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South-eastern Tibet rotates clockwise around the eastern Himalayan syntaxis

due to the eastward extrusion of the eastern Tibetan lithosphere and it attracts

much attention as a window for studying the dynamics of continental collision

between India and Eurasia. Competing geodynamic models to describe the

deformation of the eastern Tibet have been the debating subject and the

dynamic processes responsible for plateau evolution remain poorly

understood, partly because the mechanical state at depth and its

relationship with surficial deformation are unclear. In this context, a

continuous east-west oriented tensional zone was identified at the south-

eastern edge of the Tibetan Plateau based on seismogenic stress field and

global positioning system data. The profiles of surficial velocity field reveal a

relatively speedy motion belt parallel to the Xianshuihe fault extending from

north to south in the rotating region east of the tensional zone. Segmented

features of the profiles around the extensional zone indicate its close relation

with flow channels delineated from magnetotelluric images. Therefore, the

deformation at the south-eastern edge of the Tibetan Plateau is mechanically

coupled within the crustal depth. We propose a complex regional kinematics

with a localised speedy belt and a continuously extensional zone, where

material coupling and deformation compatibility were revealed within the

crustal depth.
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Introduction

The India-Eurasia collision has been well established to provide a critical control on

the present-day crustal stress field and tectonic deformation in the Tibetan Plateau and its

surrounding region. As a result of post-collisional convergence, south-eastern Tibet

rotates clockwise around the eastern Himalayan syntaxis (Burchfiel et al., 1995; Chen

et al., 2000; England and Houseman, 1986; Royden et al., 1997; Tapponnier and Molnar,

1976; Tapponnier et al., 1982; Wang et al., 1998; Wang and Shen, 2020) due to the

eastward extrusion of the lower crustal materials from the plateau, obstruction by the
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Sichuan Basin (which appears to be deeply rooted and

mechanically strong), and certain materials turning

southward. The clockwise rotation can be deduced from

the distribution of global positioning system (GPS)

movement rates (Zhang et al., 2004; Wang and Shen,

2020), major fault slip rates, such as 9–12 mm sinistral

slip rates along the Xianshuihe-Xiaojiang fault system

(Xu et al., 2003; Wang et al., 2009; Gan et al., 2021), and

sinistral coseismic rupture of large earthquakes along the

major fault (Figure 1).

The deformation and dynamics of the south-eastern

edge of the Tibetan Plateau are important for

understanding continent collision where a part of the

plateau material is extruded. Several geophysical

observation studies in south-eastern Tibet have suggested

that low-velocity or mechanically weak zones exist in the

mid-lower crust and indicate the possibility of crustal flow

(Bai et al., 2010; Bao et al., 2015; Chen et al., 2016; Fu et al.,

2010; Li et al., 2008; Liu et al., 2014; Xu and Song, 2010; Yao

et al., 2010; Zhao et al., 2013). Although the existence of

weak lower crust and probable crustal flow in south-east

(SE) Tibet has attracted significant attention, the

mechanism remains enigmatic in determining how the

crustal material structure, including a weak lower crust,

influences the crustal deformation and how the tectonic

stress field links dynamics between the surficial and deep

deformations. Mid-crustal deformation is not directly

constrained by surficial measurements, and the motion

may be different from that observed at the surface,

considering the coupling of crustal materials at different

depths.

In 2018, our dense digital seismic network (30 stations) with

a sampling rate of 100 Hz, was deployed within a 2° × 2° area near

the middle of the Sichuan-Yunnan block, which is bounded by

FIGURE 1
Topographic map of south-eastern Tibet. Focal mechanism (1976–2010): from the global CMT catalogue; blue arrows: GPS velocity field
relative to Eurasian Plate (Wang and Shen, 2020); Light blue polygons represent crustal flow channels delineated using magnetotelluric data (Bai
et al., 2010). The yellow area represents the extensional zone based on focal mechanism and GPS analysis; Black arrows show regional crustal
motions. NJF =Nujiang Fault; LLF = Longling Fault; BCF =Binchuan Fault; RRF = Red-River Fault; XSHF = Xianshuihe Fault; XJF = Xiaojiang Fault;
JCF = Jiali–Chayu Fault; and EHS = eastern Himalayan syntaxis.
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the Red-River and Xianshuihe-Xiaojiang faults. Adding some

