractures and fluids in pores in the

crust (e.g., Crampin, 1978; Gao et al., 2010). Because the crustal

thickness is far less than the mantle lithospheric and

asthenospheric thickness, the crustal anisotropy is much smaller

than that in the mantle. Silver (1996) found that the average

splitting time caused by crustal anisotropy is about 0.2 s. Iidaka

and Niu (2001) calculated the crustal anisotropy under Station

MDJ, and their results showed that the splitting time is less than

0.1 s. Li et al. (2014) indicated that the average crustal thickness in

eastern China is less than 40 km. Kong et al. (2016) showed that the

delay time in the western part of our study area with a thick crust is

generally less than 0.3 s. In addition, Wu et al. (2012) measured the

upper mantle splitting times of the stations including the Luxi

uplift areas around the Tanlu fault zone and found that the splitting

time of anisotropy is 0.5–1.63 s in eastern China, which support

our present results showing the time delay of ~0.94 s on average

ranging from 0.6 to 1.5 s. Thus, it is generally accepted that the

amount of crustal anisotropy is quite smaller than that of the

mantle anisotropy. These results suggest that our present SKS

measurements mainly reflect the upper mantle anisotropy.

Nevertheless, in the future work, we will calculate the crustal

anisotropy below each station and further analyze whether the

effect of crustal anisotropy could be ignored, because there is the

well-developed fault system in the study area (Figure 1).

Comparison with previous results

To confirm the reliability of our results, we compare our

anisotropy results with previous studies (Figure 8). In general,

our splitting observations show approximate E-W or NWW-SEE

fast directions, generally coincident with those inferred from the

previous SKS measurements by Zhao and Zheng (2005) and

Yang et al. (2019), P-wave upper-mantle anisotropic tomography

byWei et al. (2016), and surface-wave upper-mantle tomography

by Luo et al. (2022), confirming the reliability of our results.

However, the delay times obtained in our present study are

smaller than those from Zhao and Zheng (2005) and Yang et al.

(2019). These discrepancies could be caused by different

bandpass filter ranges used. Zhao and Zheng (2005) used a

low-pass filter with a frequency of 0.2 Hz in their work, and

Yang et al. (2019) used a band-pass filter with a frequency range

of 0.02–0.2 Hz, whereas our present study utilizes a band-pass

filtering range of 0.04–0.5 Hz. These different filtering ranges

could lead to various anisotropic results (Sun and Lei, 2019).

Seismic anisotropy and the deep
subduction of Pacific slab

Our splitting results showed that the anisotropic splitting time

obtained in this study is 0.6–1.5 s (Figures 4, 6). If we use the

relationship L = δt/Ks × β0 (Barruol and Fontaine, 2013) to calculate
the thickness of anisotropic layer, where Ks is the intrinsic

anisotropy (~4%, Silver, 1996; Yang et al., 2019) and β0 denotes

the isotropic shear velocity (~4.5 km/s), then the anisotropic layer
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thickness is 67–169 km in the study areas, which is much larger than

the crustal thickness of 30–35 km (Guo et al., 2012; Duan et al.,

2016) and also larger than the lithospheric thickness of 60–80 km

(Chen et al., 2006; Guo et al., 2012). P-wave anisotropy tomography

shows that the stronger anisotropy exists between 60 and 200 km

depths in eastern China (Wei et al., 2016). Due to the westward deep

subduction of the Pacific plate down to the mantle transition zone

(MTZ) under eastern Asia, the asthenospheric mantle flow under

eastern China shows anisotropy and its fast directionmay reflect the

direction of absolute plate motion (APM). The APM direction in

our study area calculated from the HS3-NUVEL-1A model (Gripp

and Gordon, 2002) is N70°W (Figure 7). The fast directions of our

measurements at most stations are more or less parallel to the APM

direction. These results demonstrate that the anisotropy in the study

area is not only related to the lithosphere deformation in the North

China basin but also the asthenosphere under the Tanlu fault zone.

Figure 8 shows the NEE-SWW trending maximum

horizontal stress field with 0.2° gridding (Heidbach et al.,

2018) and the NWW-SEE fast-wave directions from the

present and previous studies. The regional horizontal stress

field mainly reflects the recent crustal deformation, whereas

the shear-wave splitting mainly shows the mantle deformation

direction. The difference between the two directions indicates

that the crust and mantle lithosphere may be decoupled.

Generally, the rocks in the crust and mantle are simplified as

materials with hexagonal symmetry. If the hexagonal symmetry is

generally assumed to be horizontal, then azimuthal anisotropy can

be measured (e.g., Eberhart-Phillips and Henderson, 2004; Wang

and Zhao, 2008), whereas it is assumed to be vertical, then radial

anisotropy could be studied (e.g., Wang and Zhao, 2013). Our

present SKS splitting results show that the azimuthal anisotropic

FPDs are nearly E-W, but there are obvious changes of splitting

times within different tectonic units (Figures 4, 6). Larger splitting

times amounting to ~1.2 s are located north of the Luxi uplift, which

is closely associated with the E-W horizontal flow in the big mantle

wedge (BMW) formed by the deep subduction of the Pacific plate

(e.g., Zhao, 2004; Lei and Zhao, 2005, 2006; Huang and Zhao, 2006;

Lei, et al., 2018). In contrast, smaller splitting times are visible

between the two branches of the Tanlu fault zone (Figures 4, 6),

integratingwith strong radial anisotropy (e.g., Jiang et al., 2020), low-

velocity anomalies in the upper mantle (e.g., Tian et al., 2009; Lei,

2012; Lei et al., 2020), and thinned crustal and lithosphere (e.g., Chen

et al., 2006) under the Tanlu fault zone, possibly suggesting the

existence of vertical upwelling flow under the Tanlu fault zone in the

BMW, in addition to the horizontal flow of asthenosphere material.

