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The groundwater of the Choushui River alluvial fan in Central Taiwan has been

overexploited for a long time. It is essential to understand the factors governing

changes in groundwater level (GWL) for the use of water resources. In this study,

we first conducted a Mann–Kendall test to identify significant trends in the

regional GWL and obtained its spatial characteristics using the Moran’s I index in

the Choushui River alluvial fan. Furthermore, we established a geographically

weighted regression (GWR) model to explore the spatial correlation between

natural factors and GWL in dry and wet seasons from 1999 to 2019. The long-

term trend analysis shows that the GWL of the Choushui River alluvial fan

decline significantly. The Moran’s I index shows that the spatial distribution of

GWL had a positive correlation in both dry and wet seasons. GWR model

indicate that the GWL are affected by drainage density (Dd), slope (S),

normalized difference vegetation index (NDVI), and precipitation (P) during

the dry season, while Dd, S, NDVI, and wetness index (WI) have an effect on the

GWL during the wet season. These results can not only describe the model

applicability for exploring the relationship between natural factors and GWL but

also be used as references for future regional water resource utilization and

management.
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1 Introduction

Groundwater is the most abundant freshwater resource on Earth for drinking,

irrigation, and industrial use (Taylor et al., 2013). Groundwater is not only the

primary source of drinking water for more than half of the world’s population, but it

also provides water, nutrients, and relatively stable temperatures for ecosystems (Kløve
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et al., 2011). Humans also rely on groundwater-dependent

ecosystems for food and energy production (Machard de

Gramont et al., 2011); for example, groundwater can be used

to irrigate more than 100 million hectares of arable land

worldwide, and it accounts for more than 40% of water

consumption (Siebert et al., 2010). The economic benefits of

per unit volume groundwater abstraction exceed those of surface

water withdrawal (Burke et al., 2000). In addition, near-surface

geological structure can even reduce the impact of climate change

or surface pollution on groundwater. Therefore, groundwater is

an easily accessible and relatively stable water resource (Haddad

et al., 2001).

Global groundwater extraction has rapidly intensified due to

improvements in knowledge of hydrogeological conditions, drilling,

and pumping techniques (Foster et al., 2013). Following the global

population increases, irrigated agriculture expands, and economy

develops, the demand for freshwater continues to increase (Siebert

et al., 2010; Wada et al., 2010). The accompanying environmental

issues also arise including groundwater depletion, land subsidence,

coastal seawater instruction, water quality threats, and most are

relevant to the interaction between the first two issues. With

groundwater overexploitation, the pore fluid pressure in the

sedimentary aquifer system supported by the granular skeleton

and inter-pore groundwater will decrease. This causes the skeletal

compression of the aquifer system, known as land subsidence. Land

subsidence can permanently reduce the water storage capacity of

aquifers, and it has impacts on surface and subsurface infrastructures

significantly (Jeanne et al., 2019). Groundwater extraction is often a

major cause of land subsidence in many regions of the world where

both agricultural irrigation and population growth increase rapidly

(Galloway et al., 2011). From 2002 to 2014, the annual average land

subsidence rate related to groundwater utilization in Central Taiwan

ranged from 0 to 8.0 cm/y. The reason may be that approximately

310,000 pumping wells have been set up to supply agricultural and

industrial water needs in the Choushui River alluvial fan, which

includes Changhua and Yunlin (Hwang et al., 2016). Hsu et al.

(2015) used a multi-sensor monitoring system to monitor the

cumulative land subsidence in Yunlin from 1992 to 2013, and

found that severe, moderate, and slight subsidence occurred in

the central region, coastal area, and western side of the foothills,

respectively. Using global positioning system and interferometric

synthetic aperture radar (InSAR), Yang et al. (2019) found that the

land subsidence with large areas in the dry season accounts for

60–74%of the annual subsidence, showing the potential relationship

between land subsidence and water demand. These suggest that the

response of groundwater to environmental factors needs to be better

understood, and it will facilitate more appropriate decisions and

management on groundwater-related issues.

There are many driving factors cause changes in GWL. Previous

studies have classified these driving forces into natural and human

factors. Natural factors include terrestrial, hydrology, and climate

change, while human factors include land-use changes, river

regulation, afforestation and deforestation, and groundwater

extraction (Fu et al., 2019; Ojeda Olivares et al., 2019; Parizi

et al., 2020; Van Huijgevoort et al., 2020; Ebrahimi et al., 2021;

Maihemuti et al., 2021; Wu et al., 2021). Researchers have used

various statistical regressionmodels for understanding the drivers of

changes in GWL analysis (Ainiwaer et al., 2019; Fu et al., 2019; Lin

et al., 2020; Li et al., 2020; Mulyadi et al., 2020; Wu et al., 2021).