regional permanent stations, the network (Figure 1) recorded

over 20,000 earthquakes withML 1.3–4.6 between April 2018 and

December 2020. In this study, we examined the deep stresses

after determining focal mechanisms based on these events and

investigated surficial deformation using GPS velocity data.

FIGURE 2
Two focal mechanism cases based on P-wave polarities and S/P ratios.

FIGURE 3
Wind rosemap showing nodal planes and three focalmechanism axes. The top line shows strikes, dip angles and rakes of the focal mechanisms,
and three columns below show azimuths and dip angles for three axes including P, T and B.

Frontiers in Earth Science frontiersin.org03

Wang and Feng 10.3389/feart.2022.976380

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.976380


Focal mechanisms and stress field

The estimation of the stress field by focal mechanisms is an

effective tool for understanding crustal mechanics. Focal

mechanisms of small earthquakes are generally determined

from P-wave first-motion polarities, and the solutions are

extremely sensitive to various errors, including inadequate

knowledge about the seismic velocity structure. Many studies

added S/P amplitude ratios to constrain focal mechanisms as

P-wave amplitudes are larger near the P and T axes of the focal

mechanism and smaller near the nodal planes (Kisslinger, 1980;

Ruey-Juin Rau et al., 1996; Snoke, 2003). In this study, we used

the HASH method (Hardebeck, 2002; Hardebeck and Shearer,

2003), which was developed to produce stable focal mechanisms

considering the various sources of uncertainty based on P-wave

first-motion polarities combining S/P amplitude ratios.

After manually measuring P-wave first-motion polarities and

S/P amplitude ratios and using the regional three-dimensional

velocity structure data (Yang et al., 2020), we obtained 1,500 focal

mechanism solutions for events with a quality grade above C

from the five classes of acceptable mechanisms using the quality

criteria based on the solution stability (Figure 2; Supplementary

Table S1).

We performed a statistical analysis of relevant parameters for

the focal mechanism solutions (Figure 3). The wind rose maps of

two groups of nodal planes depict an even distribution for strikes

and normal faulting with high dip angles. North-south (NS)-

oriented P axes with high dip angles and horizontal east-west

(EW)-oriented T axes are dominant for these focal mechanisms.

Subsequently, we used the mature software package MSATSI

(Hardebeck and Michael, 2006; Martinez-Garzon et al., 2014) to

invert the stress orientations from the focal mechanisms. The

data were divided into 30 grid points that vary by latitude and

longitude over the study area. Each grid containing at least

15 focal mechanisms was allowed to invert three principal

stress axes (Figure 4).

The principal stress axes (Figure 4B) are depicted as

projections onto the horizontal plane; therefore, large dip

angles corresponded to short axes. The stress field distribution

shows that the maximum principal stress axes σ1 are consistently

vertical, the intermediate principal stress axes σ2 are N-S

oriented, and the minimum principal stress axes σ3 are

approximately horizontal with an EW-orientation,

demonstrating that the covering area is under a continuously

EW-oriented extensional crustal stress environment. Focal

mechanisms of mid-large earthquakes from the United States

Geological Survey around the area also show normal faulting

primarily along a series of NS-oriented arc faults near the east

boundary of our study area, such as the Binchuan Fault. The

extensional deformation of the area was noticed previously and

~3×10–8 yr−1 E-W extension was estimated from GPS data in the

region which was explained by gravity-driven deformation using

FIGURE 4
(A)Distribution of focalmechanisms based on seismic events recorded by the digital stations shown in Figure 1. (B) Projections on the horizontal
plane of the three principal stress axes inverted from the focal mechanisms displayed in (A), including the maximum principal stress axes σ1 (red),
medium principal stress axes σ2 (green), and minimum principal stress axes σ3 (blue). The background focal mechanisms are from the global CMT
catalogue for events with magnitudes above 5.
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numerical simulation (Copley, 2008). To the south-west and

south-east, the focal mechanisms show NE- and NW-oriented P

axes, respectively. The above mechanical frame revealed that the

extensional area was stretched toward both side terranes, and the

eastern boundary should be delimited by the normal faults of

the arc.

