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Ensemble prediction systems (EPSs) serve as a popular technique to provide

probabilistic precipitation prediction in short- and medium-range forecasting.

However, numerical models still suffer from imperfect configurations associated

with data assimilation and physical parameterization, which can lead to systemic

bias. Even state-of-the-art models often fail to provide high-quality precipitation

forecasting, especially for extreme events. In this study, two deep-learning-based

models—a shallow neural network (NN) and a deep NN with convolutional layers

(CNN)—were used as alternative post-processing approaches to further improve

the probabilistic forecasting of precipitation over China with 1–7 lead days. A

popular conventional method—the censored and shifted gamma distribution-

based ensemble model output statistics (CSG EMOS)—was used as the baseline.

Re-forecasts run using a frozen EPS—Global Ensemble Forecast System version

12—were collected as the raw ensembles spanning from 2000 to 2019. The re-

forecast data were generated once per day and consisted of one control run and

four perturbed members. We used the calendar year 2018 as the validation period

and 2019 as the testing period, and the remaining 18 years of data were used for

training. According to the results, in terms of the continuous ranked probability

score (CRPS) and the Brier score, the CNN model significantly outperforms the

shallow NN model, as well as the CSG EMOS approach and the raw ensemble,

especially for heavy or extreme precipitation events (those exceeding 50mm/day).

A remarkable degradation was seen when reducing the size of training samples

from 18 years of data to two years. The spatial distribution of the CRPS shows that

the stations in central Chinawere better calibrated than those in other regions.With

a lead time of 1 day, the CNNmodel was found to be superior to the other models

(in termsof theCRPS) at 74.5%of the study stations. These results indicate that deep

NNs can serve as a promising approach to the statistical post-processing of

probabilistic precipitation forecasting.
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1 Introduction

Heavy and extreme precipitation events are highly

socioeconomically relevant, as they can lead to numerous

hazards (Zhang et al., 2015; Surcel et al., 2017). High-quality

precipitation predictions are therefore critical for providing

emergency services and developing early-warning systems.

However, although remarkable progress has been made in this

area in recent decades, numerical weather prediction (NWP)

models still often fail to produce accurate precipitation patterns,

especially for heavy precipitation events (Fritsch et al., 1998;

Gourley and Vieux, 2005). Ensemble prediction systems (EPSs)

promote the transition from deterministic to probabilistic

forecasts by adding certain perturbations to the initial

conditions, which enables the generation of a greater number

of possible simulations of precipitation and hence improves

forecasting ability (Majumdar and Torn, 2014; Scheuerer

et al., 2017). However, because they are limited by imperfect

model configurations and the chaotic nature of the atmosphere,

even optimal EPSs suffer from their own systemic biases, and

appropriate post-processing steps are thus required.

Bayesian model averaging (BMA) (Raftery et al., 2005; Ji

et al., 2019) and ensemble model output statistics (EMOS)

(Gneiting et al., 2005; Peng et al., 2020) are two popular

parametric post-processing methods for probabilistic forecasts.

Based on the performance during the training period, the BMA

method mixes the probability density functions (PDFs) or

kernels of the individual ensemble members and provides a

weighted average PDF prediction. The weights are equal to

posterior probabilities that reflect the relative contributions of

each member. Conversely, the EMOS method produces a single

parametric PDF that is directly based on the raw ensembles

instead of their PDFs or kernels. The parameters of EMOS are

further estimated as regression coefficients of a multiple

regression between the forecasts and their corresponding

observations. Particularly for probabilistic precipitation

forecasting, the censored generalized extreme value (GEV)

(Scheuerer and Möller, 2015) and the censored and shifted

gamma (CSG) (Baran and Nemoda, 2016; Scheuerer et al.,

2017) distribution EMOS modeling techniques have been

proposed. In the GEV EMOS framework, three parameters are

optimized that represent location, ratio, and shape. The location

parameter is an affine function of the ensembles and the ratio of

ensemble forecasts at zero. The shape parameter is an affine

function of the ensemble variance and Gini’s mean difference.

Analogously, there are three parameters in the CSG EMOS

framework: shape; scale; and shift. The shape and scale

parameters are used to formulate the gamma distribution, and

the shift parameter is introduced to shift the raw distribution and

ensure it is left-censored at zero. The parameters of BMA and

EMOS are usually estimated by minimizing the continuous

ranked probability score (CRPS) (Hersbach, 2000) or

ignorance score (IGN) (Gneiting and Raftery, 2007) over the

rolling training period. Previous studies (Baran and Nemoda,

2016; Scheuerer et al., 2017) have shown that CSG EMOS

outperforms GEV EMOS and the BMA approach; here, we

thus implement the CSG EMOS method as the conventional

baseline model.

