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The construction of water conservancy projects not only brings benefits such as

flood control and disaster reduction but also has many effects on the habitat

and reproduction of local aquatic organisms. Taking the reach from Xuzhuang

Station to Gaocun Station in the lower Yellow River as an example, this paper

discusses the effect of the Xiaolangdi Reservoir on the habitat of Yellow River

carp (Cyprinus carpio). By constructing a two-dimensional hydrodynamic

model, coupled with a habitat suitability model of the spawning ground of

Yellow River carp, the weighted usable area (WUA) of the Yellow River carp

habitat was calculated, and the spatial distribution of the habitat suitability index

(HSI) in the reach was analyzed to evaluate habitat quality before and after the

construction of the Xiaolangdi Reservoir. The results showed that the Xiaolangdi

Reservoir had a negative effect on the habitat of Yellow River carp, resulting in

the reduction of the spatial distribution of HSI, a decrease in WUA by 45.53%,

and a decrease in habitat quality. The construction of the Xiaolangdi Reservoir

reduced or even eliminated flow pulses in the downstream reach, but had little

effect on the suitability index of water depth and velocity. However, the

suitability index of water level rise was significantly reduced, which is not

conducive to the spawning activities of aquatic organisms and has a

negative effect on habitat. The results of this study will provide a reference

for ecological restoration in this region.

KEYWORDS

habitat suitabilitymodel, Xiaolangdi reservoir, Yellow river carp (Cyprinus carpio), two-
dimensional hydrodynamic model, spawning ground

1 Introduction

Dams are one of the most common types of water conservancy projects that involve

the anthropogenic transformation of rivers. Dam construction not only changes a region’s

hydrology but also has ecosystem effects that cannot be ignored. Studies have shown that

in the past century, dam construction was the main contributor to the endangered status

of 20% of threatened freshwater fish globally (Chen et al., 2009). Dam construction

changes the connectivity of rivers, affecting or even removing fish migration channels; has

negative effects on fish behavior; alters the structure of fish communities and reduces
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biodiversity (Tiemann et al., 2004). As a result, reservoir water

depth increases and the flow rate slows down, which can easily

cause floating fish eggs to sink to the bottom of the reservoir

where they are unable to hatch normally, posing a threat to fish

reproduction (Marchamalo et al., 2007). Accurate assessment of

the ecological effects of dam construction is of great importance

to the protection and management of the environment.

As the top community in aquatic ecosystems, fish affect the

existence and abundance of other groups (Xu et al., 2005).

Changes in fish community structure are directly related to

the overall change of aquatic communities and aquatic

habitats (Chen et al., 2007). The Yellow River carp (Cyprinus

carpio) is the most important fish resource in the Yellow River. It

has large biomass and strong environmental adaptability, which

is beneficial to the accurate and timely assessment of habitat

changes in the river, and it is the key species in the lower reaches

of the Yellow River (Jiang et al., 2005). However, because of the

effects of dam construction and other human activities, the

average annual resource loss of fish in the Yellow River is

large, and the weight of catches is also reduced by water-

sediment regulation (Zhu et al., 2012).

The stress effect of dam construction on fish habitats has

always been a contentious issue, generating a high level of debate.

On the one hand, dam construction changes river hydrology,

resulting in the alteration of fish spawning grounds and catch

decline. In the Guaporé River Basin, damming reduced catch from

163.8 tons per year to 10.8 tons per year (Sousa et al., 2021), and

fisheries development is constrained. In China, because of the

successive completion of Gezhouba Dam and the Three Gorges

Dam, the total spawning output of the four major fish species at

Jianli Station during the 4 years from 2003 to 2006 was 42.82% of

the average value from 1997 to 2002 before the impoundment, and

the scale of spawning was significantly reduced (Duan et al., 2008).

The number of endangered Chinese sturgeon (Acipenser sinensis)

decreased sharply, and their spawning ground decreased from

800 km reach before the dam construction to only 30 km reach

near the lower GezhoubaDam after construction (Ban et al., 2011).

On the other hand, the environmental differences and the loss of

connectivity caused by the completion of the dam greatly affect the

composition of fish communities. Fishes that rely on the

connectivity of rivers to complete reproductive activities are

most affected by dam construction (Hoeinghaus et al., 2009).

