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The hybrid simulation method is developed for simulating wave propagation

only in a localized heterogeneousmedia with hybrid inputs obtained once for all

from a known reference model. Despite the fact that the hybrid simulation

method has a wide range of applications in computational seismology, the

associated error control of this method has received relatively little attention in

previous research works. We quantitatively discuss the error of the two-step

hybridmethod in acoustic wave cases and propose a spatial refinement scheme

to compute hybrid inputs based on the multi-elements spline interpolation,

which is preferable to traditional Lagrange interpolation since it uses more

polydirectional interpolated points. This method can also be used for local

refinement of wavefield in more general applications, such as saving smooth

wavefield in the full-waveform inversion framework. Furthermore, to save

memory requirements, hybrid inputs are proposed to be sparsely stored with

a high upsampling ratio during the global simulation, and the Fourier

interpolation method is introduced to recover them to their original time

series. To demonstrate the effect of the proposed methods, we perform

several 2D and 3D hybrid wave numerical simulations using the spectral

element method. We find that when the global and local meshing differs,

the proposed spatial interpolation method can appreciably reduce the error

of the hybrid waveforms caused by inaccurate hybrid inputs. We also point out

that the Fourier interpolation can efficiently recover the original waveform,

allowing hybrid inputs to be stored with time steps toward the Nyquist limit. Our

method is expected to become a standardmethod to reduce the error of hybrid

waveforms and save the memory requirements during hybrid simulations and

has potential implications for further improving the accuracy of the so-called

box tomography.
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1 Introduction

High-resolution seismic images of Earth’s structure play a

key role in improving our understanding of the dynamic

evolution mechanism and material cycling process of the

Earth’s interior (Replumaz et al., 2004; Zhao et al., 2012; Van

Der Meer et al., 2014). In recent years, with the development of

computer technology and numerical simulation method, full-

waveform inversion (FWI) (Tarantola, 1984; Virieux and Operto,

2009; Fichtner, 2010; Capdeville and Métivier, 2018; Tromp,

2020; Lyu et al., 2021) has emerged as a significant imaging

technique. In contrast to ray tomography, FWI uses more

information about the waveform (e.g., body and surface

waves) to capture the full physics of seismic wave propagation

through numerical simulation methods such as the finite-

difference method (FDM) (Kelly et al., 1976; Robertsson et al.,

1994) and spectral element method (SEM) (Seriani and Priolo,

1994; Komatitsch and Tromp, 1999; Komatitsch et al., 2000; Lyu

et al., 2020), and the Earth model is iteratively updated using the

adjoint technique (Tarantola, 1988; Tromp et al., 2005) until a

convergent fit between synthetic seismograms and observations

is achieved. In the past decades, there has been an increasing

number of adjoint tomography models at the regional (Tape

et al., 2009; Zhu et al., 2012; Chen et al., 2017) and global scales

(French and Romanowicz, 2015; Bozdağ et al., 2016; Lei et al.,

2020). However, producing detailed structures of interest in the

global tomography model or utilizing the information from

remote sources and stations in regional inversion requires too

many computing resources. Because it is necessary to recalculate

the synthetic waveforms, at each iteration, in the global domain,

including the sources and receivers, while the model is only

updated in a small region. This leads to significant computational

costs, especially when shorter periods are included. The so-called

“box tomography” (Masson and Romanowicz, 2017a) that relies

on the hybrid simulation method can effectively overcome this

problem because almost all the forward and backward numerical

simulations of wave propagation are confined to the smallest

computational domain. Clouzet et al. (2018) applied this method

to image the upper-mantle shear velocity and radial anisotropy

structures beneath the North American continent. In their study,

based on the 3D reference model SEMUCB (French and

Romanowicz, 2015), besides data from 155 events with

sources located within the study region, the data set includes

data (down to 40s) from 122 remote events with sources located

outside of the study region, which allows better azimuthal

coverage of the study region than the traditional regional

dataset with all the events inside the box. Similarly, Wang

et al. (2016) image the 3D velocity structures beneath the

western Pyrenees revealed by teleseismic P waves using the

SEM-DSM hybrid method (Monteiller et al., 2015) in a higher

frequency (down to 5s) for the 1D background model.

Hybrid simulation methods can be classified into real-time

methods (Capdeville et al., 2003) and two-step methods (Wen

and Helmberger, 1998; Robertsson and Chapman, 2000; Wen,

2002; Bielak et al., 2003; Zhao et al., 2008; Masson et al., 2014). In

this study, we only focus on the two-step method. The

computational domain of the hybrid method is often

subdivided into two parts in which wave propagation is

simulated separately (Figure 1). The main advantage of the

two-step method, also known as the domain reduction

method (Bielak et al., 2003; Yoshimura et al., 2003), is that

the computation can be limited to a subregion containing the

local structural perturbations, avoiding repeated expensive

simulations in the global model. First, wave propagation is

simulated in a global reference model, and the hybrid inputs

(including different physical quantities used to construct the

equivalent forces, see below for detailed benchmark of different

hybrid methods, and the physical quantities used in this study are

illustrated in Section 2.3) are synchronously computed and

stored versus time. Then, the equivalent forces are imposed

onto the hybrid interface of the local target volume to

perform the local simulation. The core of the two-step

method is the calculation of the hybrid inputs. This divides

into the physical, numerical, and combined three different

categories, the multiple point sources method, where the

surface integral(s) of the representation theorem are physically

discretized to express the hybrid inputs containing the physical

FIGURE 1
Schematic illustration of the computational domain of the
hybrid method. The global computational domain is subdivided
into two parts: the local domain Ωl, where the local simulation is
performed, and the external domain Ωe . The dashed line
represents their interface. The window function w used to
calculate equivalent forces is equal to one inside the local domain
Ωl and zero on the hybrid interface zΩ and in the external domain
Ωe.
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traction and/or displacement (Monteiller et al., 2013; Zhao et al.,

2016; Lin et al., 2019), and the direct discrete differentiation

methods, where the hybrid inputs are the displacement term,

which can be selected by discrete window function and the wave

equation (Bielak et al., 2003; Masson et al., 2014). A recent review

(Lyu et al., 2022) compared and analyzed the physical and

numerical categories and proposed a combined way to

calculate the combined hybrid inputs with the traction,

displacement, and acceleration terms.

In the research on the two-step hybrid method, the accurate

calculation of the equivalent forces is crucial. The accuracy of the

resultant waveform in the hybrid numerical simulation is affected

by the spatial and temporal dispersion errors, simulated duration,

and the error of the hybrid inputs. It should be noted that the

errors of the hybrid inputs are synchronously affected by the

spatial interpolation when calculating the hybrid inputs with

different meshing and are also affected by the temporal

interpolation when one sparsely saves the hybrid inputs but

recovers them in a much smaller time step. Despite the

widespread application of hybrid simulation methods in

computational seismology, studies on quantitatively

investigating and controlling these errors are relatively lacking.

As far as spatial interpolation is concerned, it is known that in

the realistic application, the first global simulation is performed

in a background reference model without complicated local

small-scale geological features, and the grid size of the first

global simulation is generally larger than that of the

subsequent local simulations. Therefore, during the first global

simulation, people usually use spatial interpolation methods to

obtain displacements (or potentials in the acoustic case) of some

coordinates determined by the local meshing for subsequent

hybrid simulation. Previous studies (Clouzet et al., 2018; Lyu

et al., 2022) adopted the Lagrange interpolation method, in which

the interpolation gird is only made up of the

Gauss–Lobatto–Legendre (GLL) points from one element

(Figure 2). This introduces spatial error and affects the results

of the local simulation, but no quantitative investigation has been

conducted.