Analysis of GPS data

To visualize the crustal deformation field in the study area,

we interpolated the GPS velocity data with respect to the

Eurasian Plate during the past 25 years (Wang and Shen,

2020) using the “griddata” function of MATLAB, and utilized

the expressions in spherical coordinates developed by Savage

et al. (2001) to calculate strain rates. The derived GPS strain rates

of Chuan-Dian area and the dilatational strain (Figure 5A)

accorded with the extensional area resulted from stress

inversion, where principle strain axes (Figure 5B) also

revealed E-W extension.

We selected several profiles (Figure 1) perpendicular to the

strike of the XSH-XJ fault to explore lateral variances of

deformation in the clockwise rotating region. Velocity

distributions in four profiles (Figure 6A) reveal a relatively

speedy belt that covers segments with longitudes from 99.7°E

to 101.5°E for A–Aʹ, 100.2°E to 102°E for B–Bʹ, 101.1°E to 102.7°E

for C–Cʹ, and 101.5°E to 102.8°E for D–Dʹ, respectively. From the

profiles, the belt is shown to be parallel to the

Xianshuihe–Xiaojiang Fault, extending from north to south

within the Sichuan–Yunnan block. Notably, the belt location

is consistent with the eastern flow channel of the two in SE Tibet

(Figure 1), which is approximately 200 km wide with a depth of

20–40 km, as found by Bai et al. (2010) based on their

magnetotelluric survey, extending from SE Tibet into south-

west China.

Based on the southward surficial movement, we use the E-W

components of GPS velocities along the four profiles (Figure 6B) to

describe relative movements across the clockwise rotating terrane in

the SE plateau. A general feature of the E-W velocity profiles is still

reflecting the same speedy belt as that of the velocity profiles. Another

feature is that the E-W velocities of the profiles reveal evident

segmentation, and the western and eastern areas on the two sides

of the extensional zone move outward. For the profiles of B-Bʹ, C-Cʹ

and D-Dʹ in details, which cover the extensional area, three segments

at different E-W rates are separated respectively by the Nujiang-

Longling faults and the Binchuan fault along the western and eastern

boundaries of the extensional area. The western segments of the

profiles exhibit westward movement, and the eastern segments

FIGURE 5
Continuum deformation field of Chuan-Dian area derived from interpolation of GPS velocities. Blue dotted square denotes the extensional area
in Figure 4. (A) Dilatation rate, with extension positive. (B) Strain rates. Maximum shear strain rate is shown in background colour and principal strain
rates are shown as vector pairs.
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exhibit eastward movement; therefore, the middle terrane between

themmust have been stretched outward. The other flow channelwith

high electrical conductivity in SE Tibet (Bai et al., 2010) is located

along the western segments of the profiles. Combined with the above

stress field, the GPS E-W velocity profiles outline the range of the

extensional zone, taking the Nujiang-Longling fault system and the

Binchuan fault as western and eastern boundaries, respectively.

