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As a supplement to empirical-statistical methods, physically basedmethods can

be employed to define rainfall thresholds for triggering landslides in areas

lacking records of landslides. The transient rainfall infiltration and grid-based

regional slope-stability model (TRIGRS), as a physically based model, has been

applied to define rainfall thresholds at the basin, slope unit, and grid cell scales.

However, as far as we know to date, the influence of soil mechanical and

hydraulic parameters on defining rainfall thresholds at various scales has not

been comprehensively evaluated. In this study, TRIGRS was used to define

rainfall intensity (I) and duration (D) thresholds at various scales for Buzhe village,

Pu’an county, Guizhou province, China, under the conditions of different soil

physical parameters. The results show that the number of rainfall thresholds

decreased with cohesion (c) and internal friction angle (φ) and increased with

soil unit weight (γs), excluding the basin scale. Threshold position varied

positively with c and φ and negatively with γs. Soil mechanical parameters

have a greater influence on the definition of rainfall thresholds based on TRIGRS

than hydraulic parameters.
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Introduction

Rainfall-induced shallow landslides mainly occur on slopes covered by a layer of

colluvium or residual soil (Salciarini et al., 2006; Montrasio and Valentino, 2007;

Montrasio and Valentino, 2008). Rainfall infiltration in slopes increases the pore-

water pressure and decreases the shear strength, thereby triggering landslides (Lim
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et al., 1996; Vanapalli et al., 1996). Thus, rainfall is recognized as

the primary trigger of shallow landslides (Campbell, 1975; Keefer

et al., 1987; Wilson, 2005), and rainfall thresholds are the most

used tools to forecast landslides (Caine, 1980; Aleotti, 2004;

Guzzetti et al., 2007; Guzzetti et al., 2008; Li et al., 2017; He

et al., 2020). Guizhou province is located in themountainous area

of southwest China. As one of the landslide-prone provinces in

China, shallow landslides frequently occur in Guizhou province

(Yu et al., 2016; Zhang et al., 2017; Lin andWang, 2018; Ma et al.,

2020). However, only few defined rainfall thresholds or landslide

early warning systems (LEWSs) exist in this area to address the

risk of shallow landslides.

Empirical-statistical and physically based methods can be

used to define rainfall thresholds (Aleotti, 2004; Guzzetti et al.,

2007; Park et al., 2019). Empirical-statistical rainfall methods

define rainfall thresholds through the statistical analysis of

rainfall conditions that have triggered landslides (Brunetti

et al., 2010; Peruccacci et al., 2012; Melillo et al., 2018).

Currently, empirical-statistical rainfall thresholds have become

the most common landslide model (i.e., the functional

relationship between weather conditions and landslide events)

in LEWSs (Calvello, 2017; Piciullo et al., 2018; Guzzetti et al.,

2020). However, empirical-statistical methods mainly rely on the

availability and quality of landslide records (Peres and

Cancelliere, 2014). They are severely limited for the areas with

incomplete or unavailable landslide records. In this case,

physically based methods are the ideal alternative.

Physically based methods define rainfall thresholds by

simulating the hydrological process of soil and slope stability

during rainfall infiltration (Salciarini et al., 2008; Salciarini et al.,

2012). TRIGRS is a physically based model for shallow landslide

prediction (Baum et al., 2002; Baum et al., 2008; Baum et al.,

2010; Alvioli and Baum, 2016). Thus, TRIGRS is widely used in

modeling the timing and distribution of shallow landslides

(Vieira et al., 2010; Lee et al., 2017; Tran et al., 2018; He

et al., 2021; Ip et al., 2021) and landslide susceptibility

mapping (Baum et al., 2005; Park et al., 2013; Marin and

Mattos, 2020). In addition to these widespread applications,

TRIGRS is applied in defining physically based rainfall

thresholds given its ability to describe the scaling behavior of

rainfall thresholds (Alvioli et al., 2014).

The Sendai Framework for Disaster Risk Reduction proposes

the goal of substantially increasing the availability and access to

multi-hazard early warning systems and disaster risk information

and assessments to people by 2030 (UNISDR, 2015). Guzzetti

et al. (2020) proposed that LEWSs can be deployed and operated

worldwide, and suggested increasing the rate of LEWS

deployment for landslide-prone areas. In some landslide-

prone areas of China, the quality of records of landslides is

poor. Although this situation has improved in recent years, the

time span and quality of existing landslide records are insufficient

FIGURE 1
(A) Location of Pu’an county (image source: SRTM data) and (B) location of the study area.
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to support the definition of empirical-statistical rainfall

thresholds. For these areas, physically based methods can

extend the application scenarios of LEWS based on rainfall

thresholds, which is important for LEWS deployment.