In terms of temporal interpolation, according to the

Courant–Friedrichs–Lewy (CFL) stability condition, the time

step of the SEM is proportional to the ratio between the

shortest distance between two neighboring GLL points and

the maximum velocity. Usually, due to the existence of the

small-scale structures in the hybrid simulation, the time step

of the global simulation is much larger than that of the local

simulation and, thus, the time series of hybrid inputs

(displacements or potentials) would require upsampling to

perform the local simulation. Furthermore, to save memory,

the hybrid inputs are often sparsely stored in the global

simulation and then interpolated/recovered to a suitable time

interval constrained by the local small-scale structures during the

local simulation. Thus, temporal interpolation is also essential for

calculating the hybrid inputs. Monteiller et al. (2021) proposed

that the cubic B-spline interpolation is efficient for upsampling

the hybrid inputs because it only requires two additions and two

multiplications per sample point. However, this method would

fail to recover the original hybrid inputs at a very high

upsampling ratio (Zhang et al., 2017).

In this study, we focus on the error propagation of the two-

step hybrid method in acoustic wave case, while the hybrid inputs

are calculated using a slightly modified direct discrete

differentiation method of Masson et al. (2014). In the spatial

interpolation, the multi-elements spline spatial interpolation in

2D cases and globally spline spatial interpolation in 3D cases are

proposed to calculate the hybrid inputs during the global

simulation. In the temporal interpolation, the Fourier

temporal interpolation method is introduced to record and

recover the sparsely stored hybrid inputs during the global

and local simulations. The article is arranged as follows. First,

we present the theory of the two-step hybrid method and the

FIGURE 2
Illustration of interpolation grid used in the 2D hybrid
simulations. The coarse and fine grids bordered by the black lines
represent the quadrilateral SEM elements used for global and local
simulations, respectively. The diamond symbols and the
circle symbols represent their corresponding GLL points. The
green line is the hybrid interface, and the dark grey elements
represent the hybrid elements. The red solid circles are two
examples at which the wavefield values need to be known by using
the different interpolationmethods. The grid nodes required when
using the traditional Lagrange interpolation method are
represented by blue solid diamonds, whereas the grid nodes
required when using the suggested MSI method are represented
by cyan solid diamonds.
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proposed spatial- and temporal-refinement schemes in the

methodology section. Then, we verify our methods through

several 2-D and 3-D hybrid numerical simulations of the

acoustic wave using SEM in the numerical experiments section.

2 Methodology

In this section, we start with a brief description of the acoustic

wave equation and the fundamental concept of SEM. The

principle of the two-step hybrid method and the expression of

the equivalent forces of the direct discrete differentiation method

are then introduced. Whereafter, we introduce the Fourier

temporal interpolation method into the hybrid simulation to

recover the sparsely stored hybrid inputs. Finally, we propose a

different spatial interpolation method, the multi-elements spline

interpolation method, which is suitable for the case that the

meshing of the global and local simulations differs.

2.1 Acoustic wave equation

In this study, we only discuss the error propagation of the

hybrid numerical simulation of the acoustic wave equation. We

consider a velocity potential field q(x, t) in an arbitrary acoustic

domain Ω that is a solution of the acoustic wave equation

{ 1
κ
€q � ∇ · _u + f

_u � 1
ρ
∇q, (1)

where u(x, t) is the displacement vector, f(x, t) is the source

time function, ρ(x) is the density, and κ(x) is the bulk modulus.

In general, an acoustic medium can be fully described by density

ρ(x) and sound speed V(x), namely, κ(x) � ρ(x)V2(x).

2.2 Fundamental concept of SEM

In both regional and global seismology, SEM is one of the

most extensively used numerical methods to calculate

seismograms in realistic Earth models (Tape et al., 2009;

French and Romanowicz, 2014; Chen et al., 2015; He et al.,

2015; Chen et al., 2017; Lei et al., 2020). Compared with the

traditional numerical simulation methods such as FDM, which

directly solves the strong form of the wave equation, SEM is

implemented to solve the weak form of the wave equation. The

weak form of the wave equation can be obtained by multiplying

an arbitrary test function on both sides of the equation and by

integrating parts over the entire domain Ω. This results in the

implicit introduction of the free-surface boundary condition,

which is a useful feature for dealing with the circumstance when

there is surface topography in a realistic model. To calculate the

solution of the wave equation on the computer, the continuous

equation must be discretized in both time and space. As in a

classical finite element method (FEM), the model domain Ω is

subdivided into a lot of non-overlapping elements. In each

independent element, the unknown velocity potential qe(x, t)
can be approximated using the Lagrange approximation

qe(x, t) ≈ ∑N

i�1q
e
i (t)φi(x), (2)

where N is the polynomial degree (1D case as an example),

φi(x)is the basis function in the ith GLL point, and qei (t)is the
potential at the ith GLL point in the element. In the SEM, the

choice of basis function is Lagrange polynomials li(x), which
have an elegant orthogonality, such that li(xj) � δij, where δij is

the Kronecker symbol. The collocation points used in SEM are

the so-called GLL points (Komatitsch and Vilotte, 1998).

The numerical integration rule of SEM in each element is the

GLL quadrature, with the GLL points serving as integral points.

Let us take an example to demonstrate this integration rule. For

an arbitrary continuous function f(x) defined in the domain of

element with x ∈ [−1, 1]:

∫1

−1
f(x)dx ≈ ∑N+1

i�1 ωif(xi), (3)

with

ωi � ∫1

−1
l(N)
i (x)dx, (4)

where l(N)
i (x) is the Lagrange polynomial of degree N at the ith

GLL point.

The next step is to assemble the global solution after we have

specified the solution at an elemental level, and Equation (1) was

converted to an ordinary differential equation (ODE), which can

be expressed as

M · €Q + K · Q � f , (5)

where M is the global mass matrix, K is the global stiffness

matrix, f is the source vector, Q and €Q are the unknown global

velocity potential vector and its second-time derivative. It is of

note thatM is a diagonal matrix that is easy to invert and can be

stored as a vector in the program. The product K ·Q between

global stiffness matrix K and potential vector Q is calculated by

tensor product (Komatitsch and Vilotte, 1998). These terrific

features result in the explicit algorithm being extremely efficient,

and it can be utilized to deal with a realistic 3D Earth model.

2.3 Principle of the two-step hybrid
method

The key superiority of the two-step hybrid method is that

wave propagation simulation is implemented inside the local

region of interest rather than the global region that encompasses
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the sources and receivers. For the sake of clarity, we first specify

the decomposition of the computational domain. As shown in

Figure 1, the global computational domain Ωg is separated into

two parts: external domain Ωe and local domain Ωl bordered by

hybrid interface zΩ, such that Ωg � Ωe + Ωl. The location of

sources and receivers can be arbitrary, but the situation that

sources are located in the external domain Ωe, is more

meaningful as this method is used to simulate the propagation

of seismic waves generated by remote events (Bielak et al., 2003).

The global waveform tomography is in pursuit for a real 3-D

Earth model across the observable frequency band, the

computation cost is proportional to the minimum wavelength

to the fourth power, and is still computationally prohibitive

nowadays because of its large computational domain.