These traditional post-processing methods are basically built

upon linear projection. The solvers required to optimize their

parameters are somewhat out-of-date and inefficient when

dealing with massive amounts of training data. Deep-learning

(DL) (Hinton and Salakhutdinov, 2006) approaches have shown

their potential in representation learning within large datasets by

establishing highly nonlinear architectures. Inspired by this, an

increasing number of studies are being performed that apply

advanced DL models in the contexts of weather forecasting

(McGovern et al., 2017), climate projection (Reichstein et al.,

2019), and Earth system science (Schultz et al., 2021). Specifically,

as discussed by Düben et al. (2021), there are many potential

applications of DL in each component of the workflow for NWP,

such as data assimilation (e.g., Hatfield et al., 2021), physical

parameterization (e.g., Han et al., 2020), statistical downscaling

(e.g., Sha et al., 2020), and post-processing (e.g., Han et al., 2021).

In the context of the post-processing—or bias correction—of

the raw NWP outputs, Zhi et al. (2012) systematically compared

the performance of a neural network (NN) approach and

conventional methods, and they indicated that the NN-based

model was more accurate than the other models for 24–120-h

forecasts. Cho et al. (2020) assessed various machine learning

(ML) models for the bias correction of extreme air temperatures

and found that ML-based models have greatly improved R2

values and reduced bias. Han et al. (2021) further applied a

U-shaped NN (U-Net) with encode and decode layers into post-

processing for the 2-m temperature, 2-m relative humidity, 10-m

wind speed, and 10-m wind direction and obtained remarkable

improvements.

However, the DL and ML models described above have

mainly focused on deterministic forecasting, and there have

been few studies on post-processing for probabilistic

forecasting. Taillardat et al. (2016) found that a non-

parametric quantile regression forest model showed

competitive performance with the EMOS approach for

temperature and wind speed, while it performed poorly in

probabilistic precipitation forecasting. Rasp and Lerch (2018),

in a study in Germany, were the first to use NNs in post-

processing of 2-m temperature probabilistic forecasting, and

they demonstrated that the NN model outperformed the other

models in 73.5% of the study stations. Cheng et al. (2018) applied

an ensemble recurrent NN method in the bias correction of

probabilistic wind-speed forecasts, further contributing to the

work of relevant energy industries. Peng et al. (2020) compared

twoMLmodels, NGBoost and NN, with the conventional EMOS

method for extended-range 2-m temperature probabilistic

forecasting. Their results increased the potential to improve

the forecast skills beyond 2 lead weeks. The applications of
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NN-based models in probabilistic post-processing were recently

extended to precipitation by two studies (Ghazvinian et al., 2021;

Li et al., 2022). In both of these studies, the CSG distribution,

which is used in the CSG EMOS method, were applied to

formulate the PDF and cumulative distribution function

(CDF) of the precipitation. Their results demonstrated that

this is a promising way to further improve probabilistic

precipitation forecasting with post-processing using NN-based

models. However, the study regions of the two works were

limited to their selected river basins, and they thus fail to

provide a comprehensive analysis over a very large area with

various types of terrain and climate. Inspired by these impressive

studies, herein, we propose a DL-based framework for the post-

processing of probabilistic precipitation-forecasting data across

China with lead times of 1–7 days.

One of the main concerns when applying DL models to

statistical post-processing is the requirement for a large volume

of high-quality training data. It should be noted that when

extracting training samples that span a long period, version

updates of the EPS models should be avoided; this is because

once the numerical models are updated, the statistical correction

between the model outputs and the observations will change

(Hamill et al., 2013). Here, we collected the re-forecast data

generated by a frozen EPS model, namely, Global Ensemble

Forecast System version 12 (GEFS-v12) (Guan et al., 2022). The

re-forecast data were produced once for each day spanning from

2000 to 2019, consisting of one control run and four perturbed

members. This means that there were 7,305 training samples in

total at each grid point. In our study, we were seeking to provide

well-calibrated probabilistic precipitation forecasting over China,

and we hence selected 153 national ordinary stations as the

targets. In general, the data from the calendar year 2018 were

used for validation, the data from 2019 were used for testing, and

the data from the other 18 years were used for training.