In contrast, the number of small, slow-flow, highly fecund fish that

eat a diverse range of foods increases (Tundisi, 2018). Field survey

results have shown that after the completion of the Longtan

Reservoir, the resources of larger species such as Semilabeo

notabilis and Tor brevifilis brevifilis are significantly reduced,

and the species with fewer original sources such as Spinibarbus

denticulatus denticulatus and Cyprinus multitaeniata are at risk of

leaving the distribution area (Wang et al., 2014). In addition, the

physical obstacles formed by the construction of dams not only

block fish migration channels and the transportation and

circulation of nutrients (Linhoss et al., 2012), but also have a

negative effect on water quality by changing the flow, sediment,

and temperature of water from that of natural conditions (Macklin

et al., 2003; Bouaroudj et al., 2019; Luo et al., 2021).

Among the many changes brought about by dam

construction, alterations in hydrological conditions affect fish

reproduction especially (Cao et al., 2022). To improve the current

state of river habitats and provide suitable habitat for aquatic

organisms, much research has been carried out by domestic and

international scholars on the response of fish to the changes in

hydrological conditions caused by dam construction. Studies

have shown that in addition to flow velocity, water depth,

sediment, and other factors, flow pulses can conduct

biological signals to fish, thereby stimulating biological

development, migration, reproduction, and other activities

(Poff et al., 1997; Bunn and Arthington, 2002). Li et al. (2012)

analyzed the changes in regional hydrological indicators after

dam construction and pointed out that the change in regional

flow tends to be moderate, which weakens or even eliminates the

spawning signals of the four major Chinese fish species (namely,

black carp (Mylopharyngodon piceus), grass carp

(Ctenopharyngodon idella), silver carp (Hypophthalmichthys

molitrix), and bighead carp (Aristichthys nobilis)), and it is

difficult to achieve the best conditions for spawning and

reproduction of these species. With the improvement of

simulation accuracy of hydrodynamic numerical models, Jiang

et al. (2010) combined a two-dimensional hydrodynamic model

with a habitat model, and the results indicated that runoff

components are closely related to the ecological habits of fish.

The decrease or even disappearance of the flow pulse

components after the dam construction affects fish spawning.

Li and Xia (2011) calculated the suitable ecological flow during

the spawning period by coupling a three-dimensional hydraulic

model and a habitat model. Andreia Dos Santos et al. (2022)

conducted statistical analysis on the short-sequence data

obtained before and after dam construction and confirmed

that it caused significant changes in fish richness, biomass,

and species composition with the help of a species cumulative

curve and a linear mixed model. Li et al. (2006), and Wang and

Yin (2019) used the IHA (Indicators of Hydrologic Alteration)

hydrological index change method (Richter et al., 1996) to

analyze the correlation between the change in fish spawning

output and the change in river hydrological conditions in a long

time series, and pointed out that the weakening of the flow pulse

index led to the change of fish spawning peak and a decrease in

the scale of spawning.

Althoughmany scholars have studied the effect of flow pulses

on fish spawning activities, most of them focus on hydrological

indicators and fixed flow calculation, which cannot accurately

quantify the effect of flow pulses on fish spawning activities.

Among many hydrological factors, the continuous

spatiotemporal changes of flow velocity, water depth and

water level rise can better reflect the effect of a single flow

pulse on regional rivers and aquatic organisms. In this study,
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a habitat suitability model for Yellow River carp was established

by pairing a two-dimensional hydrodynamic model with a

method of equidistant subdivision of unsteady flood process

and gradual calculation. The effects of three habitat factors,

namely water depth, flow velocity and water level rise, on the

spawning activity of Yellow River carp before and after the

construction of Xiaolangdi Reservoir, were analyzed, as was

the habitat quality of Yellow River carp in the region.