Statistical regression analysis methods include the multiple linear

regression model and geographically weighted regression (GWR)

model (Brunsdon et al., 1998). Although the multiple linear

regression is mostly used for analysis, the GWR model is a

nonparametric and local form of spatial regression analysis,

which can incorporate spatial information of data to model the

relationship between dependent and independent variables in

different spatial subdomains with spatial variations (Boots, 2003).

This method can solve the problems of spatial autocorrelation and

spatial non-stationarity in geographic data to increase the true

correlation between variables and model fitness (Brunsdon et al.,

1996). Ainiwaer et al. (2019) used GWR analysis to describe that the

agricultural land use result in the decreasing GWL in their study

area. Mulyadi et al. (2020) applied the model with a fixed Gaussian

weights function to assess the spatial significant interaction between

surface topography and groundwater in urbanized regions. Parizi

et al. (2020) analyze the importance of climate, hydrology, landform,

population density, and soil properties on groundwater recharge

through the GWR model. It showed that all predictors positively

correlated with groundwater recharge and that the normalized

difference vegetation index (NDVI) was the main influencing

factor. Overall, GWR models have a great capability for

elaborating the spatial correlation of the groundwater with

related factors.

Therefore, we applied theGWRmodel inChoushui River alluvial

fan, which has not only the most abundant groundwater resources

but also severe groundwater overexploitation in Taiwan. We first

performed a time series analysis of GWL to identify significant

changes using the Mann–Kendall test. We also evaluated the

spatial autocorrelation to understand the spatial characteristics of

GWL usingMoran’s I index. Finally, we established a GWRmodel to

explore the spatial correlation between different natural factors and

GWLs. This study expected to realize the spatial differences in the

response of GWLs to natural factors, attempting to explain how these

factors have an effect on the groundwater.

2 Methodology

2.1 Mann–Kendall test

Long-term trend of GWLs can be investigated using the

Mann–Kendall test (Mann, 1945; Kendall, 1975). The MK test is

a nonparametric test for assessing whether a variable has a

significant increasing or decreasing trend over time. It does

not require the data to follow a specific distribution and is

not affected by outliers. Therefore, it is widely used for trend
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analysis due to the good applicability, less subjectivity, and high

degree of quantification (Li et al., 2020; Xinqiang et al., 2020).

The procedure of the MK test is as follows:

S � ∑n−1
i−1

∑n
j�i+1

sign(xi − xj) (1)

sign(xi − xj) �
⎧⎪⎪⎨⎪⎪⎩

1, if (xi − xj) > 0

0, if (xi − xj) � 0

−1, if (xi − xj) < 0

(2)

where x1, x2, x3,. . ., xn are the data at time 1,2,3,. . .,n. The test

statistic Z is calculated by the variance of the S:

Z �
⎧⎪⎨⎪⎩

(S − 1)/ 






Var(S)√

, if S > 0
0 , if S � 0

(S + 1)/ 






Var(S)√

, if S < 0
(3)

if |Z| > Z1-α/2 (α is significance level), it means that the data has a

significant trend. This study uses a significance level of 5% to

identify the significance of a trend (|Z|>1.96).

2.2 Spatial autocorrelation analysis

Spatial autocorrelation analysis is an analysis of the

correlation between adjacent locations of a single variable on

a two-dimensional surface. To understand the spatial

characteristics of GWLs, this study used the global and local

Moran’s I indices (Moran, 1950). The global Moran’s I index can

determine whether a variable has aggregating characteristics in

its distribution space, ranging from −1 to 1. When the global

Moran’s I index > 0, the variable has a positive global spatial

correlation. The closer the value is to 1, the more significant the

spatial aggregation of the variable. On the contrary, the variable

has a negative global spatial correlation when the global Moran’s

I index < 0. The closer the value is to −1, the more significant the

spatial difference of the variable. When the global Moran’s I

index = 0, the variable is distributed randomly in the global space.

The formula is as follows:

I �
∑n

i�1∑n
j�1Wij(Xi − �X)(Xj − �X)
S2(∑n

i�1∑n
j ≠ iWij)

(4)

where

S2 � 1
n
∑n
i�1
(Xi − �X)2

, �X � 1
n
∑n
i�1
Xi (5)

where Xi and Xj represent the GWLs at locations i and j; n is the

total number of GWLs; Wij is the spatial weight matrix; if i and j

are adjacent, the spatial weight is 1; otherwise, it is 0.