However, in the framework of the hybrid simulation, this

global simulation only needs to be run a few times if the

velocity structure in the external domain is assumed to be

unperturbed during the iterative box tomography. The first

step is to perform a forward simulation to solve and record

the global wavefield Q(t) in the global domain Ωg. In the second

steps, wave numerical propagation is confined to the local

domain Ωl and the recorded hybrid inputs are imposed on

hybrid interface zΩ as equivalent sources. If the local

structure is the same as the reference global structure, the

result of the two-step hybrid method is to regenerate a local

wavefield that is identical to the wavefield generated by the global

simulation. It is of note that if receivers are placed outside the

local domain Ωl, the seismic response is calculated using the

wavefield extrapolation method (Robertsson and Chapman,

2000).

The key process in the two-step hybrid method is the

algorithm for determining the hybrid inputs, namely,

equivalent forces described earlier, which are imposed into the

local model to perform the local simulation. We adopted the

conceptual framework proposed by Masson et al. (2014) to

construct the equivalent forces. This method was proposed by

introducing a spatial window function on a discrete wave

equation. When we obtained the origin wavefield Q(t) by

solving Equation (5) within the global domain during the first

simulation, the hybrid wavefield (the temporal wavefield in the

local simulation) QL(t) can be written as

QL(t) � W ·Q(t), (6)

whereW is a diagonal matrix of window functionw. The window

function w is equal to one inside the local domain Ωl and on the

hybrid interface zΩ, and zero outside, as shown in Figure 1. The

equivalent forces fLcan be explicitly expressed as (Masson et al.,

2014)

fL � W · f −W · (K ·Q) + K · (W ·Q), (7)
or

fL � W · f + (I −W) · (K · Q) − K · [(I −W) · Q]. (8)

We note that fL in Equation 7 and Equation 8 are the discrete

expressions of the equivalent forces, and they can be constructed

only by the selected physical quantity Q, namely, the hybrid

inputs in this study. In SEM, the computational domain consists

of many elements. Therefore, when getting down to the element

level, Equation (7) becomes

fL � ∑
e

We · f e +We · (Ke ·Qe) − Ke · (We ·Qe), (9)

and Equation (8) becomes

fL � ∑
e

We · f e + (I −We) · (Ke ·Qe) − Ke · [(I −We) ·Qe].

(10)
Here, Qe, Ke, fe, and We are the locally elemental potential

vector, stiffness matrix, source vector, and window function,

respectively. The local window function We can be written as

We � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
w1

e . . . 0

..

.
1 ..

.

0 / wNφ
e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (11)

where Nφ is the number of the GLL points in each element. As

mentioned earlier, the value of wi
e is equal to one inside the local

domain and on the hybrid interface, and zero outside. In general,

the source term We · fe is zero as the sources are usually placed

outside the local domain in remote events, in which its window

function We is zero. In addition, for elements with a constant

window function We � αI, the last two terms in Equations (9),

(10) are canceled out of each other. Thus, only the non-constant

window functionWe, named by the “hybrid elements” crossed by

the hybrid interface zΩ, has contributed to the equivalent forces

fL. Therefore, implementing the hybrid simulation using SEM

does not need to record origin wavefield at all GLL points in the

complete domain during the global simulation. According to the

inner scheme in Equation (9), we only need the values of the

internal forces, Ke · Qe and Ke · (We ·Qe), at the part of the GLL
points of hybrid elements inside the local domain. In contrast, if

we use the outer scheme in Equation (10), the GLL points of

hybrid elements outside the local domain are required (Masson

et al., 2014).

2.4 Fourier interpolation in time domain

In order to save the memory requirements, the hybrid inputs

obtained during the global simulation are usually stored on disk

at a relatively large time interval because the stable time steps

used in numerical simulation generally are much smaller than the

Nyquist sampling limit. As the time step of the local simulation,

in the best case, is completely independent of the global time

step. In the local simulation, the hybrid inputs are then

interpolated/recovered to a suitable time step for a local target

structure. However, the traditional spline interpolation method
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(Monteiller et al., 2021) would fail at high upsampling ratios, as

shown by Zhang et al. (2017). In this section, we introduce a new

scheme for sampling and saving the hybrid inputs in the time

domain using the Fourier interpolation method (Schafer and

Rabiner, 1973).

For a discrete time series x[n], n � 0, 1,/, N − 1 its Fourier

transform is defined as (Sacchi et al., 1998)

X[k] � ∑N−1

n�0
x[n]e−i2πnk/N, k � 0, 1,/, N − 1, (12)

where i � ���−1√
, N is the total length of time series. The inverse

Fourier transform is defined as

x[n] � 1
N

∑N−1

k�0
X[k]ei2πnk/N, n � 0, 1,/, N − 1. (13)

Assuming that the time step of the simulation is Δt, we store
the origin wavefield q(t) with time step MΔt during the global

simulation, where M is an integer which we name the

upsampling ratio. We record this rough time series as x[n]
that satisfies

x[n] � q(n ·MΔt), n � 0, 1,/N − 1. (14)

A new time series y[n] is obtained with time step Δt, having a
total length M ·N that satisfies

y[n] � q(n · Δt), n � 0, 1,/,MN − 1. (15)

For the convenience of subsequent discussion, here, we

introduce and define the meaning of a special superscript n+,
thus,

n+ � n (n even), n+ � n + 1 (n odd). (16)

Since the sequence x[n] only supplies values of the required
sequence y[n] at the interval of MΔt, the remaining samples

must be filled in by interpolation. From the point of view of

digital signal processing, there is a clear relationship between the

amplitude spectrum of these two sequences (Fraser, 1989). The

first half of the amplitude spectrum of y[n] can be expressed by

the amplitude spectrum of sampling series x[n] as

Y[k] �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

X[k], k � 0, 1,/,
N+

2
− 1

0, k � N+

2
,
N+

2
+ 1,/,

MN+

2
− 1,

(17)

and the other half can be easily obtained from the first half

because the amplitude spectrum of a signal is symmetrical at the

Nyquist frequency. Once we have the amplitude spectrum Y[k],
we can easily obtain its time series y[n] using inverse Fourier

transform in Equation (13). We can now see that inserting zeros

in the frequency domain at the Nyquist frequency is equivalent to

decreasing the time step in the time domain, which is the key idea

of the Fourier interpolation.

The requirement for the Fourier interpolation is that the

waveform generated by numerical simulation is band-limited,

which has no abrupt jump or discontinuity, and the rough

sampling series x[n] satisfies the sampling theory (Oppenheim

et al., 1999). This means that the maximum non-zero frequency

component of band-limited wavefield would below the Nyquist

limit to avoid the aliased spectral leakage; in other words, the

amplitude spectrum must equal to zero around the Nyquist

frequency. According to Zhang et al. (2017), this requirement

can be met by applying a smooth tapering window. Thus, the

rough sampling series x[n] will be multiplied by a smooth

window function (eg., Hanning window) to ensure that the

wavefield is periodic, which will improve the accuracy of the

Fourier interpolation even further. It should also be noted that

the hybrid inputs used in this study is the time series of potential,

which is frequency-banded, so the tapering process is only

needed at the ending part of the stored potential series.

