AUTHOR=Wu Junfeng , Tang Zhenjie , Xu Congan , Liu Enhai , Gao Long , Yan Wenjun TITLE=Super-resolution domain adaptation networks for semantic segmentation via pixel and output level aligning JOURNAL=Frontiers in Earth Science VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.974325 DOI=10.3389/feart.2022.974325 ISSN=2296-6463 ABSTRACT=

Recently, unsupervised domain adaptation (UDA) has attracted increasing attention to address the domain shift problem in the semantic segmentation task. Although previous UDA methods have achieved promising performance, they still suffer from the distribution gaps between source and target domains, especially the resolution discrepancy in the remote sensing images. To address this problem, this study designs a novel end-to-end semantic segmentation network, namely, Super-Resolution Domain Adaptation Network (SRDA-Net). SRDA-Net can simultaneously achieve the super-resolution task and the domain adaptation task, thus satisfying the requirement of semantic segmentation for remote sensing images, which usually involve various resolution images. The proposed SRDA-Net includes three parts: a super-resolution and segmentation (SRS) model, which focuses on recovering high-resolution image and predicting segmentation map, a pixel-level domain classifier (PDC) for determining which domain the pixel belongs to, and an output-space domain classifier (ODC) for distinguishing which domain the pixel contribution is from. By jointly optimizing SRS with two classifiers, the proposed method can not only eliminate the resolution difference between source and target domains but also improve the performance of the semantic segmentation task. Experimental results on two remote sensing datasets with different resolutions demonstrate that SRDA-Net performs favorably against some state-of-the-art methods in terms of accuracy and visual quality. Code and models are available at https://github.com/tangzhenjie/SRDA-Net.