The local Moran’s I index (Ii) expresses the degree of

similarity between a local spatial region and its adjacent

regions. The positive correlation of an area with its

neighboring regions is spatially represented as “HH” for a

high GWL area adjacent to a high GWL area or “LL” for a

low GWL area adjacent to a low GWL area. When a region is

negatively correlated with its adjacent region, they are spatially

expressed as “HL” for a high GWL area adjacent to a low GWL

area or “LH” for a low GWL area adjacent to a high GWL area.

The formula is as follows:

Ii � 1

S2
(Xi − �X)∑n

i ≠ j

Wij(Xi − �X)2

(6)

2.3 Geographic weighted regression
model

The geographically weighted regression model was used

for analyzing the correlation of the natural factors of GWL

change. The GWR model adds spatial geographic location

information to the traditional linear regression model and

builds a local regression based on the dependent (GWL) and

independent variables (the adjacent natural factors). The

estimated regression coefficient changes with the

movement of the spatial location would reflect the spatial

heterogeneity and the coefficient instability in different

TABLE 1 Description about the selection of natural factors.

Category Factor Description

Terrestrial Slope (S) Average slope lope (dimensionless)

Drainage density (Dd) Ratio of stream length to area (km/km2)

Normalized difference vegetation index
(NDVI)

NDVI=NIR-RED/NIR+RED (dimensionless), where NIR and RED represent the red and near-infrared values in
traditional fashion, respectively

Hydrological Precipitation (P) Monthly average precipitation (mm)

Wetness index (WI) Ratio of precipitation to actual evapotranspiration (dimensionless)

Soil moisture (SM) Water stored in the soil (mm)
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spaces (Brunsdon et al., 1996). The formula for the GWR

model is as follows:
yi � β0(ui, vi) +∑

k�1
βk(ui, vi)xik + εi (7)

FIGURE 1
Geographical distribution of groundwater observation wells in the Choushui River Alluvial Fan.
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where yi is the observed value of the dependent variable at a

specific location; (ui, vi) is the geographic location of the ith

sample space; β0 (ui, vi) is the constant term of the ith

sample statistical regression; βk (ui, vi) is the estimated

coefficient of the kth factor in the ith sample space; xik is

the kth variable in the ith sample space; εi is the error term of

the model.

2.3.1 Spatial weight function selection
Each observation value of the GWR model formula

generates a weight value βk, and the weighted least

square method is used to estimate the parameters. We

found that the samples closer to point i will have higher

weight values than those farther away from point i as

shown in Eq. 8:

β
∧
(ui, vi) � (XTW(ui, vi)X)−1XTW(ui, vi)Y (8)

where,

X �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 x11 . . . x1k
1 x21 . . . x2k
. . . . . . . . . . . .
1 xn1 ... xnk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

W(ui ,vi) � W(i) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
wi1 0 ... 0
0 wi2 ... 0
... ... ... ...
0 0 ... win

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

β �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
β0(u1, v1) β1(u1, v1) ... βk(u1, v1)
β0(u2, v2) β1(u2, v2) ... βk(u2, v2)

... ... ... ...
β0(un, vn) β1(un, vn) ... βk(un, vn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

Y �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1
y2
...
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

where W(ui, vi) is the spatial weight matrix defined by different

spatial kernel functions. The commonly used spatial kernel

functions include the Gaussian and bi-square functions. This

study chose the Gaussian functions to remain all information

between bandwidths. The Gaussian function is a continuous and

monotonically decreasing function. The weight value on the

regression point is 1, and the weight value is decreasing with

the farther distance, as shown in Eq. 13:

wij � exp[ − (dij/b)2] (13)

where dij is the distance between regression point i and data point

j; b is the bandwidth, which is the decay parameter of the

functional relationship between weight and distance.

There are two types of sampling methods for the bandwidth of

the spatial kernel function, namely fixed kernel and adaptive

kernel. The fixed kernel is suitable for the sample with large

numbers and uniform distribution, and the adaptive kernel

changes the bandwidth with the density of the sample points

for the samples with the few numbers and the un even distribution.

FIGURE 2
Spatial distribution of the Z values obtained from the Mann–Kendall method of the Choushui River Alluvial Fan. (A) Dry season. (B)Wet season.
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This study selected the fixed kernel due to the appropriate spatial

distribution of the samples. Finally, we evaluated the complexity of

statistical models and data fitness to select the bandwidth through

Akaike information criterion (AIC). The AIC method is widely

used and good at preventing overfitting (Hurvich et al., 1998;

Miller et al., 2011; Odgaard et al., 2014). The optimal bandwidth

would have the smallest AIC. The AIC equation is shown as below:

AIC � 2n ln(σ̂) + n ln(2π) + n[ n + tr(S)
n − 2 − tr(S)] (14)