TRIGRS can be employed to define rainfall thresholds at

three scales, namely, basin, slope unit, and grid cell scales. At the

basin scale, the rainfall threshold is defined for the whole area.

Rainfall conditions exceeding the defined rainfall threshold can

trigger several landslides in the entire area. Alvioli et al. (2018)

used TRIGRS to define the rainfall event-duration (E-D)

threshold for Upper Tiber River Basin in Italy. Bordoni et al.

(2019) used TRIGRS to define the E-D threshold for an area of

Oltrepò Pavese in Italy. Marin and Velásquez (2020) used

TRIGRS to define the I-D thresholds for the Envigado Basin

of Colombia under the conditions of different soil hydraulic

properties. Marin et al. (2020) used TRIGRS to define the I-D

thresholds for 93 small basins in Colombian Andes and analyzed

the effect of basin morphometric parameters on defined I-D

FIGURE 2
(A) Geology map of the study area and (B) spatial distribution of soil types.

TABLE 1 The range and average of soil samples measurements in the study area.

Parameters Unit Red loam (zone 1) Lime soil (zone 2)

Range Average Range Average

Cohesion (c) Kpa 9.08–12.19 10.68 43.55–48.32 46.11

Internal friction angle (φ) ° 14.23–16.44 15.6 21.62–25.53 23.5

Unit weight of soil (γs) KN/m 17.72–19.61 18.86 18.84–20.54 19.27

Saturated hydraulic conductivity (Ks) m/s 4.36×10−6–7.88×10−6 6.12×10−6 1.49×10−6–3.17×10−6 2.46×10−6

Hydraulic diffusivity (D0) m/s - 6.12×10−4 - 2.46×10−4

Saturated water content (θs) - - 0.54 - 0.63

Residual water content (θr) - - 0.03 - 0.01

Fitting parameter (αG) m−1 - 0.5 - 1.3
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thresholds. Marin et al. (2021) used TRIGRS to define the I-D

thresholds for La Arenosa and La Liboriana Basins in Colombian

Andes. At the slope unit scale, rainfall thresholds are defined for

slope units with critical rainfall. Rainfall conditions exceeding the

defined rainfall thresholds can trigger landslides in the

corresponding slope units. Alvioli et al. (2014) used TRIGRS

to define the I-D thresholds for several sub-basins of the Upper

Tiber River Basin. Zhang et al. (2022) divided Dabang village,

Pu’an County, Guizhou Province, China, into several slope units

and used TRIGRS to define the I-D thresholds for the slope units

with critical rainfall. At the grid cell scale, rainfall thresholds are

defined for grid cells with critical rainfall. Rainfall conditions

exceeding the defined rainfall thresholds can trigger landslides in

the area of the corresponding grid cells. Marin (2020) used

TRIGRS to define the I-D thresholds for grid cells with

critical rainfall in the Envigado Basin. Marin et al. (2021)

used TRIGRS to define the I-D thresholds for grid cells with

critical rainfall of La Arenosa and La Liboriana Basins.

Detailed and accurate soil parameters (e.g., soil depth, soil

mechanical, and hydraulic parameters) are required to properly

apply TRIGRS. However, obtaining substantial information on

distributed soil properties at a large scale is a challenge, especially

regarding soil physical properties (i.e., mechanical and hydraulic

parameters) (Gariano and Guzzetti, 2016; Zhang et al., 2018).

Uncertainties in soil parameters are caused by complex

geological conditions, spatial variability, and laboratory

measurement (Catani et al., 2010; Ho et al., 2012; Corominas

et al., 2014; Bicocchi et al., 2015), which make it impossible to

eliminate all uncertainties. In terms of using TRIGRS to predict

the spatiotemporal information of shallow landslides and

landslide susceptibility mapping, the influence of soil

mechanical and hydraulic parameters on the prediction and

mapping results has been extensively explored (Salciarini

et al., 2006; Montrasio et al., 2011; Bordoni et al., 2015; Gioia

et al., 2016; He et al., 2016; Ciurleo et al., 2017; de Lima Neves

Seefelder et al., 2017; Weidner et al., 2018; Ciurleo et al., 2019).