An important issue in this task regards the objective function,

or loss function, used in the DL models. Considering that

precipitation is a non-Gaussian weather variable (Ravuri et al.,

2021), a specific mathematically principled loss function is

required to generate a sharp PDF of precipitation with

calibration. Inspired by the success of the CSG EMOS

approach (Scheuerer et al., 2017) and the hybrid CSG EMOS-

and NN-basedmodels (Ghazvinian et al., 2021; Li et al., 2022), we

integrated the simplified expression of the CRPS for precipitation

as the loss function in our DL models. In this framework, the DL

models are trained to generate predictions for the three

parameters in CSG EMOS (shape, scale, and shift). The CRPS

loss is then calculated by the predicted parameters and the

corresponding precipitation observations.

Accordingly, the main contributions of our study are:

• A potential operating system based on deep NNs is

proposed for the post-processing of ensemble

precipitation forecasts over China.

• An exhaustive evaluation is carried out to assess the model

performance on regions with various types of terrain and

climate across China. The results demonstrate that the DL-

based model significantly outperforms the competitors at

most of the study stations, especially for heavy or extreme

precipitation events.

• A sensitivity analysis is performed on the size of training

data for optimizing the DL-based model.

The remainder of this manuscript is structured as follows.

Section 2 describes the data, methods, and evaluation metrics

used in the study. The main results are then presented in Section

3, which is followed by a brief summary and discussion in

Section 4.

2 Data and methods

2.1 Re-forecasts and observations

As noted above, re-forecast data produced by a frozen EPS,

GEFS-v12, were used as the raw ensemble forecast data in this

work. GEFS-v12 used the current operational Global Forecast

System version 15.1 (GFS-v15.1) (Tallapragada, 2019) at the

National Centers for Environmental Prediction (NCEP). Both

the GFS-v15.1 and GEFS-v12 systems were run with the Finite-

Volume 3 Cubed-Sphere dynamical core (Harris and Lin, 2013).

The resolution of the GEFS-v12 system was around 25 km with

64 vertical hybrid levels. The re-forecasts were initialized at 00:

00 UTC once per day up to 16 days, spanning from 2000 to 2019.

Each run consisted of five ensemble members, and the

perturbations were produced with ensemble Kalman filter 6-h

forecasts (Bloom et al., 1996). In this study, 6-h precipitation re-

forecasts of 1–7 lead days were extracted over China and further

calculated as 24-h accumulated precipitation data. The re-

FIGURE 1
Spatial distribution of weather stations in this study. Themean
annual precipitation from 2000 to 2019 of each station is given by
color.
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forecast data used in this paper were obtained from the NCEP’s

FTP server.

The precipitation observations were retrieved from the Daily

Meteorological Dataset of Basic Meteorological Elements of

China National Surface Weather Station (v3.0). This dataset

collects daily measurements of multiple variables from 1951 to

the present. Based on to the integrity and quality of the historical

data, 156 national ordinary stations were further selected as the

study stations (see Figure 1). The observation data were

downloaded from the China Meteorological Data Service Centre.

Grid re-forecasts were extracted based on the locations of the

study stations. The re-forecasts of the nearest grid point to a

given station were used as the raw ensembles for the EMOS and

NN methods. Considering that image-like data are required as

the inputs of the convolutional-neural-network (CNN) model,

21 × 21 windows of re-forecasts centered on each of the given

stations were extracted. By matching the time periods of the re-

forecasts and observations, a total of 7,305 training samples were

obtained for the period 2000–2019. As noted above, in the

general experiments, we made use of the data from 2018,

2019, and the other 18 years for validation, testing, and

training, respectively. To test the influence of the size of the

training dataset on the model performance, a sensitivity

experiment using two-year data from 2016 to 2017, five-year

data from 2013 to 2017, and ten-year data from 2008 to 2017 for

training was further performed.

2.2 CSG EMOS

As discussed in Section 1, the CSG EMOSmethod proposed

by Scheuerer and Möller (2015) outperforms the gamma BMA

and GEV EMOS for probabilistic precipitation forecasting.