FIGURE 3
Spatial distribution and statistics of groundwater level (GWL) in the Choushui River Alluvial Fan. (A) Dry season. (B) Wet season.
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2.3.2 Variable selection
Factors that affect GWL can be classified into human and

natural factors. Human factors include population density,

changes in land use, water consumption for irrigation and

domestic purposes etc. (Ojeda Olivares et al., 2019; Xia et al.,

2019; Lin et al., 2020). Natural factors can be classified into

terrestrial and hydrological factors. Terrestrial factors include

slope, NDVI, soil moisture, and drainage density, and

hydrological factors include precipitation, evapotranspiration,

air temperature, drought index, and wetness index (Wang

et al., 2019; Duran-Llacer et al., 2020; Parizi et al., 2020; Van

Huijgevoort et al., 2020; Maihemuti et al., 2021). However,

obtaining the spatial characteristics of the indexes related to

human activities is certainly difficult, and the regionality of

human factors and their interaction between related

mechanism will increase the complexity of the model to

TABLE 2 Statistics of independent variables of each town in the Choushui River Alluvial Fan.

Type of variable Category Variable Description (unit) Season Min Max Mean

Dependent GW Groundwater level(m) Dry −4.1 149.4 26.6

Wet −4.1 150.5 27

Geomorphology S Mean slop (˚) 0.29 4.22 0.78

Dd Drainage density (km/km2) 0 0.9 0.19

Independent Vegetation NDVI Mean month NDVI Dry −0.06 0.18 0.07

Wet −0.01 0.25 0.09

Climate P Mean month precipitation (mm/month) Dry 26.3 43.6 34.5

Wet 163.2 337 211

AET Mean month actual evapotranspiration (mm/month) Dry 37.1 57.4 44.2

Wet 126.2 135.8 129.8

Soil SM Soil moisture (mm) Dry 0 24.6 17.9

Wet 0 73 68.8

FIGURE 4
Spatial distribution and statistics of slope (S) in the Choushui River Alluvial Fan.
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describe the groundwater level changes. In addition, previous

study (Chen, Huang, and Yeh, 2021) showed that climate factors

(>90%) have much greater contribution to the change in

hydrological behavior than the human activities (<10%) in the

Choushui River alluvial fan in the long term. In the same study

area, Yu and Chu (2010) also pointed out that the natural factors

(including rainfall, streamflow, and upstream recharge area)

contribute about 80% of observed spatiotemporal changes in

the piezometric head using explained variance ratio from

empirical orthogonal function (EOF) analysis. Therefore, we

thought a geographically weighted regression model based on

the hydrological and terrestrial factors should first established to

realize the model applicability. Based on the hydrological and

terrestrial conditions of the study area, we selected slope,

drainage density, precipitation, NDVI, wetness index, and soil

moisture as the influencing factors, shown in Table 1.

3 Research materials

3.1 Study area

Choushui River alluvial fan is the largest alluvial fan plain

with a total area of approximately 2,000 km2 and located in

the Central Taiwan. The administrative area includes

Changhua County and Yunlin County, starting from Wu

River in the north to Beigang River in the south, extending

from west foothill of Pakua Tableland and the west side of

Douliu hill in the east to Taiwan Strait in the west. The human

activities in the alluvial fan plain are mainly agriculture and

aquaculture, and some are industry. The source of water

resources mainly come from the groundwater extraction,

so long-term groundwater overexploitation has occurred in

the Choushui River alluvial fan (Liu, 2004; Hwang et al., 2016;

Chen et al., 2021). The geology in Choushui River alluvial fan

belongs to the Holocene Epoch, and its composition includes

clay, silt, sand, and gravel. In terms of hydrogeological

stratification, the alluvial fans consists of four aquifers and

four aquifuges (Hung et al., 2010). The study area is located at

the junction of subtropical and tropical monsoon climate

regions. The average annual precipitation and temperature

are calculated as approximately 1,269 mm and 23°C in

Choushui River alluvial fan by the data from Taiwan

Climate Change Projection Information and Adaptation

Knowledge Platform (TCCIP), respectively. The region has

distinct wet and dry seasons: the wet season is from May to

September, and the dry season is from October to April (Chu

et al., 2022). The study area was divided into township

administrative areas for better understanding the temporal

change in GWL and the spatial correlation between GWL and

influencing factors in each township, and providing the

references of future water resources management. The

geographical distribution of observation wells and study

area is shown in Figure 1.