Some probabilistic approaches have been adopted with TRIGRS

to quantitatively account for soil parameter uncertainties (Raia

et al., 2014; Salciarini et al., 2017). In these probabilistic

approaches, the input parameters are considered random

variables, and the output is the probability of failure.

However, few studies have explored the influence of soil

mechanical and hydraulic parameters on the definition of rainfall

thresholds based on TRIGRS. Only Marin and Velásquez (2020)

explored the effect of soil hydraulic parameters on the position of

rainfall thresholds defined at the basin scale. The performance of

the rainfall threshold requires evaluation before applying it in

LEWSs (Piciullo et al., 2017; Segoni et al., 2018). Exploring the

influence of soil physical parameters on the rainfall thresholds

FIGURE 3
The flowchart of the definition of I-D thresholds based on TRIGRS (A) at the basin scale and (B) at the slope unit scale.
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defined by using TRIGRS can facilitate the evaluation of the

physically based rainfall thresholds.

In this study, Buzhe village, Pu’an county, Guizhou province

of China was taken as the study area. The soil mechanical and

hydraulic parameters measured by field sampling were taken as

standard values. In each TRIGRS simulation, a parameter was

varied by the given proportion and the rest remained constant.

Then, the I-D thresholds at various scales were defined under the

conditions of given physical parameters. Finally, the influence of

soil physical parameters on the number and position of rainfall

thresholds was explored by comparing the simulated Fs maps

and defined thresholds.

Study area

Pu’an county, which is located in southwest Guizhou province

of China (Figure 1), has tremendous undulating terrains, and the

dissolution and erosion of landforms are staggered. Moreover, soft

rocks such as siltstone and sandstone are widespread. These soft

rocks are easily weathered into the eluvium and slope wash. As for

rainfall, the average annual precipitation of Pu’an county is

1,443 mm. Owing to the complex geological setting and rainy

environment, Pu’an county is one of the landslide-prone counties

in Guizhou province.

Lower Triassic sandstone and clay rock, Upper Permian

siltstone, sandstone, and clay rock, and Upper Permian

limestone and siltstone are distributed in the study area

(Figure 2A). The soil types in the study area are red loam and

lime soil (Figure 2B). The distribution of each soil type is

consistent with the corresponding soil parent material. Red

loam is distributed on sandstone, siltstone, and clay rock.

Lime soil is distributed on limestone.

Data

Digital elevation model

The input data for TRIGRS are topographic factors, soil

parameters, soil thickness, and initial conditions for surface flux

and groundwater table. As for topographic factors, the 10-m

resolution DEM was taken as input. Other required input slopes

and flow direction maps were generated using ArcGIS software

based on the DEM data.

Soil parameters

The input soil mechanical parameters include γs, φ, and c. The

input hydraulic parameters include saturated hydraulic conductivity

(Ks), hydraulic diffusivity (D0), saturated water content (θs),

residual water content (θr), and fitting parameter (αG) of

Gardner’s model for the soil water characteristic curve (SWCC)

(Gardner, 1958). A total of 18 samples of red loam and 10 samples of

lime soil were collected at the 14 sampling locations (Figure 2B). The

mechanical parameters were measured through laboratory static

triaxial experiments. The hydraulic parameters were measured

through laboratory variable tap penetration experiments. For

each parameter, the average of the measurements was taken as

the standard value (Table 1). Regarding θs, θr, and αG, this study

determined the parameters for the Gardner model (used in

TRIGRS) based on the Van Genuchten model (Van Genuchten,

1980) for SWCC of typical soil types in Guizhou province (Zhao,

2021). The volumetric water contents were the same in the two

models for each soil type, and αG was fitted to be within the limits of

the Van Genuchten curves, as suggested by Marin (2020).

c, φ, and γs were taken 0.8, 0.9, 1.1, and 1.2 times the standard

values as input. Ks and D0 were taken 0.7, 0.8, 1.2, and 1.3 times

standard values as input. The input mechanical and hydraulic

parameters were assigned to each grid cell according to the spatial

FIGURE 4
The flowchart of the definition of I-D thresholds based on
TRIGRS at the grid cell scale.
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FIGURE 5
The number of objects with critical rainfall (A) slope units and (B) grid cells.

FIGURE 6
I-D thresholds defined at the basin scale under given soil mechanical and hydraulic parameters: (A) c, (B) φ (the thresholds were the same under
the condition of 1.1·φ and 1.2·φ), (C) γs, and (D) Ks.
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distribution of soil types in the study area (Figure 2B). One parameter

was changed, and the remaining parameters were kept constant for

each simulation. A total of 20 simulations were performed.