2 Study area and species

2.1 Study area

The lower reaches of the Yellow River are the most unstable

section of the Yellow River Basin, with themost pronounced contrast

between flood disasters and water supply and demand. The river

regime of this section is changeable and the mainstream moves

frequently. The special conditions of this section provide habitats for

fish and rare birds. The Zhengzhou section of the Yellow River is the

national aquatic germplasm resource reserve of Yellow River carp

and is one of themain spawning sites of Yellow River carp (Hui et al.,

2019). Affected by the operation of the Xiaolangdi Reservoir, the

annual maximum flow andmaximumwater level in the downstream

reach of Xiaolangdi Reservoir have been greatly reduced, and the

seasonal water area of wetlands in the adjacent area of the Zhengzhou

section has been reduced (Zhang et al., 2010) and the fish habitat area

is shrinking. In this study, Xuzhuang Station in the Zhengzhou

section of the Yellow River was selected as the upstream boundary,

Gaocun Station, approximately 145 km downstream, was selected as

the downstream boundary and the river section between the two

stations was selected as the study area (Figure 1).

2.2 Species

The Yellow River carp, Cyprinus carpio, is a unique aquatic

organism in the lower reaches of the Yellow River. It often lives in

the soft river bottom in areas with slow flow rates, or in shallow

water areas where waterweeds are clustered. It produces sticky

eggs which adhere to waterweeds and other attachments. The

spawning time is from April to June each year, and its different

life stages have different habitat needs (Jiang et al., 2009)

(Table 1). Since the 1950s, the ecological balance of the lower

Yellow River has been seriously damaged by human activities,

and the resources of Yellow River carp have declined sharply.

3 Methods

3.1 Two-dimensional hydrodynamic
model

Compared with one-dimensional hydrodynamic models,

two-dimensional hydrodynamic models can not only present

the two-dimensional spatial distribution of hydrological

factors such as velocity, water depth, and water level but

also simulate the local flow pattern of the river more

accurately, which can provide a more accurate measure of

habitat suitability and weighted available area.

MIKE21 is a two-dimensional mathematical model

developed by the Danish Institute of Hydraulics to simulate

the flow, waves, sediment, and environment of rivers, lakes,

estuaries, bays, coasts, and oceans. The basic data needed to

build a MIKE21 hydrodynamic model includes terrain

elevation data, hydrological data, roughness, and other

specific data such as waves, winds, and tidal levels. An

unstructured triangular mesh is used to divide the

computational domain. When meshing, encryption

technology is used for the narrow and curved parts of the

river. The maximum grid space step size of the narrow and

curved parts of the river is 50 m, 185 m for the upstream and

downstream boundaries and the key river sections, and

185–6,000 m for the land areas on both sides of the river

with little water. The final number of generated grids was

133,539, grid division and local details are shown in Figure 2.

The elevation information of the study area was obtained from

a total of 67 measured sections in 2018. The daily flow data of

Xuzhuang Station are used as inflow conditions, and the daily

water level data of Gaocun Station are used as export boundary

conditions. The initial water level was set to 60 m, and the

maximum time step was set to 1 s.

TABLE 1 Requirements for spawning habitat of Yellow River carp.

Parametric index Preferred range

Water depth (m) >1.0
Flow velocity (m/s) Tranquil flow (<0.3) or still water
Temperature (°C) 18–25

Spawning time April to June

Spawning stimulation Suitable spawning ground and temperature (18–25°C)

Spawning duration (day) 1–3
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3.2 Habitat suitability model

Habitat suitability models are widely used to assess habitat

quality and ability to support the survival of specific species

(Vincenzi et al., 2006; Fukuda, 2009). Its basic principle is to

establish a suitability index (SI) according to the requirements of

ecological habits of indicator species for hydrological elements (flow

velocity, water depth, sediment, and cover, etc.) and defines 0 as the

habitat condition of completely unsuitable indicator species and 1 as

the habitat condition of the most suitable indicator species to draw

the suitability curves of different hydrological elements. The basic

assumption of SI is that species tend to choose the place that can best

meet their survival needs. The higher the value of SI is, the higher the

frequency of occurrence of this species. Tomore intuitively reflect the

Yellow River carp’s habitat characteristics, values from 0.5–1 were

classified as “good”, 0.3–0.5 were classified as ‘moderate’, and

0–0.3 were classified as “poor” (Collier et al., 2022). Taking into

consideration the availability of data, three habitat factors—water

depth, velocity, and water level rise, which have a great influence on

the spawning activity of Yellow River carp—were selected to

construct a habitat suitability model (Wang et al., 2016; Wang

et al., 2020), combined with existing research, selecting the

suitability curve of each habitat factor as shown in Figure 3.