The existence of vertical upwelling flow of asthenosphere under

the Tanlu fault zone could be caused by the continental extension

and lithospheric thinning in eastern China during theMesozoic and

Cenozoic. This is supported by a thin lithospheric thick inferred

FIGURE 5
Histogram of the obtained fast directions (A) and splitting
times (B) in our study region. The blue and red histograms denote
the numbers of seismic stations and events, respectively.

FIGURE 4
Obtained SKS splitting results in our study region. The
orientation of each short bar denotes the fast direction, whereas
the size of each circle is proportional to the splitting time. The red
lines denote major active faults (Deng et al., 2002).
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from receiver function analyses of Chen et al. (2006) and Guo et al.

(2012), but also supported by seismic tomographic results. Ambient

noise tomographywith a short-period dense seismic array illustrated

clear low-V anomalies in the upper crust along the eastern and

western boundaries of the Tanlu fault zone (Ma et al., 2020).

Teleseismic crustal tomography results inferred from a short-

period dense array demonstrated continuous low-V anomalies in

the entire crust (Tian et al., 2020). Teleseismic tomographic results

showed obvious low-V anomalies in the upper mantle under the

Tanlu fault zone (e.g., Tian et al., 2009; Zhao et al., 2009; Lei, 2012;

Wei et al., 2012, 2015; Lei et al., 2020; Huang et al., 2021).

On the basis of the previous studies and our present results, we

propose a schematic model (Figure 9) explaining the anisotropic

structure and deep dynamics beneath the Tanlu fault zone. The

black arrow denotes themoving direction of the Pacific slab, whereas

the bold red arrows represent the directions of horizontal and

vertical flows in the BMW. The BMW was formed due to the

deep subduction, long stagnancy, and deep dehydration (the small

red arrows) of the Pacific slab in the MTZ under East Asia (e.g., Lei

and Zhao, 2005, 2006; Huang and Zhao, 2006; Zhao et al., 2007,

2009; Wei et al., 2012, 2015; Lei et al., 2013, 2018, 2020; Liu et al.,

2017; Ma et al., 2019; Huang et al., 2021). The horizontal material

flow can cause the E-W fast direction (the white arrow) of azimuthal

anisotropy in our study region. Meanwhile, hot and wet upwelling

flows also occur in the BMW under the Tanlu fault zone. Such an

FIGURE 8
Comparison of shear-wave splitting measurements by this
study (blue bars and circles) with Zhao and Zheng (2005) (red bars
and circles) and Yang et al. (2019) (black bars and circles). The
orientation of each short bar denotes the fast direction,
whereas the size of each circle is proportional to the splitting time.
The green bars representmaximumhorizontal stress field with 0.2°

gridding (Heidbach et al., 2018). The red lines denote major active
faults (Deng et al., 2002).

FIGURE 7
Individual (blue bar) and null (red cross) shear-wave splitting
measurements at each station. The orientation of each short bar
denotes the fast direction, whereas the length of the short bar is
proportional to the splitting time. The black arrow denotes
the direction of absolute plate motion (APM). The red lines denote
major active faults (Deng et al., 2002).

FIGURE 6
The same as Figure 4 but for the colors expressing the
splitting times at the stations. The red and blue colors denote small
and large splitting times, respectively, whose scale is shown at the
upper-right corner of the map. The orientation of each short
bar denotes the fast direction. The red lines denote major active
faults (Deng et al., 2002).
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upwelling flow could disturb the horizontal flow in the BMW. This

may explain the complex changes of the fast directions and splitting

times in different tectonic units revealed by our SKS measurements.

These results suggest that the BMW structure has played an

important role in the deep dynamic processes beneath the Tanlu

fault zone.

Conclusion

In this study, we collect waveform data recorded at

47 portable broadband seismic stations in and around the

Luxi uplift segment of the Tanlu fault zone. Using the

minimum transverse energy grid-search method of SKS wave

splitting, effective splitting results at 35 stations are obtained. Our

results show that the FPDs in the study area are dominated by

E-W direction, which is generally perpendicular to the trend of

the Tanlu fault zone. Significant variations in splitting time are

from 0.6 to 1.5 s between the Tanlu fault zone and Luxi uplift.

Larger splitting times are located north of the Luxi uplift, whereas

smaller ones are visible between the two branches of the Tanlu

fault zone. Complex horizontal flow in different tectonic units is

mainly related to vertical flow horizontal flow under the Tanlu

fault zone in the BMW structure formed by the deep subduction

and dehydration of the long stagnant Pacific slab in the MTZ.

Our results provide important seismological constraints on the

mantle dynamics beneath the Tanlu fault zone in East Asia.
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FIGURE 9
A schematic model showing the anisotropic structure and
dynamics beneath the Tanlu fault zone. The black arrow indicates
the moving direction of the Pacific slab in the mantle transition
zone (MTZ). The white arrows represent horizontal material
flow proposed by the fast direction of azimuthal anisotropy in the
present study. The bold red arrows show the directions of
horizontal and vertical flows in the bigmantle wedge (BMW) due to
the long stagnancy and deep dehydration (small red arrows) of the
subducted Pacific slab in the MTZ. The colors in the middle panel
denote the thickness of the mantle anisotropic layer determined
by assuming an average anisotropy of 4%. The layer thickness scale
is shown on the right.
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