In practice, the workflow of the Fourier interpolation method

for recovering hybrid inputs in the time domain consists of the

following four main steps: (a) Applying a smooth window

tapering window function (Hanning window used in this

study) to the time series of the hybrid inputs; (b) performing

a forward Fourier transform; (c) inserting (M-1)·N zeros at the

Nyquist frequency; and (d) performing an inverse Fourier

transform. Thus, the main complexity of the algorithm is the

Fourier transform. In this study, we use the mature MATLAB

built-in function fft/ifft, which is based on the fast Fourier

transform algorithm and is compatible with double

precision data.

2.5 Multi-elements spline interpolation
method

In the process of box tomography, the global simulation is

implemented in a 3D reference model with long wavelength

(large-scale) structures. The grid size is only decided by the long

wavelength. In subsequent local simulations, the model

alterations at each iteration are confined within the local

domain with the small-scale structures. To improve imaging

resolution in the local domain, it is advisable to reduce the grid

size in the local domain during the local simulations. In general,

two different solvers are used for the global and local simulations,

and their corresponding spatial meshing is usually inconsistent.

A recent study by Clouzet et al. (2018) showed that the Lagrange

interpolation method can be used to determine the hybrid inputs

at the GLL nodes of a local meshing different from the global

meshing. However, this method introduces spatial-interpolation

error into the hybrid inputs used to regenerate the hybrid

wavefield. In this subsection, we propose an improved spatial

interpolation method that can effectively suppress this spatial-

interpolation error.
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Considering the case where the meshing of the global and

local simulations differs, as pictured in Figure 2. According to

Equation (10), to obtain the equivalent forces to perform the

local simulation, we need to know the wavefield values Q at all

the GLL nodes in the hybrid elements. However, after

finishing the first global simulation, we only know the

wavefield values Q at coarse GLL nodes (the diamond

symbol). Thus, we need to interpolate the wavefield from

the coarse grid to the fine grid.

In SEM, it is natural to use the Lagrange interpolation since

the interpolation weights at the GLL points of each global

element are already known during the first global simulation.

For example, as pictured in Figure 2, if we wish to interpolate

the wavefield at the red point in the bottom right corner of the

local domain, we need to find the values of the wavefield and

weights at the GLL points within its corresponding global

element (the blue solid diamonds), similar to computing the

displacement for the station with any location. A problem with

the Lagrange interpolation method is that only several GLL

points within the single global element are used as interpolation

points. This will affect the accuracy of the hybrid inputs,

especially for the lower polynomial degree SEM, and these

inaccurate hybrid inputs will lead to the hybrid waveform

with large errors after accumulation in the local simulation

because we need to repeatedly impose the hybrid inputs in each

global forward simulation during the iterative box tomography,

and finally, this error will be transferred to the inverted velocity

structures.

We find that using more elements as the interpolated grid for

calculating hybrid inputs can efficiently reduce this spatial error.

For example, as shown in Figure 2, for a red point in the top left

corner to be solved, we construct an interpolation grid that

consists of GLL points from its corresponding global element

and the neighboring elements (the cyan solid diamonds), and the

spline interpolation method is used to calculate the wavefield

values.

The cubic Bi-cubic spline interpolation is useful to solve a

surface fitting problem for 2D data, which is consist of third-

order polynomial pieces in grid squares. The intuitive explicit

form of a third-order polynomial function can be written as

(Hayes and Halliday, 1974)

f(x, y) � ∑3
i�0
∑3
j�0
aijx

iyj, (18)

with 16 unknown coefficients aij, i, j � 0, 1, 2, 3. To obtain the

general representation of the spline function in the whole range

of data points, we need to construct a set of basis functionsMi(x)
in x direction with respect to the knots λ1, λ2, ..., λh, and a set of

basis functions Nj(y) in y direction with respect to the knots

μ1, μ2, ..., μk. These basis functions are non-zero only when

λi <x< λi+1 and μj <y< μj+1. Then, the general spline

function is represented as

s(x, y) � ∑h
i�1
∑k
j�1
βijMi(x)Nj(y), (19)

where βij is the unknown coefficients determined by wavefield

values qr(xr, yr), r � 1, 2, ..., n, at all GLL points in the

constructed interpolation grid. In the 2D case, the

interpolation grid of the new method uses nine elements, one

of which contains the target point, and the others are

surrounding elements, and the number of GLL points is

determined by the orders of SEM. The basis function can be

calculated using the Cox de Boor recursion formula (Cox, 1972)

M1i(x) � { 1/(λi − λi−1), if λi−1 ≤ x< λi
0, otherwise,

(20)

Mpi(x) �
(x − λi−p)Mp−1,i−1(x) + (λi − x)Mp−1,i(x)

λi − λi−p
, (21)

whereMpiis the B-spline basis function of degree (n − 1), so that
M4i(x) is the basis functionMi(x) in cubic spline interpolation.

Then, substituting the known wavefield values q(xr, yr) into

Equation (19), the coefficients βij can be calculated by solving the

linear equations

∑h
i�1
∑k
j�1
βijMi(xr)Nj(yr) � qr, r � 1, 2, ..., n. (22)

This can be written in the linear matrix system as

Aβ � q (23)
where A is a bandwidth matrix with the dimension of (n, hk).
Because n is substantially bigger than hk, the linear system in

Equation (23) is over-determined; thus, this is equivalent to

finding the least square solution to the over-determined system

ATAβ � ATq. (24)
where ATA has a symmetric and banded structure that can be

efficiently factorized and stored. Once the spline coefficients are

calculated, the wavefield values of local GLL points can be easily

determined using Equation (19). It is of note that a similar

method has been used in time direction illustrated in the

appendix in Sevan 2022 (under review).

Our new method has the advantage of having more

polydirectional interpolation points in the interpolation grid,

which allows the wavefield values at local GLL points to be better

constrained in each direction, resulting in more accurate hybrid

inputs for local simulations. To distinguish it from the traditional

Lagrange interpolation method, we refer to this new method as

the multi-elements spline interpolation (MSI) method.

In practice, if we solve the spline coefficients point by point

over the hybrid elements, the computational cost is exceedingly

large because we must repeatedly reconstruct the interpolation

grid and compute the spline coefficients for each point and time

step, especially in the 3D case. Another alternative method used
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in this study is to solve all of the points in the hybrid elements at

once. The interpolation grid of this method consists of the total

elements in the local domain and an additional layer of elements

that encompass the local domain. This interpolation grid can be

used to compute all the GLL points associated with the hybrid

inputs, and, thus, the spline coefficients only need to be

computed once in the global simulation. In this study, the

spline coefficients are computed using the MATLAB built-in

function griddedInterpolant, which can be used for N-D gridded

data sets and has double precision.

3 Numerical experiments

To verify the accuracy of the proposed interpolation methods

in spatial and time domains on the saving and recovery of the

hybrid inputs, we conduct a series of hybrid numerical

simulations using SEM in both 2D homogeneous and

heterogeneous models, as well as 3D PREM model. In all

numerical experiments, both the initial velocity potential q

and its first-time derivative _q are zero. It is of note that the

local model perturbations are set to zero in this study to focus on

the accuracy of the hybrid inputs. This means that if the hybrid

method is theoretically exact, the results of the global and local

simulations are equal. If they are different, their difference is the

error. Following the error measurement method described by

Lyu et al. (2020), the hybrid method error E is computed as

E2 � ∫t max

0
(qL(t) − qG(t))2dt
∫tmax

0
(qG(t))2dt (25)

where qL(t) and qG(t) are the velocity potential calculated in the

local and global simulations, respectively. In a hybrid numerical

simulation, we define the residual waveform as the waveform

difference between the global simulation and its corresponding

local simulation. It is of note that we use the waveform obtained

from the global simulation as the reference (not the pure accurate

numerical waveform in Lyu et al. (2020)) because the target of

hybrid simulation is to get the hybrid waveforms to be as similar

to the global simulation as possible.