FIGURE 5
Spatial distribution and statistics of drainage density (Dd) in the Choushui River Alluvial Fan.
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3.2 Data sources

This study collected the monthly average GWLs in

35 observation wells in the first aquifer in the study area

from 1999 to 2019 from the Water Resources Agency of the

Ministry of Economic Affairs. The spatial distribution of

GWLs were interpolated to obtain the GWLs of each

township during dry and wet seasons using ordinary

kriging. Slope (S) has significantly spatial interactions with

GWLs (Mulyadi et al., 2020), and drainage density (Dd)

FIGURE 6
Spatial distribution and statistics of normalized difference vegetation index (NDVI) in the Choushui River Alluvial Fan. (A) Dry season. (B) Wet
season.
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indicates the regional drainage conditions depending on the

both climate and physical characteristics (Parizi et al., 2020).

These two factors were calculated from the 40-m layer of the

digital elevation model (DEM) in the ArcGIS software.

Normalized difference vegetation index (NDVI) which is

often used to assess the growth of green vegetation in the

specific area, and the correlation with GWL was also pointed

out (Xu et al., 2019; Parizi et al., 2020; Sharma et al., 2021).

Monthly satellite images of Landsat 5, Landsat 7, and Landsat

8 with a resolution of 30 m from 1999 to 2019 were obtained

from the United States Geological Survey (USGS) website

(https://www.usgs.gov/). Precipitation is the main source of

FIGURE 7
Spatial distribution and statistics of precipitation (P) in the Choushui River Alluvial Fan. (A) Dry season. (B) Wet season.

Frontiers in Earth Science frontiersin.org10

Yeh et al. 10.3389/feart.2022.977611

https://www.usgs.gov/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.977611


groundwater recharge, and monthly precipitation (P) grid

data with the resolution of 5 km was from the Taiwan Climate

Change Projection Information and Adaptation Knowledge

Platform (TCCIP) (https://tccip.ncdr.nat.gov.tw/) from

1999 to 2019. Actual evapotranspiration (AET) and Soil

moisture (SM) with a resolution of 4 km from 1999 to

2019 were collected from TerraClimate dataset. It

combined the climatically aided interpolation and high-

spatial resolution climatological normal from the

WorldClim dataset to provide a dataset featuring the

monthly climate and climatic water balance for global

terrestrial surfaces (http://www.climatologylab.org/

terraclimate.html). The two data were adjusted to a

resolution of 4 km in this study.

FIGURE 8
Spatial distribution and statistics of wetness index (WI) in the Choushui River Alluvial Fan. (A) Dry season. (B) Wet season.
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4 Results and discussion

4.1 Time series analysis of groundwater
level

The study explored the variation of GWL and used the

Mann–Kendall method to evaluate the long-term GWL trend

in the Choushui River alluvial fan at month, season, and wet-

and-dry season scales from 1999 to 2019 at the significant level of

0.05. The GWLs decrease in all months. February, March, April,

May, November, and December show a significant decrease in

GWL, and April is the month with the most significant decrease

in GWL (Z value = −2.14). For the season scale, all seasons show a

decrease in GWL. There are significant decreases of GWL in

FIGURE 9
Spatial distribution and statistics of soil moisture (SM) in the Choushui River Alluvial Fan. (A) Dry season. (B) Wet season.
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spring and winter, and spring has themost significant decrease (Z

value = −2.33). The GWL during the dry and wet seasons shows

that the dry season has a significant decrease in GWL (Z

value = −2.39). The annual average change of the GWL in the

Choushui River alluvial fan (Z value = −3.81) also has a

significant decrease trend. Results show that the GWL of the

alluvial fan of Choushui River is facing a serious decrease.

The GWL of the Choushui River alluvial fan decreased from

1999 to 2019, with the highest average from August to October

and the lowest fromMarch to June. The seasonal GWL decreases

from autumn, summer, winter, and spring in most years, while P

shows that the precipitation is concentrated in summer, followed

by spring. Previous study also showed a 3-4 lag time between the

precipitation and the groundwater level in the Choushui River

alluvial fan (Chang, 2009). Although precipitation such as plum

rains and typhoons recharge groundwater in June, the GWL does

not reach its peak until approximately September to December,

which is during autumn. The changes in the GWL during the dry

and wet seasons are similar and consistent in most years.

4.2 Spatial distribution of groundwater
level trend

The spatial distributions of the GWL trend in the

Choushui River alluvial fan during dry and wet seasons are

shown in Figure 2. There is a significant decrease in GWL in

the central area of the alluvial fan, including Baozhong (BZ),

Dongshi (DS), Tuku (TK), Yuanchang (YC), Sihu (SH), and

the townships with higher elevation including the of Zhushan

(ZS), Ershui (ES), and Linnei (LN) during both dry and wet

seasons. However, the GWL has a significant increase in the

northern study area. These results indicate that the spatial

distributions of the GWL trend in the dry and wet seasons are

similar. Interestingly, the region with significantly decreasing

GWL is consistent with the region (particularly in Baozhong

(BZ) and Yuanchang (YC)) with the most serious accumulated

land subsidence from 1992 to 2020 obtained from the Water

Resources Information Service Platform (https://gic.wra.gov.

tw/Gis/Map).