Regarding the influence of multiple habitat factors on the habitat

suitability of indicator species, it is necessary to combine the

suitability index of single factors into the habitat suitability index

(HSI), which can be calculated by the arithmetic average method:

HSI � SIh + SIv + SIwr
3

(1)

where SIh, SIv and SIwr are the water depth suitability index, flow

velocity suitability index and water level rise suitability index,

respectively.

By calculating the weighted usable area (WUA), we can

establish a correlation between the river runoff conditions and

the habitat area of Yellow River carp in a certain period in the

study area, and quantitatively analyze the suitable habitat area of

Yellow River carp in an inflow process. WUA can be calculated

by the following formula:

FIGURE 1
Location of the study area on the Yellow River, China.

FIGURE 2
Computational grid division of the two-dimensional hydrodynamic model used in this study.

Frontiers in Earth Science frontiersin.org04

Bao et al. 10.3389/feart.2022.975433

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.975433


WUA � ∑
n

i�1
HSIi × Ai (2)

where n is the number of computational grids in the study area of the

two-dimensional hydrodynamic model, and HSIi and Ai are the

habitat suitability index and water area of computational grid i,

respectively.

The integrated use of the habitat suitability model and HSI and

WUA parameters can be used to quantitatively evaluate the habitat

quality of indicator species in the region (Yi et al., 2019; Yang et al.,

2021; Collier et al., 2022).HSI indicates the degree of preference of the

indicator species to the habitat. The larger the HSI value is, the more

likely the indicator species are to live in that habitat. The larger the

WUA value is, the larger the effective habitat area suitable for

indicator species is, and the more conducive it is to indicator

species reproduction.

Flow pulses can conduct biological signals that stimulate fish

spawning, but it still takes some time to start spawning after the river

rises. Based on this study and the research results of Wang et al.

(2008), a water increase for three or more consecutive days is

defined as the process that meets the requirements of spawning of

Yellow River carp. To quantify the effect of a single flow pulse on the

spawning activity of Yellow River carp, the spatial and temporal

distribution of hydrological factors in the flood process that meets

the spawning requirements of Yellow River carp were derived daily

and equidistantly, based on themethod of equidistant divergence, to

analyze the changes of habitat factors in each stage of a single flow

pulse. Combined with the suitability curves of each habitat factor,

the habitat suitability of each stage in a single flow pulse was

calculated, and the mean value was obtained to characterize the

habitat suitability of the whole flow pulse.

The spatial distribution of water depth, velocity, and water

level rise was calculated via the two-dimensional

hydrodynamic model. According to the established habitat

suitability model of Yellow River carp, the spatial distribution

of HSI in the study area was calculated, and then the change of

FIGURE 3
Suitability curves of different habitat factors in the habitat suitability model used in this study: water depth suitability curve (A), velocity suitability
curve (B), and water level rising suitability curve (C).
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habitat quality before and after the dam construction at

Xiaolangdi Reservoir was evaluated.

4 Results

4.1 Calibration and verification of the two-
dimensional hydrodynamic model

The construction of the MIKE21 hydrodynamic model

included terrain elevation data import, computational grid

division, setting boundary conditions, and setting simulation

parameters. Taking the reach from Xuzhuang Station to Gaocun

Station in the lower Yellow River as the study area, the length of the

regional river channel is approximately 145 km, from which a total

of 67measured section terrain elevation data were used to establish a

two-dimensional hydrodynamic model. The hydrological data from

August 16 to 14 September 2018, were used to calibrate the

parameters of the model, and the bottom bed friction (the

reciprocal of the Manning coefficient) in the model was adjusted

to minimize the error between the simulated and measured values.

After the parameter calibration was completed, the hydrological

data from April 1 to June 30 in the same year were used for model

verification. Model parameter settings are shown in Table 2, and

water level verification results are shown in Figure 4. The

verification results showed that the maximum absolute error

between the simulated water level and the measured water level

was 0.28 m, the maximum relative error was 0.39%, the root means

square error (RMSE) was 0.16 and the determination coefficient

(R2) was 0.85. The simulation effect was good.