In the temporal interpolation experiment, we keep the same

meshing and time step in the global and local simulations, while

the hybrid inputs are sparsely stored in disk and then recovered

to the same time step as the local simulation using the temporal

interpolation method. The temporal interpolation experiment is

mainly carried out in two steps. First, we calculate and store the

hybrid inputs with the same time step as the local simulation and

take the result of this hybrid simulation as a reference. In the

second step, we calculate and store the hybrid inputs with a large

time interval during the global simulation. Then, we use the

different temporal interpolation methods (spline and Fourier

interpolation methods) to recover them during the local

simulation and compare the results to the reference result. As

we use the same meshing and time step in the global and local

simulations, the temporal and spatial dispersion errors of the

hybrid simulation will cancel out (see a detailed demonstration in

Section 3.1.1). There are no additional spatial errors because the

hybrid inputs can be directly obtained without the need for

spatial interpolation. Therefore, the errors of the hybrid

simulation are only caused by inaccurate hybrid inputs due to

temporal interpolation.

In the spatial interpolation experiment, we keep the same

time step in both the hybrid simulation and stored hybrid inputs

to eliminate temporal error and dispersion. We use different

meshing in the global and local simulations, and the hybrid

inputs in the local GLL points are calculated using the traditional

Lagrange interpolation and proposed MSI method, respectively.

Therefore, there are two sources of errors: different spatial

dispersions in the global and local simulations and inaccurate

hybrid inputs calculated using spatial interpolation.

3.1 2D hybrid numerical simulations in the
homogeneous model

In the 2D homogeneous model, we set a constant P wave

velocity Vp � 3750m/s and density ρ � 2000 kg/m3. The size of

the global model is 100 × 50 km and the size of the local model is

20 × 10 km, which is located at the center of the global model.

The source time function is a Ricker wavelet with a dominant

frequency of 2 Hz (maximum frequency is about 6 Hz) and

located at the surface center. The receiver is located at the center

of the model and it is overlapped with one GLL point so that there

is no extra error attributed to wavefield interpolation.

3.1.1 Accuracy of the two-step hybrid method
To validate the accuracy of the two-step hybrid method of

Masson et al. (2014) in the presence of spatial- and temporal-

dispersion errors, which are inherent characteristics generated by

numerical approximation (Igel, 2017), we perform three hybrid

numerical simulations with different spatial grids and time steps.

We keep the same meshing between the global and the local

domains, which means that the GLL points of the local domain

are exactly overlapped with the global ones.

First, we perform a global simulation with meshing

160Δx × 80Δz, where Δx � Δz � 625m is the length of the

element in x and z orthogonal directions, with nine GLL

points per direction (the number of points per minimum

wavelength “G” value is about 8), and time step Δt �
0.00125 s (Courant number is equal to 0.15); this produces

relatively little spatial and temporal dispersion errors and we

take it as the analytical solution of the model. Then we perform

global and local simulations that only changes the meshing to

60Δx × 30Δz, where Δx � Δz ≈ 1667m, and other parameters

remain invariable. Figure 3A shows the waveforms of the global

simulation and associated local simulation and their residual
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waveform, which is the difference between these two simulations.

In addition, compared with the analytical solution, this

simulation has certain spatial dispersion error due to its larger

grid (the orange dash line). In the next hybrid simulation, we

only change the time step to Δt � 0.005s (Courant number is

equal to 0.6), both in the global and local simulations, while other

parameters are the same as the ones in the analytical solution.

Therefore, the error between this simulation and the analytical

solution is produced by temporal dispersion, as shown in

Figure 3B.

We can see that although the spatial and temporal dispersion

existed in the numerical simulation, the residual waveforms of

the hybrid simulation are constantly zeros even if they are

enlarged by the factor of 1010 times. This means that if the

meshing of the global and local simulations is the same, the

hybrid waveform ofMasson et al. (2014) is always the same as the

global simulation, however with the same spatial- and temporal-

dispersion errors.

3.1.2 Validation and comparison of the Fourier
interpolation method with a traditional method

We verified the accuracy of the Fourier interpolation in the

time domain and compared it with the traditional spline

interpolation to illustrate the improvement that can be

achieved. To avoid the effect of the spatial errors caused by

different meshing, we set the global and local domains with the

same grid size of Δx � Δz � 625m with five GLL points per

direction. Thus, there are 160 × 80 elements in the global domain

and 32 × 16 elements in the local domain. The time step is Δt �
0.001 s both in the global and local simulations, and the total

duration is 12000Δt.

First, we store the hybrid inputs with a time interval of

0.001 s, which is equal to the time stepΔt of the global simulation.

Then, we can directly implement the local simulation without

any interpolation for the hybrid inputs. We take the results of this

simulation as a reference, and then we increase the stored interval

to 50Δt. Before implementing the local simulation, the hybrid

inputs are recovered to the original time step Δt using the spline
and the Fourier interpolation methods, respectively.

Figure 4 shows the resultant waveforms of different

interpolation methods at upsampling ratio M � 50 and the

errors relative to the benchmark (reference waveform). It is of

note that the error of the Fourier interpolation is enlarged 106

times, while the error of the spline interpolation is enlarged 103

times. Obviously, the traditional spline interpolation method is

worse than the Fourier interpolation according to the

benchmark, especially on the waveform peaks. The error for

Fourier interpolation is about three orders of magnitude smaller

than the traditional spline interpolation, and it is distributed

evenly across the entire simulation time. Figure 5 shows their

error wavefields in the local model at the time of t � 8 s. We find

that the error distribution of the spline interpolation method is

consistent with the wave propagation, whereas the error of the

Fourier interpolation method is distributed evenly on the entire

domain.

We based on the error ratio, the ratio of maximum error of

the spline interpolation method to the Fourier interpolation

method, as a proxy of the improvement of the Fourier

interpolation method. We also test the error of these two

interpolation methods at different upsampling ratio of

M � 10, 20,/, 100, as shown in Figure 6. We can see that the

error ratio reaches the peak at M � 60 and the errors of the

Fourier interpolation have improved by about four orders of

magnitude over the spline interpolation. However, the total

errors of the spline interpolation method increase abruptly

and become unstable at M � 60. When the upsampling ratio

exceeds 60, the total errors of the Fourier interpolation method

increase abruptly and reach the same magnitude as the Lagrange

FIGURE 3
Waveforms comparison between the global and local simulations and the errors with the existence of the spatial and temporal dispersions in the
2D homogeneous model. The solid black and dashed blue lines represent the waveforms of the global and local simulations, respectively. The
dashed red line represents the residual waveform enlarged 1010 times between the black and blue ones. The dashed orange line represents the error
between the hybrid simulation and the analytical solution. (A) Waveforms with the existence of the spatial dispersion. (B) Waveforms with the
existence of the temporal dispersion.
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interpolation method when the upsampling ratio exceeds the

Nyquist limit. In addition, as both the errors of the Fourier and

spline interpolation methods have gradually increased with

upsampling ratio, it is advisable to select a suitable

upsampling ratio based on resolution requirement.