Here, we therefore implement the CSG EMOS approach as

the baseline. The CSG EMOS model is a variant of the EMOS

method based on a CSG distribution specially designed for

precipitation. If the shape k > 0 and the scale θ > 0, then the PDF

and CDF of a general gamma distribution Γ(k, θ) can be

respectively formed as:

PDFk,θ x( ) �
x/θ( )k−1e−x/θ
θ · Γ k( ) for x> 0,

0 for x≤ 0

⎧⎪⎪⎨⎪⎪⎩ (1)

and

CDFk,θ x( ) �
∫t

0
tk−1e−x/θ dt

θk · Γ k( ) for x> 0,

0 for x≤ 0.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2)

The shape and scale parameters k and θ can also be replaced by

the more commonly used mean μ and standard deviation σ:

k � μ2

σ2
,

θ � σ2

μ
.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

Here, we introduce a shifted parameter δ > 0, which

transforms the standard gamma distribution to a shifted

gamma distribution that is left-censored at zero and whose

CDF can be written as:

CDFk,θ,δ x( ) � CDFk,θ x + δ( ) for x≥ 0,
0 for x< 0.

{ (4)

Considering that the gamma distribution PDF is not analytically

integrable, the PDF of a shifted gamma distribution can be

formed as:

PDFk,θ,δ x( ) �
1 − CDFk,θ δ( )( ) · PDFk,θ x + δ( ) for x> 0,
CDFk,θ δ( ) for x � 0,
0 for x< 0.

⎧⎪⎨⎪⎩
(5)

Note that although the formula is a piecewise function, the PDF

of a shifted gamma distribution is continuous for non-negative

values of x.

In the CSG EMOS framework, the k and θ parameters of the

predictive PDF are usually represented by μ and σ2 using Eq. 3.

We suppose an EPS containing m individual ensemble forecasts

with notation f1, f2, . . . , fm for a given station and forecast time.

Then, μ and σ2 can be computed by:

μ � a + b1f1 + b2f2 +/ + bmfm,

σ2 � c + d
1
m

∑m

i�1 fi,

⎧⎪⎨⎪⎩ (6)

where a, (b1, b2, . . . , bm), c, and d are non-negative regression

coefficients. According to Eqs 3, 5, and 6, the predictive PDF of

CSG EMOS can be obtained from the raw forecasts of the EPS’s

ensemble members and the regression coefficients, which can be

estimated from the training data by optimizing an appropriate

scoring rule. The IGN and the CRPS are the two most popular

scoring rules in the atmospheric sciences for probabilistic

forecasting; however, the CRPS has been proven to be more

robust (Gneiting et al., 2005; Scheuerer and Möller, 2015), so we

use this as the scoring rule here. The CRPS can be written as:

CRPS F, y( ) � ∫ F x( ) −H x − y( )( )2 dx, (7)

where y is the observation of the targeted variable, F(·) is the CDF
of the targeted variable with estimated parameters, andH(·) is the
Heaviside step function, which is 0 if x ≤ y and 1 otherwise. This

is expressed in a simplified form following Scheuerer and Möller

(2015) in the CSG EMOS:

CRPS CDFk,θ,δ , y( ) � y + δ( ) 2CDFk,δ y + δ( ) − 1( ) − θk

π
B 1/2, k + 1/2( ) 1 − CDF2k,δ 2δ( )( )

+θk 1 + 2CDFk,θ δ( )CDF2k+1,δ δ( ) − 2CDFk+1,δ y + δ( )( ) − δCDF2k,θ δ( ),
(8)
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where CDFk,δ and CDFk,θ,δ are the CDFs of a gamma distribution

and a shifted gamma distribution, shown in Eqs 2 and 4,

respectively, and B(·) is the Beta function. By minimizing the

mean CRPS over a rolling training period using maximum-

likelihood estimation, the predictive regression coefficients are

applied to the ensemble-member forecasts in an independent

validation period. The CSG EMOS approach was implemented

with the help of the ensembleMOS package in R (Jordan et al.,

2017).

2.3 DL-based models

Deep NNs show advantages for tackling complex nonlinear

tasks with large volumes of data (Hinton and Salakhutdinov,

2006). With the help of layer-wise pre-training, DL-based models

mitigate the issue of gradient diffusion and are able to learn

features from high-dimensional data. CNN models are typical

DL models, and they are the most commonly used models for

extracting spatial information. Generally, CNN models comprise

an input layer, convolutional layers, pooling layers, fully

connected layers, and an output layer. In the convolutional

layers, a convolution operation (*) is applied to the grid-like

topology input in a given sliding step. This can be read as: s = x*w,

where x denotes the input, w is the convolutional kernel or filter,

and s refers to the feature map. A pooling function in the pooling

layer modifies the feature maps from the previous convolutional

layers using a summary statistic, which is usually the

maximum and average, to the nearby outputs. The use of

convolutional layers and pooling layers is viewed as an

efficient approach for the filtering and sharpening of the raw

input data.