4.2 Validation of the habitat suitability
model for Yellow River carp

Referring to the field survey data of previous studies on the

spawning ground of Yellow River carp (Hui et al., 2019), the

simulation period from May 9 to 30 June 2015, was selected to

verify the accuracy of the habitat suitability model of Yellow River

carp. Based on the spatial and temporal distribution of water depth,

flow velocity, and water level calculated using MIKE21, combined

with the suitability curve offlow velocity, water depth, andwater level

rise, the flow velocity suitability index SIv, water depth suitability

index SIh, water level rise suitability index SIwr, and river habitat

suitability index HSI (Figure 5) were calculated, respectively.

4.3 Effect of the Xiaolangdi reservoir on
the spawning ground of Yellow river carp

4.3.1 Selection of typical years
The Sanmenxia Hydropower Station is located in the

upper reaches of the Xiaolangdi Reservoir. The historical

hydrological data of Sanmenxia Station were analyzed using

the frequency analysis method. The variation coefficient (Cv)
was 0.40 and the skewness coefficient (Cs) was 0.93. The

P III frequency curve was fitted; according to the frequency

12.5%< P < 37.5% as the division standard of partial wet

years, 1989 and 2018 were selected as typical representative

years before and after dam construction at the Xiaolangdi

Reservoir. The daily average flow data of Xuzhuang Station in

these years were used as the upstream boundary conditions of

the study area (Figure 6), and the daily average water level

data of Gaocun Station were used as the downstream

boundary conditions. The MIKE21 two-dimensional

hydrodynamic model was used to simulate the

hydrodynamic conditions of two typical years before and

after the dam construction.

4.3.2 Habitat suitability simulation of typical
years before and after dam construction

The MIKE21 two-dimensional hydrodynamic model can

calculate the continuous spatial and temporal distribution of

hydrological factors such as velocity, water depth, and water

level. Taking the adjacent time step results file as the difference,

the changes of other hydrological factors such as water level rise can

be obtained. The proportion of numerical grids of different habitat

factors before and after dam construction was counted (Table 3).

The results show that the water depth in the range of 0–0.5 m and

the flow velocity in the range of 1.2–1.4 m/s had the largest changes

TABLE 2 Parameter setting of the MIKE21 two-dimensional hydrodynamic model.

Parameter Values Parameter Values

Number of time steps 259,200 Drying depth 0.005 m

Time step interval 30 s Flooding depth 0.05 m

Simulation start date 2018/04/01 Wetting depth 0.1 m

Simulation end date 2018/06/30 Eddy Viscosity type Smagorinsky formulation

Minimum time step 0.01 s Smagorinsky formulation data 0.28

Maximum time step 1 s Bed Resistance 100

Critical CFL number 0.8 Initial Conditions 60 m
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after dam construction, and were reduced by 1.98 and 0.41%,

respectively. The water level rise in the range of 0–0.1 m

increased by 23.64%, and the water level rise in the range of

0.1–0.2 m decreased by 16.94%.

Continuous water level rise is a necessary condition for

the normal spawning of fish. The continuous water rise

durations meeting the requirements of the spawning

activities of Yellow River carp for the selected

FIGURE 4
Verification results of the MIKE21 two-dimensional hydrodynamic model.

FIGURE 5
Validation of habitat suitability model for Yellow River carp.

FIGURE 6
Xuzhuang Station represents the annual flow process during the pre- and post-dam period at the Xiaolangdi Reservoir on the Yellow River,
China.
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representative years in the study area (Table 4) were counted.

The continuous water rise duration after the dam

construction was significantly reduced from 16 to 9 days.

The suitable spawning time of the Yellow River carp was

reduced, and the spawning activities were affected.