3.1.3 Validation and comparison of the MSI
method with a traditional method

For the case that the meshing of the global simulation differs

from the local simulation, we run two hybrid numerical

simulations in which the hybrid inputs are calculated by using

the traditional Lagrange interpolation and proposed MSI

method, respectively. For the MSI method, to test the

influence of the number of interpolation grid points on the

error, we consider two end-member models: (a) the

interpolation grid consists of all of the elements in the local

domain as well as an additional layer of elements that encompass

the local domain; (b) the interpolation grid consists of all of the

elements in the global domain. Themeshing of the global domain

is 160Δx × 80Δz, where Δx � Δz � 625m, with five GLL points

per direction, and the meshing of the local domain is

320Δx × 160Δz, where Δx � Δz � 62.5m, with three GLL

points per direction (G value is about 20 (160×2+1)/16). The

time step of these two hybrid simulations by the Lagrange

interpolation and proposed MSI method is the same

Δt � 0.0025 s. It is worth noting that the first global waveform

of these two hybrid simulations is identical.

Figure 7 shows the resultant waveforms of these two hybrid

simulations and the corresponding residual waveforms. We can

see that the resultant waveforms of the local simulation are not

fully correct when the meshing of the global and local domains

differs. According to Equation (25), the total error of the

FIGURE 4
Waveforms and errors of the hybrid simulations with different temporal interpolation methods in the 2D homogeneous model. The solid black
line represents the waveform of the benchmark that the stored interval of the hybrid inputs equates to the time step Δt of the simulations. Then the
stored interval is enlarged to 50Δt. Before implementing the local simulation, we interpolate the stored interval to Δt � 0.001 s by using different
temporal interpolation methods. The dashed blue line represents the resultant waveform, and the dashed red line represents the error
waveform between the blue and the black ones. (A) Results of the spline interpolation method. (B) Results of the Fourier interpolation method.

FIGURE 5
Error wavefields of the hybrid simulation with different temporal interpolation methods at the time t � 8 s in the 2D homogeneous model. (A)
Spline interpolation method. (B) Fourier interpolation method.
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traditional Lagrange interpolation method is E=5.3%, while the

total error of the MSI method is E=0.9%. This error is caused by

spatial dispersion and inaccurate hybrid inputs. Though spatial

dispersion is inevitable due to different meshing, the proposed

MSI method can effectively reduce the spatial error by improving

the calculation accuracy of hybrid inputs. Furthermore, the

nearly identical errors of the two interpolation grids for the

MSI method imply that the accuracy of the hybrid inputs is

mainly constrained by its neighboring elements. Thus, it is not

necessary to use more elements to improve the accuracy of the

MSI method, which would increase the computational cost.

Figure 8A shows the resultant wavefield of the global

simulation at t � 8 s, while Figures 8B and C show the

wavefields of the local simulations in which the hybrid inputs

FIGURE 6
Bar chart showing the error of the spline and Fourier interpolation methods and their error ratio at different upsampling ratios of
M � 10, 20,/, 100. The blue bar represents the error ratio, which is the ratio of maximum relative error of the spline interpolation method to the
Fourier interpolation method. The orange and green bars represent the total relative error of the spline and the Fourier interpolation methods,
respectively.

FIGURE 7
Waveform comparison of the two different spatial interpolation methods in the 2D homogenous model. The solid black and dashed blue lines
represent the waveforms of the global and local simulations, respectively. The dashed red line represents their enlarged residual waveform. (A)
Results of the Lagrange interpolationmethod. (B) Results of themulti-elements spline interpolation (MSI) method. Residual1 presents the error of the
MSImethod that the interpolation grid consists of all of the elements in the local domain and an additional layer of elements that encompass the
local domain. Residual2 presents the error of the MSI method that the interpolation grid consists of all of the elements in the global domain.
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are computed using Lagrange interpolation and MSI,

respectively. These two wavefields of the local simulations are

nearly identical and correspond to the local parts of the global

simulation (wavefield within the green box in Figure 8A).

3.1.4 The combination of the spatial- and
temporal-interpolation methods

We applied the two temporal interpolation methods when

the global and local meshing differs, which also necessitates

the use of spatial interpolation methods to calculate the hybrid

inputs. To test the overlapped effect of the spatial errors on

temporal interpolation methods, we set two models with

different global meshing. In the first model, the meshing of

the global domain is 160Δx × 80Δz, where Δx � Δz � 625m,

with eight GLL points per direction, and the meshing of the

local domain is 320Δx × 160Δz, where Δx � Δz � 62.5m,

with three GLL points per direction. In the second model,

we only change the number of GLL points in the global

domain to five GLL points per direction, resulting in larger

spatial errors than the first model, while other model

parameters remain unchanged. The time step is Δt �
0.0025 s both in the global and local simulations.

In each model, the workflow is the same. In the first global

simulation, we calculated the hybrid inputs using spatial

Lagrange and MSI methods, respectively, and sparsely

stored them with the time interval of 20Δt. Then these two

stored hybrid inputs are recovered to their original time step

Δt using the temporal spline and the Fourier interpolation

methods, respectively. We now have four hybrid inputs with

different spatial- and temporal-interpolation combinations,

and we can run four local simulations with these hybrid

inputs.

Figures 9A and B show the error waveforms of these local

simulations relative to the first global simulation in the first

model (relatively small spatial errors). The errors of

traditional spline interpolation in the time domain

(Figure 9A) are relatively large, and there is no discernible

difference between the spatial Lagrange and MSI methods,

implying that the temporal errors are dominant. In contrast,

using the Fourier interpolation method in the time domain

produces relatively small errors (Figure 9B), and the

proposed spatial MSI method can further reduce the

errors. However, in the second model, for the case that

the spatial errors are too large, the results of different

FIGURE 8
Wavefields of the global and local simulations in the 2D homogeneous model with different meshing. (A)Wavefield of the global simulation at
t � 8 s. The red star and blue triangle indicate the positions of the source and receiver, respectively. The green box represents the boundary of the
local domain. The background grid corresponds to the elements of SEM. (B) Wavefield of the local simulation calculated using the Lagrange
interpolation method at t � 8 s. (C) Wavefield of the local simulation calculated using the MSI method at t � 8 s.
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temporal interpolation methods are almost the same

(Figures 9C and D); this means that the spatial errors

are dominant, and the errors induced by time

interpolation can be negligible. Thus, because the

temporal interpolation method cannot reduce spatial

errors, we must ensure that the stored hybrid inputs

calculated using spatial interpolation methods are as

accurate as possible.

FIGURE 9
Error waveforms of hybrid simulations with different spatial- and temporal-interpolation methods. (A and B) The results in the model with eight
GLL points per direction. (C and D) The results in the model with five GLL points per direction.

FIGURE 10
Marmousi velocitymodel. The red star indicates the source, the blue triangle indicates the receiver, and the green box indicates the boundary of
the local model.
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3.2 Validation of the MSI method in
heterogeneous model

To test the stability of the proposed spatial interpolation

method, the MSI method, in a complex medium, we keep a

constant density ρ � 2000 kg/m3 and only change the velocity

distribution to represent the heterogeneous model. We use the

2D Marmousi velocity model as our heterogeneous model, as

shown in Figure 10. The target of the box tomography is to detect

small-scale (10–100 km) geological structures buried in the deep

Earth with seismic data from remote events and stations, such as

probing the ultra-low velocity zones (ULVZ) above the core

mantle boundary. To approach the case of large-scale detection,

we stretch the Marmousi model to a size of 100×50 km and

proportionally increase the wavelength, and the model is

interpolated to use the uniform grid. The settings of the

source and receiver are the same as the homogeneous model

mentioned previously. The meshing of the global domain is

400Δx × 200Δz, where Δx � Δz � 250m, with five GLL

points per direction; and the meshing of local domain is

400Δx × 200Δz, where Δx � Δz � 50m, with three points per

direction. It is of note that the grid size in the heterogeneous

model is smaller than in the homogeneous model because it is

proportional to the slowest velocity, which is 1500m/s in our

Marmousi model. The time step of the global and local

simulations is Δt � 0.0025 s.