FIGURE 10
Spatial distribution of the local Moran’s I index in the Choushui River Alluvial Fan. (A) Dry season. (B) Wet season.

TABLE 3 Combined results of influencing factors during dry and wet seasons in the geographically weighted regression model.

Season Local
R2

R2 Adjusted R2 AIC S Dd NDVI P WI SM

Dry 0.81–0.84 0.87 0.86 440 V V V V

Wet 0.65–0.85 0.85 0.82 458 V V V V
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4.3 Spatial distribution of dependent and
independent variables

4.3.1 Dependent variable
GWL is the dependent variable of this study. The GWL of the

Choushui River alluvial fan varies from −4.1 to 149.4 m in the dry

season with an average of 26.6 m, while it varies from −4.1 to

150.5 m with an average of 27.0 m in the wet season. The

difference of GWL in the wet and dry seasons is insignificant.

In terms of spatial distribution, the GWL decreases from east to

west due to the difference in elevation which is also shown in the

distribution of slope. In addition, since the overall terrain is

relatively flat, it shows that approximately 60% of the GWL in the

study area is less than 15 m, as shown in Figure 3.

4.3.2 Independent variable
The independent variables in this study include slope (S),

drainage density (Dd), normalized difference vegetation index

(NDVI), precipitation (P), wetness index (WI), and soil moisture

(SM). The statistics of each variable are summarized in Table 2.

The S varies from 0.29° to 4.22° with an average of 0.78°, and

approximately 70% of the values are below 0.4°, indicating that

the overall study area is relatively gentle. The spatial distribution

of S shows a decrease from the east to the west in the study area

(Figure 4). Dd ranges from 0 to 0.9 km/km2 with an average of

0.19 km/km2. Approximately 30% of the Dd is less than 0.05 km/

km2, indicating that the study area is poorly drained. Dd may be

decreased with lower amount of precipitation, lower infiltration

rate, steeper slope, and more impermeable surfaces. The spatial

distribution of Dd shows that it is lower in the northeast and

higher in the east of the study area (Figure 5). The unevenly

distribution demonstrates that different physical characteristics

control the Dd in different areas. NDVI in the dry and wet

seasons varies from −0.06 to 0.18 with an average value of

0.07 and from −0.01 to 0.25 with an average value of 0.09,

respectively (Figure 6). In the dry season, 40% of the total value

ranges from 0.04 to 0.08, while 30% of the total value ranges from

0.06 to 0.08 in the wet season. The overall value is not high and

depends on the field crops, water body, and artificial

construction. The National Land Use Investigation Map from

the Water Resources Information Service Platform (https://gic.

wra.gov.tw/gis/) shows that the vegetation type is mainly

agriculture rather than forests. The spatial distribution of

NDVI shows that it is higher in the southeast of the study

area during the dry season, while it decreases toward the west

and has negative values in some towns along the coast. The

spatial distribution of NDVI in the wet season shows that

Gukeng (GK) Township in the southeast of the study area has

the highest NDVI value. Except for the Kouhu (KH) Township

on the southwestern coast, the overall townships have positive

NDVI. It demonstrates obviously seasonal difference of NDVI is

mainly concentrated in the coastal area and that the plain areas

may be affected by changes in planted crops.

P in the dry season and wet season ranged from 26.3 to

43.6 mm/month with an average of 34.5 mm/month and from

163.2 to 337 mm/month with an average value of 211 mm/

month, respectively (Figure 7). In the dry season, 30–40 mm/

month accounted for more than 70% of the total value, while

the distribution is relatively even in the wet season. These

results indicate that P in the study area is exceptionally

distinct between dry and wet seasons. The spatial

distribution of P in the dry season shows that the P is the

FIGURE 11
Results of geographically weighted regression model during
the dry season (influencing factors: Dd, S, NDVI, and P).

TABLE 4 The coefficient values of influencing factors of the
geographically weighted regression model during the dry season.