The HSI was calculated and the spatial numerical

distribution map of the river was drawn by using the

arithmetic average method, taking into consideration the

influence of three habitat factors: water depth, velocity,

and water level rise (Figure 7). The results showed that

after the construction of the Xiaolangdi Reservoir, the HSI

value of the Yellow River carp decreased significantly, and the

number of grids decreased by 95.3%. The total habitat

division of Yellow River carp in the river and part of the

adjacent land during the pre- and post-dam period is

summarized in Table 5 and Figure 8. The habitat areas

classified as good and moderate were 4.40 and 23.44 km2,

respectively, before the dam construction, and decreased to

2.01 and 15.86 km2, respectively, after dam construction. The

total WUA that met the requirements of the continuous water

rise period before dam construction was 184.33 km2, and

decreased to 100.40 km2 after dam construction. Compared

with the WUA before dam construction, the WUA after the

dam decreased by 45.53%, and the spawning activity of

Yellow River carp was greatly affected.

5 Discussion

From the simulation results, it can be seen that the dam

construction restricted the reproduction of Yellow River carp

(Cooper et al., 2017; Quan et al., 2021; Xing et al., 2021), resulting

in a significant effect on the spawning activity of the Yellow River

carp, and the WUA for spawning was reduced by 45.53%, which

was consistent with the existing research conclusions. Wang et al.

(2020), Shang et al. (2020) and Jiang et al. (2009, 2010) found that

the habitat area of the Yellow River carp tended to be stable when

the flow velocity exceeded 1,000 m3/s, and the runoff

components suitable for spawning of the Yellow River carp

decreased significantly after the completion of the Xiaolangdi

Reservoir, which had a negative effect on their reproductive

activities. On this basis, the ecological flow of the lower

reaches of the Yellow River was proposed. Zhang et al. (2008)

TABLE 3 Comparison of the proportions of numerical grids of habitat factors during the pre- and post-dam periods at the Xiaolangdi Reservoir on the
Yellow River, China.

Water depth (m) Flow velocity (m/s) Water level rise (m)

Values Pre-dam
period

Post-dam
period

Values Pre-dam
period

Post-dam
period

Values Pre-dam
period

Post-dam
period

0–0.5 18.15% 16.17% 0–0.2 3.20% 3.21% 0–0.1 67.01% 90.65%

0.5–1.0 13.65% 13.84% 0.2–0.4 3.01% 3.01% 0.1–0.2 26.06% 9.12%

1.0–1.5 12.51% 12.88% 0.4–0.6 7.66% 7.76% 0.2–0.3 6.39% 0.03%

1.5–2.0 11.39% 11.78% 0.6–0.8 16.56% 16.85% 0.3–0.4 0.00 0.00

2.0–2.5 12.67% 13.02% 0.8–1.0 22.17% 22.47% 0.4–0.5 0.00 0.00

2.5–3.0 15.48% 16.01% 1.0–1.2 21.00% 21.04% >0.5 0.21% 0.20%

3.0–3.5 16.16% 16.29% 1.2–1.4 15.27% 14.86%

1.4–1.6 11.13% 10.80%

TABLE 4 Comparison of continuous water rise duration before and
after dam construction at the Xiaolangdi Reservoir on the Yellow
River, China.

April May Total

Pre-dam period 17th~20th 3rd ~ 6th 16 days

24th~28th 21st ~ 23rd

Post-dam period 23rd~26th 8th ~ 12th 9 days

FIGURE 7
Habitat suitability index numerical distributionmap during the
pre- and post-dam period at the Xiaolangdi Reservoir on the
Yellow River, China.
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obtained the same conclusion through qualitative inference

analysis. In this paper, the influence is quantitatively described

by combining the typical annual spawning period unsteady flow

and suitability curve.

Regarding the selected three main habitat influencing factors,

previous studies show that the effect of flow pulse on the habitat of

YellowRiver carp cannot be ignored. If only the two habitat factors of

flow velocity and water depth are considered, and the spatial

distribution of the regional HSI before and after the dam

construction is calculated, the WUA of the habitat before the

dam construction is 221.32 km2 and is reduced to 214.11 km2

after the dam construction, which is 3.25% less than the WUA

before the dam construction. When compared with the reduction in

water level rise of 45.53% found in this study, the influence of water

level rise is shown to be considerable. The reason is that if the effect of

water level rise is not considered, the stimulation signal of the flow

pulse on fish spawning will be ignored. At the same time, the

contribution of the rising river water to the expansion of the Yellow

River carp habitat area of, which provides spawning areas, more food

sources for spawning activities, and the growth of young fish will be

weakened (Yin et al., 2011; Timpe and Kaplan, 2017), resulting in a

decline in habitat suitability of Yellow River carp.