The workflow for this experiment is the same as it was for the

previous 2D homogeneous model. First, we perform a global

simulation and calculate the hybrid inputs for the local

simulations by using the Lagrange interpolation and the

proposed MSI methods, respectively. Next, these two hybrid

inputs are imposed on the hybrid interface to serve as the

sources of the local simulation.

Figures 11A shows the wavefield of the global simulation at

t � 13s, and Figures 11B and C show the associated wavefields of

these two local simulations. Figure 12 displays the waveform

comparison between the global and the local simulations in 2D

Marmousi model. The total error of the Lagrange interpolation is

E=0.09%, while the total error of theMSImethod is E=0.02%. It is

of note that the error waveforms are enlarged 103 times, implying

that the overall error is lower than that of the 2D homogeneous

model (Figure 7). This is because the accuracy of the numerical

simulations depends on the amount of the grids per wavelength.

The results of this experiment show that the proposed

MSI method also has a salient effect in the heterogeneous

medium.

FIGURE 11
Wavefields of the global and local simulations in the 2D Marmousi model with different meshing at t � 13 s. (A) Wavefield of the global
simulation. (B)Wavefield of the local simulation calculated using the Lagrange interpolationmethod. (C)Wavefield of the local simulation calculated
using the MSI method.
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3.3 3D hybrid numerical simulations in the
PREM model

To verify the feasibility of the proposedmethods, we consider a

realistic 3D Earth model with the size of 200×200×100 km. The P

wave velocity and density are stratified in z direction based on the

PREMmodel section above 100 km (Figures 13A, B). In the PREM

model, we removed the water layer and extended the crust layer to

the surface. The local model, with the size of 50×50×40 km, is

placed at the center of the global model. We set the dominant

frequency of the Ricker wavelet to 0.5 Hz, which is close to the

realistic frequency range in the lithosphere imaging of remote P

waves. The source is in the center of the model surface, and the

receiver is in the center of the entire model. To reduce the spatial

dispersion in both the global and local simulations, the mesh is

constructed according to the wave velocity of 3750 km/s, which is

denser than the mesh according to the minimum wave velocity of

5,800 km/s in our PREM model.

FIGURE 12
Waveform comparison of the two different spatial interpolation methods in the 2D Marmousi model. The solid black and dashed blue lines
represent the waveforms of the global and local simulations, respectively. The dashed red line represents their enlarged residual waveform. (A)
Results of the Lagrange interpolation method. (B) Results of the MSI method.

FIGURE 13
Waveforms and errors of the hybrid simulations with different temporal interpolation methods in the3D PREM model. (A) Profile of P wave
velocity in the PREM model section above 100 km. (B) Profile of density in the PREM model section above 100 km. (C) Results of the spline
interpolationmethod. The solid black line represents the waveform of the benchmark. The dashed blue line represents the resultant waveform of the
temporal interpolation, and the dashed red line represents the error waveform between the blue and the black ones. (D) Results of the Fourier
interpolation method.
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3.3.1 Validation and comparison of the Fourier
interpolation method with a traditional method

Similar to the case in the 2D homogeneous model mentioned

previously, we design an experiment with different temporal

interpolation methods. We set the same grid size of Δx � Δy �
Δz � 2500m with five GLL points per direction in the global and

local domains; thus, the global domain has 80 × 80 × 40 elements

and the local domain has 20 × 20 × 16 elements. The time step of

the global and local simulations is Δt � 0.005 s and the total

duration is 4000Δt. We take the simulation that the stored time

interval of the hybrid inputs equates to the time step Δt of the

simulations as the benchmark. Then, the stored time interval is

enlarged to 40Δt and recovered to original time intervalΔt by using
traditional spline interpolation and proposed Fourier interpolation

methods, respectively.

Figures 13C and D show the resultant waveforms of these two

methods. It is of note that the error waveform of the spline

interpolation is enlarged by 102 times, while the error waveform of

the Fourier interpolation is enlarged by 104 times; thus, the error of the

Fourier interpolation is reduced by about two orders of magnitude.

This means that our method also works well in a 3D realistic model.

3.3.2 Validation and comparison of MSI with a
traditional method

We adopt different meshing between the global and local

domains to test the accuracy of the proposed spatial interpolation

method in the 3D realistic model. The meshing of the global

domain is 80Δx × 80Δy × 40Δz, where

Δx � Δy � Δz � 2500m, with five GLL points per direction,

and the meshing of the local domain is

40Δx × 40Δy × 32Δz, where Δx � Δy � Δz � 1250m, with

five GLL points per direction. The time step of simulations is

Δt � 0.01 s. We perform two hybrid simulations with the hybrid

inputs are computed by using the traditional Lagrange

interpolation and MSI methods, respectively.

Figure 14 displays the results of the traditional Lagrange

interpolation and the proposed MSI methods. The total error

of the Lagrange interpolation is E=0.18%, while the total

error of the MSI method is E=0.03%. Because we use denser

FIGURE 14
Waveform comparison of the two different spatial interpolationmethods in the 3D PREMmodel. The solid black and dashed blue lines represent
the waveforms of the global and local simulations, respectively. The dashed red line represents their enlarged residual waveform. (A) Results of the
Lagrange interpolation method. (B) Results of the MSI method.

FIGURE 15
Wavefields of the hybrid simulations in the 3D PREMmodel at
the time t � 12 s. (A) 3D global wavefield shown by three
orthogonal slices: x � 0, y � 0, z � −50. The green box represents
the local domain. (B) 3D local wavefield shown by three
orthogonal slices: x � 0, y � 0, z � −50.
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grid in the 3D model, the spatial dispersion in the 3D model

is relatively small compared to the 2D cases. However, there

are still large errors in the hybrid simulation, indicating that

this error is primarily due to inaccurate hybrid inputs caused

by spatial interpolation. The great improvement of waveform

agreement validates the effectiveness of the MSI method in

the 3D realistic model. Figures 15A and B show the

wavefields of the global and local simulations at the time

t � 12 s, respectively. It should be noted that we do not

discern the hybrid wavefields calculated using Lagrange

interpolation and MSI methods as they are almost the

same in visual.

4 Discussion

4.1 Error of the hybrid simulation

In this article, we first introduced the Fourier interpolation into

the hybrid simulation method, which outperforms the traditional

spline interpolation method at high upsampling ratios (Figure 6).

The requirement for the Fourier interpolation is that the data must

be band-limited below the Nyquist limit (Zhang et al., 2017). This

requirement can be readily fulfilled by introducing a smooth

tapering window function. In our experiments, the accuracy of

the Fourier interpolation method is improved by approximately

three orders ofmagnitude than the traditional splinemethod in both

2D and 3Dmodels (Figures 4 and 13). The statistical tests also show

that the Fourier interpolation method is superior to the traditional

Spline interpolation method below the Nyquist limit, especially at

high upsampling ratios (Figure 6). Since the Fourier interpolation is

theoretically exact, the extra errors may result from the window

function altering the stored hybrid inputs. In addition, the

distribution of the Fourier interpolation errors (Figures 4B and

13B) is similar to random noise.