In our study, both a shallow NN and a deep CNN model

were used for the post-processing of probabilistic precipitation

forecasting. The two models were implemented as end-to-end

architectures, and their workflows are presented in Figure 2. In

these models, for a given station, the raw ensembles of re-

forecasts (five ensemble members) are used as the inputs. The

NN model consists of two hidden layers, which respectively

have 16 and 32 neural nodes, with a dropout rate of 0.1. The

glorot_uniform scheme (Glorot and Bengio, 2010) is used to

initialize the kernels and biases of the neural nodes, and an

L2 regularizer is further added to the kernels. The rectified

linear unit (ReLU) (Agarap, 2018) is applied as the activation

function between the hidden layers, and a linear activation

function is used between the last hidden layer and the output

layer.

As noted above, a 21 × 21 window of re-forecasts was

extracted for a given station as the inputs of the CNN model.

The CNN architecture used in our work consists of k

convolutional blocks followed by two fully connected layers

(see Figure 2). In each convolutional block, there is a 2D

convolutional layer with C features followed by a batch-

normalization layer (Santurkar et al., 2018), a max-pooling

layer, and a dropout layer (Srivastava et al., 2014) with a

dropout rate of 0.1. The number of features C is doubled

after each convolutional block. The convolutional blocks are

repeated twice with k equal to 2, and C0 was set to 16 in our

experiments. Within the 2D convolutional layer, a filter size of

3 × 3 is fixed with a slide of 1, and ReLU is used as the activation

function.

Both the shallow NN and deep CNN models were used to

predict the three precipitation parameters—shape, scale, and

shift—following the CSG EMOS approach and the work of

FIGURE 2
Illustration of the workflows using DL-based architectures.
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Ghazvinian et al. (2021) and Li et al. (2022). These three

parameters, as well as the precipitation observations, were

further used to calculate the CRPS loss (see Eq. 4) of the DL

models. The Adam algorithm (Kingma and Ba, 2014) was used

as the optimizer with an initial learning rate of 1 × 10–4, and

the total number of training epochs was fixed as 300. A

learning-rate-decay scheduler was integrated to linearly

decrease the learning rate from to 1 × 10–4 to 1 × 10–5,

which starts at the 250th epoch and ends at the 300th

epoch. Both the NN and CNN models were implemented

with TensorFlow (Abadi et al., 2015) and Keras (Chollet et al.,

2015).

FIGURE 3
(A) Boxplots of the mean continuous ranked probability scores (CRPS) of the raw ensemble re-forecasts (ENS) and calibrations using different
post-processing methods (EMOS: ensemble model output statistics; NN: shallow NN; and CNN: convolutional NN) for 24-h accumulated
precipitation over the entire 2019 testing period with lead times of 1–7 days; (B) as with panel (A), but the CNN models were trained with two-year
data (CNN_2y), five-year data (CNN_5y), ten-year data (CNN_10y), and 18-years data (CNN_18y); the red dotted lines are the averaged CRPS
values of EMOS for all the study stations over the entire 2019 testing period with lead times of 1–7 days.

FIGURE 4
As Figure 3, but for the mean Brier scores of different thresholds: (A) 0 mm; (B) 10 mm; (C) 25 mm; and (D) 50 mm.
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2.4 Verification methods

To quantitatively evaluate the performance of the post-

processed forecasts, the mean CRPS was computed for each

station over the testing period. As shown in Eq. 7, the CRPS

measures the sum of the squared differences of the cumulative

probability space for the probabilistic forecasts in a continuous

way. It demonstrates how well the forecasts predict the possibility

against the observations. Similar to the root-mean-square error

in deterministic forecasting, the CRPS is negative orientated and

the perfect value is 0. Additionally, the Brier score (BS) (Williams

et al., 2014) was computed to assess the model performance for

precipitation events exceeding a given threshold. The BS can be

written as:

BS F, y;x( ) � 1
N

∑N

i�1 F x( ) −H x − y( )( )2, (9)

where y is the observation of the targeted variable, x is the specific

threshold, F(·) is the CDF of the targeted variable with estimated

parameters, and H(·) is the Heaviside step function, which is 0 if

x ≤ y and 1 otherwise. Looking at Eq. 7, it can be seen that the

CRPS is the integral of the BSs at all the possible thresholds. Here,

we calculate the BSs with four different thresholds (0, 10, 25, and

50 mm), which respectively represent light precipitation,

moderate precipitation, heavy precipitation, and rainstorms

for 24-h accumulated precipitation. Calculation of the skill

scores of the CRPS and BS is proposed to assess the

improvements in the post-processed forecasts compared to the

reference forecasts (i.e., the raw re-forecasts). These are

defined as:

CRPSS F, y( ) � 1 − CRPS F, y( )
CRPS Fref , y( ) (10)

and

BSS F, y; x( ) � 1 − BS F, y; x( )
BS Fref , y;x( ). (11)

Both of these skill scores are positively oriented. Reliability

diagrams were plotted to evaluate the consistency of the raw

ensembles and the post-processed forecasts with observations

exceeding a given threshold. The diagrams show the binned

forecast probability and observed relative frequency of

precipitation events exceeding a specific threshold: the more

concentrated the data points on the main diagonal, the better

the obtained performance. As with BS, 0, 10, 25, and 50 mm were

used as the thresholds in the reliability diagrams, and the whole

units were divided into 11 bins with values of 0.0, 0.1, 0.2, . . . , 1.0.

3 Results

In this section, the overall model performance in terms of the

averaged CRPS and BS over the entire 2019 testing period is

presented. Reliability diagrams are plotted to show how well the

models simulate the probability of predicted precipitation against

the observations. The station-by-station model performance is

assessed, followed by giving the spatial distribution of the skill

scores. The best-performing models in terms of the CRPS and

BS at each study station are further exhibited. Finally, two cases

using post-processing methods are illustrated to intuitively visualize

the model performance.

3.1 Analysis of overall model performance

Figure 3A shows boxplots of the station-wise CRPS with lead

times of 1–7 days using the proposed post-processing models.

The CRPS values are averaged over the entire 2019 testing period

at each study station. All of the post-processing methods

FIGURE 5
Reliability diagrams of the binned raw ensemble re-forecasts (ENS) and the binned calibrations using different post-processing methods
(EMOS: ensemble model output statistics; NN: shallow NN; and CNN: convolutional NN) against the observed relative frequencies of 24-h
accumulated precipitation over the entire 2019 testing period with a lead time of 1 day with different thresholds: (A) 0 mm; (B) 10 mm; (C) 25 mm;
and (D) 50 mm.
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remarkably reduce the CRPS with all the lead times, and the CNN

model significantly outperforms the other two approaches

(EMOS and NN). The interquartile ranges in the boxplots

indicate the forecast uncertainty of each model. The plots

show that the performance of raw ensembles varies

significantly among the study stations. The EMOS and NN

models perform competitively in narrowing this disparity,

while the CNN approach is even better. With an increasing

number of lead days, the improvements of the CNN model

compared to the EMOS and NN approaches decrease, but the

CNN model is still superior to the others.

To test the impact of the size of the training dataset on the DL-

basedmodels, wemade use of two-year data from 2016 to 2017, five-

year data from 2013 to 2017, ten-year data from 2008 to 2017, and

18-year data from 2000 to 2017 to train the CNN model, and the

resulting comparison is given in Figure 3B. This shows that

increasing the number of training samples can further improve

the performance of the model. However, the improvements are not

as significant as we expected, especially when moving from using

ten-year data to 18-year data. This indicates that the CNN model is

able to capture the statistical dependence between the raw ensembles

and the observations in our study using ten-year training samples.

Similar results can be seen in the recent work of Gong et al. (2022).

Figure 4 presents the model performance in terms of the BSs

of four different thresholds with lead times of 1–7 days. This

shows that all the proposed post-processing methods can

significantly reduce the BS of the 0-mm threshold with all the

lead times, and the CNN model is superior to the others. This

indicates that the post-processing methods can distinguish rain

or no-rain events well. With an increasing threshold, the

improvements brought about by the post-processing methods

decrease, but the CNNmodel is still dominant among them. This

demonstrates that the CNN model is practical for calibrating the

PDF, even for heavy or extreme precipitation events.