In addition, the change of regional runoff components caused by

dam construction also affects fish habitat (Ge et al., 2022).

Huayuankou is the starting point for the Yellow River to become

a suspended river, where the river bed is raised several meters above

the surrounding ground. The historical data of Huayuankou Station

were statistically analyzed. Flow pulses often occurred before the dam

construction of the Xiaolangdi Reservoir. The peak flow can reach

approximately 3,000m3/s, and the minimum flow is approximately

500m3/s. Because of the influence of water-sediment regulation after

dam construction, the peak flow decreased, the flow pulse decreased

greatly or even disappeared, and the flow range was approximately

500–2000m3/s. The empirical frequency curve of daily averageflow at

Huayuankou Station from 1960 to 2018 was plotted (Figure 9). After

the completion of Xiaolangdi Reservoir, floodswith a frequency of less

than 10% were significantly reduced, and small floods or flood pulses

with frequencies of 10–40% were also reduced. For the low flow

TABLE 5Habitat model results: area and proportion of total area during the pre- and post-damperiod at the Xiaolangdi Reservoir on the Yellow River,
China. Habitat suitability index values were classified as follows: 0–0.3 was poor, 0.3–0.5 was moderate, and 0.5–1 was good.

Good Moderate Poor

Area (km2) Proportion (%) Area (km2) Proportion (%) Area (km2) Proportion (%)

Pre-dam 4.40 4.94 23.44 26.29 61.32 68.77

Post-dam 2.01 2.40 15.86 18.98 65.66 78.61

FIGURE 8
Habitat suitability index values were classified as good,
moderate, or poor during the pre- and post-dam period at the
Xiaolangdi Reservoir on the Yellow River, China.

FIGURE 9
Empirical frequency curve of daily flow at Huayuankou Station on the Yellow River, China.

Frontiers in Earth Science frontiersin.org09

Bao et al. 10.3389/feart.2022.975433

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.975433


process with a frequency greater than 80%, the variation is small. The

flow frequency suitable for the Yellow River carp habitat decreased

significantly, which had a negative effect on the spawning activities of

Yellow River carp.

Dam construction has been studied and discussed by many

scholars because of its obvious ability to disturb river hydrological

conditions. However, dam construction and water storage are not

the only human disturbance in the study area. Activities such as

agriculture and animal husbandry also have a great effect on aquatic

habitats and water quality (Zaiatz et al., 2018). We analyzed the

effect of a single reservoir—the Xiaolangdi Reservoir—on the habitat

of Yellow River carp, but this study ignores the synergistic effects of

the construction of multiple hydropower stations in the same basin

on the biological community. In areas that have multiple

hydropower stations, each station acts as a nutritional filter,

changing the physical and chemical properties of the river as

well as preventing the entry of migratory species (Barbosa et al.,

1999; Miranda et al., 2008). Future studies must consider how to

comprehensively consider the habitat factors affecting the habitat

suitability of Yellow River carp.

6 Conclusion

In this paper, a two-dimensional hydrodynamic model coupled

with a habitat suitability model was used to explore the effect of the

construction of the Xiaolangdi Reservoir on the spawning activity of

Yellow River carp, the key species in the lower reaches of the Yellow

River. The conclusions are as follows:

1) By constructing a two-dimensional hydrodynamic model and

pairing it with a habitat suitability model of the Yellow River

carp spawning ground, the spatial distribution of the HSI of

the Yellow River carp was statistically analyzed, and theWUA

of the Yellow River carp was calculated to evaluate the habitat

quality change of the Yellow River carp after the construction

of the Xiaolangdi Reservoir.

2) The construction of the reservoir reduced the WUA of the

Yellow River carp by 83.93 km2, which was 45.53% lower than

that of the natural habitat.

3) The construction of the reservoir has changed the

hydrological conditions of the river. The decrease in

water level rise and the reduction or even elimination of

the flow pulse have weakened the stimulating effect on the

spawning of aquatic organisms and have seriously affected

the habitat of the Yellow River carp.
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