When the meshing of the global and local domains is the

same, the discrete differentiation method proposed by Masson

et al. (2014) is an exact hybrid numerical simulation method

(Figure 3). The hybrid simulation method, in fact, is related more

closely to the scattering problem, that is, the small-scale

perturbation in the local model concerning the global

reference model. To better imagine the local small-scale

structures, we must refine the local meshing with a smaller

size. For the different meshing, there are errors between the

global and local simulations introduced by the inaccurate hybrid

inputs due to spatial interpolation.

In the spatial experiments, the errors of the hybrid

simulation result from different spatial dispersions in the

global and local simulations and inaccurate hybrid inputs.

The spatial dispersion is an intrinsic and inevitable property

of numerical simulations, but the accuracy of the hybrid

inputs can be further improved by the proposed MSI

method. In the 2D homogeneous model (Figure 7), the

total error of the MSI method (E=0.9%) is lower than the

total error of the traditional Lagrange interpolation method

(E=5.3%). In addition, we test the accuracy of the MSI method

in the heterogeneous and 3D PREMmodels and obtain similar

results (Figures 12 and 14) as in the 2D homogeneous model.

This implies that our method has great potential to be applied

in the realistic Earth model.

Though we use structural meshes in the simulations, the

interpolation grid of the MSI method is uneven because it is built

from GLL points rather than elements. Thus, this method can be

naturally applied to non-structural meshes.

Importantly, in the case where the spatial and temporal

errors are coupled, inaccurate spline interpolation in the time

domain may further enlarge the spatial errors such that the

Fourier interpolation method is necessary to minimize the

errors of the hybrid simulation (Figures 9A and B). The

prerequisite for both spline and Fourier interpolation

methods is that the original hybrid inputs should be as

accurate as possible. If the errors introduced by spatial-

interpolation (Lagrange or MSI) methods are too large,

there has no distinct discrepancy between the spline and

Fourier interpolations in the time domain (Figures 9C and

D). In other words, the spatial errors are dominant, and the

temporal errors can be negligible.

Although the error of the hybrid simulation is discussed in

this study, the proposed MSI method has potential applications

in other fields. In many practical applications of SEM, the

wavefields are not stored at all GLL points, but only the

wavefields with a low sampling ratio are stored. Using the

MSI method, the wavefield values at the existing GLL points

can be used to construct more accurate global mean wavefields

because the wavefield at each point has at least one element in

each direction to constrain it. This has potential application value

in the full waveform inversion. Because in the full waveform

inversion, we do not need to record all the wavefields in the GLL

points of unstructural meshes. Thus, based on the MSI method,

we can construct an interpolation grid that encompasses the

region to be interpolated and use the least squares method to

invert the spline coefficients of the piecewise spline function in

the entire interpolation grid. Then, we can repeatedly compute

and store the wavefield at any position. In addition, for

unstructural grid modeling, the MSI is also an effective local

refinement scheme for interpolating wavefields from the coarse

grid to the fine grid because the wavefield are always relatively

smooth.

4.2 Numerical cost

The hybrid method is proposed to reduce the numerical cost

by limiting the computation domain to a box region. In the

forward simulation with SEM, the computational efficiency

depends on the number of elements and time steps, and, thus,
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the efficiency ratio between the global and local simulations is

approximately expressed as follows:

T1

T2
� nex1 × ney1 × nez1 × nt

nex2 × ney2 × nez2 × nt
, (26)

where nex, ney, and nez denote the number of elements in the x,

y, and z directions, respectively. If the meshing of the global and

local simulations is the same, the computational resources saved

by hybrid method are proportional to the reduction of model

dimension. For example, in our 3D temporal interpolation

experiment (Section 3.3.1), the global domain has

80×80×40 elements and the local domain has

20×20×16 elements. The time step of the global and local

domain is Δt=0.005s and the total duration is 4000Δt. In this

configuration, the global simulation takes about 160.8 min

(1 CPU), and the local simulation takes about 4 min (1 CPU),

which is closed to 1/40 (20×20×16/80×80×40, according to Eq.

(26)) as the global one due to the reduction of the model size. It is

of note that the global simulation includes extra computation

times for the calculation of hybrid inputs at much larger time

step. Therefore, this is useful in situations where the source and

receivers are located far away from the study region. It is of note

that the dimension of the local targe model can be assigned

arbitrarily, depending on the study region of interest.

According to Equations (9) and (10), to use the hybrid

method, we must know the velocity potentials exactly on the

GLL points within the hybrid elements, which are used to

calculated the equivalent forces in the local simulation. For a

3D local targe model buried in the deep Earth with nex, ney, and

nez elements with N + 1 GLL points per direction, the total

number of stored values is

V � (nax1 × nay1 × nazz − nax2 × nay2 × naz2) × nt (27)

where nax1 � nex × N + 1, nay1 � ney × N + 1,

naz1 � nez × N + 1; nax2 � (nex − 2) × N − 1,

nay2 � (ney − 2) × N − 1, naz2 � (nez − 2) × N − 1. When the

dimension of the local model is too large or the high-order SEM is

used, the memory demand becomes exceedingly high. Owing to the

great precision of the Fourier interpolation, we can store hybrid

inputs with a large time interval on disk and significantly minimize

the memory demand, especially in 3D cases. For example, in our 3D

experiment, the grid used in the local simulation has a dimension of

20Δx × 20Δy × 16Δz with five GLL points per direction. The total

duration of the simulation is 4000Δt, where Δt � 0.005 s. In this

configuration, if we store the hybrid inputs with the time interval

equates to Δt, the number of stored wavefield values is

149,210×4,000, about 4.55 GB. When we increase the stored time

interval to 40Δt, the memory demand will be reduced by 40 times,

about 113.8 MB.

Although the spatial MSI method will increase computational

complexity as more elements are used to compute the hybrid inputs,

the extra computational cost can be negligible compared with the

process of globally solving wave propagation. We only need to

calculate and save the hybrid inputs by the MSI spatial-

interpolation at a very large time interval due to the preciseness of

the introduction of Fourier temporal interpolation.

It is of note that this study did not include the case that receivers

are located outside the local domain. In this case, the seismic

response is handled through the wavefield extrapolation method

(Masson and Romanowicz, 2017b), and the associated error

propagation must be discussed. Another limitation of the study is

that we only consider the error propagation of hybrid numerical

simulation in the acoustic case using SEM. Considerablymore work,

such as the elastic wave, solid-fluid coupling cases, and other

numerical methods, will need to be carried out in the future.

5 Conclusion

The aim of the present research was to control the error of

the two-step hybrid method while the hybrid inputs are

obtained by the direct discrete differentiation method. We

find that the errors exist only when the meshing of the global

and local simulations differs, and we propose a new spatial

interpolation method, the multi-elements spline interpolation

method, that outperforms the traditional Lagrange

interpolation method. In addition, to save memory

requirements, we introduce the Fourier interpolation

method to the hybrid method, which allows us to store

hybrid inputs with a large time interval. We also tested our

methods in various models, and the results indicate that our

methods not only improve the accuracy of the hybrid

simulation but also significantly lower the memory

demand, which has a high potential for application in

probing the multi-scale structures of the Earth.
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