A comparison between the binned forecasts generated by the

raw ensembles and the post-processing methods and the observed

relative frequency is given in the reliability diagrams (Figure 5). As

with BS, four thresholds were used to evaluate the model

performance for different intensities of precipitation with a lead

time of 1 day. The raw ensemble (ENS) line, which lies in the

bottom-right corner (Figure 5A), indicates that the raw ensembles

tend to generate more rainy forecasts than the observations, which

FIGURE 6
Spatial distributions of the continuous ranked probability skill scores (CRPSS) of calibrations using different post-processing methods (EMOS:
ensemble model output statistics; NN: shallow NN; and CNN: convolutional NN) with the raw ensembles as the reference forecasts.
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results in wet deviations. Themore concentrated points generated by

the post-processingmethods on themain diagonal demonstrate that

the proposed models can accurately calibrate probabilistic forecasts

and mitigate the wet-deviation issue. However, with an increasing

threshold, the EMOS and NN models start to perform unsteadily

and fail to maintain high consistency between the binned forecasts

and the observed relative frequency. Surprisingly, the CNN model

can still provide reliable forecasts for heavy or extreme precipitation

events. The concentrated points close to the 1:1 reference line

(Figures 5C and D) indicate that the CNN model is able to

generate forecasts that share similar probabilities as

the observations for precipitation events exceeding 25 and 50 mm.

3.2 Station-by-stationmodel performance
analysis

To assess the model performance at each study station, the

spatial distributions of the skill scores (CRPSS and BSS) are

presented in Figures 6 and 7, in which the warm tones indicate

FIGURE 7
Spatial distributions of the Brier scores (BS) of calibrations using different post-processing methods (EMOS: ensemble model output statistics;
NN: shallowNN; andCNN: convolutional NN)with the raw ensembles as the reference forecasts. The BSSwas computedwith a lead time of 1 day for
different thresholds: 0, 10, 25, and 50 mm.

FIGURE 8
Spatial distributions of study stations color coded by the best-performing model (ENS: raw ensembles; EMOS: ensemble model output
statistics; NN: the shallow NN; and CNN: convolutional NN) in terms of the continuous ranked probability score (CRPS) with lead times of: (A) 1 day;
(B) 4 days; and (C) 7 days. The percentages of the different models performing as the best model are listed in the bottom left.
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positive improvements. This shows that all the proposed post-

processing methods can greatly improve the model performance

inmost of the study stations (see Figure 6).With a lead time of 1 day,

EMOS obtains remarkable improvements over Central China and

slight improvements in the Beijing–Tianjin–Hebei region, Yangtze

River Delta, and Pearl River Delta. Similar results are achieved by

using DL-based models, but CNN performs much better in the

Yangtze River Delta and the Beijing–Tianjin–Hebei region. It is

noted that NN performs invalidly at some stations in Southeast

China, since the shallowNNmodel failed to learn the features of the

FIGURE 9
Spatial distributions of study stations color coded by the best-performing model (ENS: raw ensembles; EMOS: ensemble model output
statistics; NN: the shallow NN; and CNN: convolutional NN) in terms of the Brier skill (BS) for different thresholds with lead times of 1, 4, and 7 days.
The percentages of the different models performing as the best model are listed in the bottom left.

FIGURE 10
Illustration of the predicted PDFs of 24-h accumulated precipitation for (A) national ordinary station No. 53913 on 19 August 2019 and (B)
national ordinary station No. 57127 on 09 September 2019 using the proposed post-processing methods (EMOS: ensemble model output statistics;
NN: shallow NN; and CNN: convolutional NN) with a lead time of 1 day. The vertical dashed lines indicate the raw ensemble means, and the red
squares indicate the observations.
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raw ensembles over the training period, generating “inf” forecasts.

With increasing lead times, the improvements of EMOS decrease,

and negative performance is even exhibited at some study stations in

the Beijing–Tianjin–Hebei region. However, although similar

performance degradation is shown, almost all study stations still

obtain significantly positive improvements using the CNN model.

Figure 7 presents the spatial distribution of BSs using the

proposed post-processing methods for different precipitation

thresholds with a lead time of 1 day. This shows that all the

post-processing methods can significantly improve the

probabilistic forecasts for rain or no-rain events at all the

study stations. With increasing thresholds, the EMOS

performance degrades, and negative improvements are

observed at some stations in North China and the Yangtze

River Delta. Similar spatial patterns of the BSs are

obtained using CNN, while the improvements at the study

stations are significantly higher than those obtained

using EMOS.

Maps showing the best-performing models in terms of the

CRPS and BS are presented in Figures 8 and 9, respectively. The

best-performing model is verified by the best mean scores over

the entire 2019 testing period for each study station. As shown in

Figure 8, the performance of CNN is dominant for the majority

of the stations (74.5%) with a lead time of 1 day, especially for the

Yangtze River Delta and Pearl River Delta. With increasing lead

time, the performance of NN gradually improves, and in general,

the DL-based models perform best at over 75% of study stations

with all lead times.