Variable Maximum Minimum Mean

Dd 37.4 25 32.8

S 14.9 13.5 14.3

NDVI 140.2 38 91.6

P 5.4 4.4 4.9
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highest in the northeast of the study area and gradually

decreases toward the southwest; the spatial distribution in

the west season decreases from the southeast to the northwest

due to the topography and monsoon climate. Wetness Index

(WI) is the ratio of rainfall to evapotranspiration (Fu et al.,

2019), previous studies also suggested its direct effect on

groundwater (Asoka et al., 2021; Wu et al., 2021). Its

distribution is similar to that of P (Figure 8). The WI

ranged from 0 to 0.81 in the dry season with an average of

0.74, while it ranged from 0 to 2.31 with an average of 1.58 in

the wet season. The distributions of WI in the dry and wet

seasons are relatively concentrated with more than 80% in the

range of 0.7–0.8 and 1.3–1.8, respectively. The spatial

distribution of WI in the dry season shows that the values

are higher toward the east of Erlin (EI) Township, and it

gradually decreases from the north to south. The spatial

FIGURE 12
Spatial distribution of factor coefficients of the geographically weighted regression model during the dry season. (A) Dd (B) S (C) NDVI (D) P.
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distribution of WI in the wet season is higher in the east of the

research area, and it gradually decreases toward the west of the

study area. It suggests that the actual evapotranspiration just

has slight difference in the study area. The SM value in the dry

season is in the range of 0–24.6 mm with an average of

17.9 mm of which 15–20 mm accounts for 70% of total

data. The SM value in the wet season is in the range of

0–73 mm with an average of 68.9 mm of which more than

90% of the values are in the range of 65–75 mm. When the SM

is higher than the maximum soil water holding capacity, it will

infiltrate into groundwater, affecting the GWL (Asoka &

Mishra, 2021). Results show that high SM in the wet season

may exceed the maximum soil water holding capacity faster

and then infiltrate into the groundwater, thereby affecting the

GWL more effectively. In Figure 9, the spatial distribution of

SM in the dry season shows that it is higher in the northern

and eastern study area, and it gradually decreases toward the

south. The SM in the wet season shows that it is also higher in

the northern towns while it is lower in the southwestern coast.

4.4 Moran’s I index

This study uses global and local Moran’s I indices to

analyze the spatial characteristics of GWL in dry and wet

seasons in each township of the Choushui River alluvial fan.

The global Moran’s I indices for the dry and wet seasons are

0.813 and 0.811, respectively, indicating that the variable has

significant positive spatial correlations in both seasons. The

local Moran’s I indices in the dry and wet seasons show that

they have the same local spatial distribution. The high GWL

towns are adjacent to the other high GWL towns, and the low

GWL towns are adjacent to the other low GWL towns. The

townships of Tianzhong (TZ), Ershui (ES), Mingjian (MJ),

Zhushan (ZS), Linnei (LN), and Cihtong (CT) that are

situated at the top of the Choushui River alluvial fan show

“HH” clusters spatially, indicating that these townships that

have high GWL values are adjacent to other towns with similar

high GWL values. Townships spatially classified as “LL”

clusters have lower GWL values and are adjacent to the

townships with similar low GWL values. There is no

significant difference in the spatial distribution of GWL

between dry and wet seasons (Figure 10). It describes that

the GWLs spatially have great hydrological connectivity in the

Choushui River alluvial fan.

4.5 Geographically weighted regression
analysis

There are obvious differences in P, AET, and SM between dry

and wet seasons in this study area, and thus the natural factors

mainly affecting the GWL during dry and wet seasons are also

different. The effects of various factors on the GWL values in dry

and wet seasons are discussed below. AIC and R2 were used to

identify the most important combination of influencing factors

in wet and dry seasons. Results show that Dd, S, NDVI, and P

influence the GWL during the dry season, and Dd, S, NDVI, and

WI influence the GWL during the wet season. These results are

shown in Table 3.

FIGURE 13
Results of geographically weighted regression model during
the wet season (influencing factors: Dd, S, NDVI, and WI).

TABLE 5 The coefficient values of influencing factors of the
geographically weighted regressionmodel during the wet season.

Variable Maximum Minimum Mean

Dd 22.8 –6.9 6.3

S 31.5 13.8 25

NDVI 48.9 –123.7 –17

WI 100.2 21 51.4
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4.5.1 Analysis of the geographically weighted
regression model during the dry season

Results show that the local R2 of the selected combinedmodel in

the dry season ranges from 0.81 to 0.84, indicating that the

combination of selected factors has a good fit for the model. The

optimal model has the corrected R2 value of 0.86 and the AIC value

of 440. Among the standard deviations of the combinedmodel, only

the standard deviation of Mingjian (MJ) Township at the top of the

alluvial fan exceeds 2.5, and all the other areas are within the normal

standard deviation range. This shows that the estimates of coefficient

are reliable and that no serious multilinearity problem exists

(Figure 11A). In this regression model, the local R2 is an

important variable, and its spatial distribution gradually decreases

from the east of the study area, where it achieves the highest value at

the top of the alluvial fan, to the west of the study area, that is, the tail

of the alluvial fan (Figure 11B).