Discussion

“Contradictory” mode of fault slip near
west boundary of the speedy belt

The analysis of the GPS profiles in this study shows that there

is a special belt on the west side of the XSH fault, which should be

understood from different perspectives. The premise of treating it

as a speedy belt is that the Chuan-Dian block in the west of the

XSH-XJ fault is mainly characterized by translational motion

with small strain within several decades, and distribution of

movement rates in each profile show peak segment within the

belt. On the other hand, according to rotation rate distribution

relative to the stable Eurasia plate (Wang and Shen, 2020), this

belt is gradient located in the transforming zone from clockwise

rotation of the Chuan-Dian block to counterclockwise rotation of

the XSH-XJ fault. On the west of the belt, the GPS velocities show

linear increase from west to east along the profile strikes, which

can be regarded as “uniform motion” with constant angular

velocity (v=ωr) in the area, and shortage of several mm/yr within

the belt is revealed from the velocity profiles. Geological ages of

accumulation reflected that faults in between behaved left lateral

as sketched in Figure 7, which seems to “contradict” our

FIGURE 6
(A)GPS velocities in the four profiles shown in Figure 1. The orange line segments mark the comparatively high velocities, and two dashed lines
define the fast movement belt; (B) GPS EW velocities in the profiles. The green arrows represent the eastward velocities, and the red ones represent
the westward velocities. Two black dashed lines define the extensional area from our study. NJF = Nujiang Fault; LLF = Longling Fault; BCF =
Binchuan Fault; RRF = Red-River Fault; XSHF = Xianshuihe Fault; and XJF = Xiaojiang Fault.
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understanding of fault deformation near the west boundary of

the speedy belt but accords with the fact that a series of faults

from north to south in the Chuan-Dian block near the west

boundary of the belt (such as Litang fault, Yimen fault, etc)

showed left-lateral slip (Wang et al., 1998).

Results of previous studies (Chen et al., 2014; Bao et al., 2015;

Chen et al., 2016; Liu et al., 2021) on the Low-velocity zone

revealed different locations of channel flows or highly

disconnected and heterogeneous of the low velocity zones

beneath the Chuan-Dian block, reflecting large uncertainties

of geophysical results in this region. A 3D geo-electrical

model from SINOPROBE MT (Dong et al., 2016), located to

NW of the Chuan-Dian block area, proposed that “extensional

extrusion” mechanism of the south-eastward expansion of

Tibetan Plateau may result from the accumulated east-west

spreading of a series of local ductile extensions zones.

The extensional area determined from our stress field

inversion and GPS deformation revealed a consistent

deformation pattern from surface to seismogenic depth. The

coupling state between deep and shallow materials in the

tensional area may be representative in the Chuan-Dian block.

Based on the diversity of geophysical observations, the surficial

speedy belt and the east possible crustal channel with high

conductivity at the same location revealed similar coupling

deformation, revealing that the region deforms by a more

complex pattern. This pattern is influenced by localised low

velocity zones than typical models suggested, wherein the

plateau may deform through the movements of rigid crustal

blocks along large strike-slip faults (Tapponnier and Molnar,

1976; Tapponnier et al., 1982), by continuous deformation

(Houseman and England, 1993; Holt et al., 2000) or by crustal

flow (Royden et al., 1997; Clark and Royden, 2000).

Seismic anisotropy (Sol et al., 2007) determined using shear-

wave splitting analysis revealed a sharp change in the orientation

of fast directions from NS in the north to EW in the south of our

extensional zone, suggesting that EW strain was mechanically

coupled across the crust–mantle interface and strong lower crust

to transmit stress. So the coupling state of consistent deformation

from shallow to depth may reach the crust-mantle boundary in

this area.

Conclusions

The inverted focal mechanisms and stress field based on

waveform data from our seismic network revealed that a

continuously EW-oriented extensional zone existed at the

edge of the SE plateau, where previous middle earthquakes

lying at the east boundary of the zone exhibited normal

faulting and EW-oriented extensional mechanisms. Analyses

based on GPS data also revealed the EW tensional

deformation. From surficial GPS velocities, we also

observed a speedy belt located inside the clockwise

rotating region around the eastern Himalaya syntaxis

which was not previously noticed, and the belt location

coincides with a crustal flow channel from the

magnetotelluric study. We suggest a complex regional

kinematics with a localised speedy belt and a continuously

extensional zone, where material coupling and deformation

compatibility were revealed within the crustal depth.
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