Figure 9 presents more details regarding which model

performs best for different intensities of precipitation at

each study station. This shows that CNN is superior to the

other models for all intensities of precipitation with a lead

time of 1 day, which is consistent with its performance in

terms of the CRPS. However, when the lead time increases, the

NN model significantly outperforms the others for the post-

processing of light precipitation events. Its remarkable

calibration for light precipitation means that the NN model

performs best at 46.4% of the study stations in terms of the

CRPS with a lead time of 7 days (Figure 8C). However, with

increasing precipitation thresholds, CNN again becomes

significantly superior to the other models, especially for

heavy or extreme precipitation events. This demonstrates

that CNN is the best model for the post-processing of

probabilistic precipitation forecasting with lead times of

1–7 days and, importantly, it is still practical for heavy

precipitation events, where the conventional method EMOS

and the shallow NN model fail.

3.3 Case Study

Figure 10 visualizes two cases of the calibrated PDF using

the proposed post-processing methods with a lead time of

1 day. The two cases were selected randomly among events

in which the observed 24-h accumulated precipitation exceeded

10 mm. This shows that CNN can accurately calibrate

probabilistic forecasts with a narrow PDF width and a PDF

mode closer to the observation. As shown in Figure 10A, the

raw re-forecasts provide an accurate prediction whose ensemble

mean is close to the observation. In this case, NN generates the

“sharpest” PDF, while the mode of CNN prediction is closer to

the observation. The second case is more of a challenge since the

raw ensemble mean is far away from the observation; this

means that the raw re-forecasts fail to provide accurate

information. The EMOS model suffers from this issue and

generates a PDF whose mode is close to the ensemble mean

rather than to the observation. However, both the NN and CNN

models are able to mitigate the problem and provide well-

calibrated PDFs with narrow widths. In general, the CNN

model is more practical in all situations, while NN is

somewhat prone to generating smaller precipitation values in

the probabilistic forecasting.

4 Conclusion and discussion

In this work, DL-based models are proposed for probabilistic

precipitation post-processing. A shallow NN and a deep CNN, as

well as the conventionalmethod EMOS, were applied to 153 selected

national ordinary stations across China with lead times of 1–7 days.

Our results demonstrate that the DL models, especially the deep

CNN, significantly outperform the raw ensembles and the EMOS

method. The main advantages of applying DL-based models are

their ability to capture the features from raw ensembles and to learn

the nonlinear dependence between the ensembles and the

observations. Compared with conventional parametric models,

DL models are more flexible and do not require pre-definition of

specific link functions. It is also easy to embed additional predictors,

such as corresponding weather variables and ensembles from

multiple EPSs.

As discussed in Section 1, the use of long-term historical

data and appropriate loss functions are the two crucial points

when using DL-based models in probabilistic precipitation

post-processing. In this study, re-forecasts generated by a

frozen EPS (GEFS-v12) spanning from 2000 to 2019 were

collected as the raw ensembles. The use of re-forecast data

helps to mitigate the shortage of training samples. A sensitivity

test on the size of training data was performed to present its

influence on the DL-based model performance. By increasing

the number of training samples from two years of data to

18 years, a remarkable improvement can be seen in terms of the

CRPS. It should be noted that the DL-based model is not as

competitive as the conventional EMOS model with a small

training data set of two years. This indicates that the quantity

and quality of training samples are critical to obtain a well-

trained DL-based model, which outweighs the model
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architecture to some extent. To obtain a narrow calibrated PDF

for precipitation, in this work, the CRPS was computed as the

loss function. However, the original expression of the CRPS is

an integral form (Eq. 7), which cannot be directly incorporated

into NN models. This is mainly because NN-based models

optimize the loss by updating the parameters with gradients.

Here, a simplified expression of the CRPS for probabilistic

precipitation forecasting is given (Eq. 8) following the CSG

EMOS method (Scheuerer and Möller, 2015). A similar strategy

was applied by Rasp and Lerch (2018), but they only considered

temperature forecasts.

Our results indicate that DL-based models are a

promising approach to probabilistic precipitation post-

processing. The deep CNN model can greatly reduce the

CRPS and BS, especially for heavy or extreme precipitation

events, with lead times of 1–7 days; furthermore, it serves as

the best-performing model at 74.5% of the study stations for

the first lead day. Once the DL models are trained, it is more

efficient in producing well-calibrated probabilistic

precipitation forecasts, and this significantly saves

computing time and resources (see also Rasp and Lerch,

2018).
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