FIGURE 14
Spatial distribution of factor coefficients of the geographically weighted regression model during the wet season. (A) Dd (B) S (C) NDVI (D) WI.
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The selected factors indicate that all the townships in the study

area are significantly positively correlated with the GWL, as shown

in Table 4. In Figure 12, the spatial distributions of coefficient of the

factors show that the coefficient of Dd is the maximum in the

northeast of the study area, and it gradually decreases toward the

southwest. The coefficient of S gradually increases from the east (the

top of the alluvial fan) to the west (the tail of the alluvial fan), and the

value is the highest at the tail of the alluvial fan. The coefficient of

NDVI is the maximum in the northern study area and gradually

decreases toward the south. The coefficient of P gradually decreases

from the east (the top of the alluvial fan) to the west (the tail of the

alluvial fan). In overall directions of coefficient distribution, Dd tends

to be consistent with NDVI, while S tends to be consistent with

precipitation. It demonstrates that this relationship between Dd and

NDVI may reflect the main influence on the regional drainage

condition, and affecting the GWL the most in the northern region.

The inverse tendency between S and P shows that the slope and the

precipitation have a greater effect on the tail and the top of the

alluvial fan, respectively. It may suggest that the groundwater level in

a steeper region mainly controlled by the amount of precipitation in

our study area.

4.5.2 Analysis of the geographically weighted
regression model during the wet season

The GWR analysis in the wet season shows that the local R2

range of the selected combined model is 0.65–0.85, and the

optimal model has the corrected R2 value of 0.82 and the AIC

value of 458. Similar to the result in the dry season, only the

townships of Mingjian (MJ) and Ershui (ES) in the east (the top

of the alluvial fan) have standard deviations exceeding 2.5, and all

the other areas are within the normal standard deviation range

(Figure 13A). The spatial distribution of the local R2 value of the

combined model is the lowest in the middle of the alluvial fan,

and it increases toward the south and the north (Figure 13B). S

and WI have a significant positive correlation with the GWL in

the study area. Dd and NDVI have both significant positive and

negative correlation coefficient values, indicating that they are

inconsistent with the GWL in the townships (Table 5).

]In Figure 14, the coefficient values of Dd is the lowest in the

northwest and increases toward the southeast. The coefficient values of

S are the lowest in the townships of Shengang (SG), Xianxi (XX), and

Hemei (HM), and Changhua City (CH) in the northern study area,

and it increases toward the south and decreases again in the townships

of Kouhu (KH) and Dongshi (DI). The coefficient values of NDVI in

the townships of Dounan (DN), Dapi (DP), Dalin (DL), Minxiong

(MX), and Gukeng (GK) have the largest negative correlation with the

GWL, while the highest coefficient values ofNDVI are in the northeast

and southwest of the study area. The coefficient values ofWI gradually

decrease from the north to the south of the study area. Dd tends to be

consistent withWI, while S tends to be consistent with NDVI. These is

totally different from the results in the dry season. The inverse tendency

between Dd and WI shows that the effective precipitation and the

regional drainage condition has the most influence on the north and

the south of study area, respectively. In addition, the coefficient

tendency of Dd may be related to the negative correlation between

NDVI and groundwater level. The opposite radial tendency between

slope and NDVI may describe that land cover type and slope have

greater influence on the southeast of study area. This shows that the

groundwater response mechanism is more complex in the wet season,

and it may be related to crop growth in local areas.

5 Conclusion

A GWR model was established based on data of the

Choushui River alluvial fan from 1999 to 2019. We explored

the spatial correlation between natural factors and the GWL

during dry and wet seasons. We also analyze the trend on the

GWL time series using the Mann–Kendall trend test, using the

Moran’s I index to understand the spatial aggregation

characteristics of the GWL. According to the Mann–Kendall

test, the GWL of the Choushui River alluvial fan is significantly

decreasing at month, season, and dry- and wet-season scale. The

distribution of the trend in the GWL during dry and wet seasons

is consistent. The global Moran’s I indices of GWL show

significant positive spatial correlations in both dry and wet

seasons. Local Moran’s I indices also show that the high GWL

towns are adjacent to other high GWL towns, while the low GWL

towns are adjacent to other low GWL towns. The GWR model

analysis shows that the changes in GWL in the research area

during the dry season are affected by Dd, S, NDVI, and P, while

the changes in GWL in the wet season are affected by Dd, S,

NDVI, and WI. The tendencies of coefficient distribution have

the great difference in both seasons. In the dry seasons, the

relationship among natural factors and GWL are easily

understood, but the more complex groundwater response

mechanism exists in the wet seasons. This might be caused by

crop growth or other land use change in local areas. These results

could be provided as references for future regional water resource

utilization and management.
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