Soil thickness significantly influences the simulation results

of TRIGRS (Tran et al., 2018). Many studies have shown that the

linear relation of slope angle and soil thickness to characterize the

soil thickness map can obtain suitable simulation results of

TRIGRS (Viet et al., 2017; Tran et al., 2018; He et al., 2021).

The relationship assumes that soil thickness (y) is in inverse

proportion to slope angle (x), that is, the minimum soil thickness

(0.1 m) corresponds to the maximum slope (69.41°) and the

maximum soil thickness (3.3 m) corresponds to the minimum

slope (0.1°). From the relationship, the soil thickness map was

generated by the linear equation (Eq. 1). The units of y and x are

meter and degree, respectively.

y � −0.04617x + 3.3. (1)

The input initial conditions include initial surface flux (Iz)

and initial groundwater table. Given the complex properties of

soil (e.g., void and uniformity), Iz is difficult to measure using

laboratory tests. Thus, the empirical relationship between Iz and

Ks was used to determine Iz. This study set Iz to be 0.01 ofKs and

set the initial groundwater table to be the same as the soil

thickness, as suggested by Kim et al. (2010), Park et al.

(2013), Lee et al. (2017), and Viet et al. (2017).

Methods

TRIGRS model

The TRIGRS model is designed for simulating the timing and

distribution of shallow landslides by computing the transient

pore-pressure changes and attendant changes in the factor of

safety of slope caused by rainfall infiltration (Baum et al., 2002;

Baum et al., 2008; Baum et al., 2010; Alvioli and Baum, 2016).

FIGURE 7
I-D thresholds defined at the basin scale under the conditions: (A) 0.8·D0, (B) 0.9·D0, (C) 1.1·D0, and (D) 1.2·D0.
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Infiltration models include the models for saturated initial and

unsaturated initial conditions. For saturated initial conditions,

infiltration models in TRIGRS adopt Iverson’s linearized solution

(Iverson, 2000) of the Richards equation (Richards, 1931). For

unsaturated initial conditions, infiltration models in TRIGRS

adopt the analytical solution of the Richards equation for

unsaturated soil proposed by Srivastava and Yeh (1991) to

approximate the infiltration process and the Gardner model to

describe SWCC (Gardner, 1958). TRIGRS simulates the slope

stability based on the infinite-slope model (Taylor, 1948). The

slope stability is represented by Fs, which is calculated as follows:

Fs(Z, t) � tanϕ′
tanδ

+ c′ − ψ(Z, t)γw tanϕ′
γSZsinδcosδ

, (2)

where γw and γS represent the unit weights of water and soil,

respectively; c′ is the effective soil cohesion; ϕ′ is the effective soil
internal friction angle; δ is the slope angle; and ψ(Z, t) is the
pressure head as a function of depth Z and time t. Failure is

predicted when Fs < 1, and stability holds when Fs ≥ 1. The

simulation results of Fs are visualized on GIS software. The

latest version (v2.1) of TRIGRS was used in this study (Alvioli

and Baum, 2016).

Definition of I-D thresholds at the basin
scale

In this study, the method proposed by Marin and

Velásquez (2020), Marin et al. (2020), and Marin et al.

(2021) was used to define the I-D thresholds at the basin

scale. This method proposed two ratios, namely, the critical

failure area ratio (ac) and failing area ratio (af), where ac is the

ratio that excludes unconditionally unstable grid cells

(i.e., Fs < 1 without rainfall). At the basin scale, af is

calculated as the ratio of the area of grid cells with Fs < 1 to

the area of study area.

Figure 3A shows the flowchart of the definition of I-D

thresholds at the basin scale. TRIGRS was run with a set of I-

FIGURE 8
I-D thresholds defined at the slope unit scale under given soil mechanical and hydraulic parameters: (A) c, (B) φ, (C) γs, and (D) Ks.
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D conditions to simulate. In the simulation, I was increased from

2 mm/h to 30 mm/h, with an increment step of 2 mm/h. D was

increased from 2 to 60 h, ranging from 2 to 20 h with an

increment step of 2 h and ranging from 20 to 60 h with an

increment step of 4 h. For each I-D condition, af was calculated

and compared with ac. If af ≥ ac, the I-D condition was regarded

to cause instability. This study defined rainfall thresholds using

the ac of 1%.

Before fitting, the I-D conditions that cause instability were

screened to exclude the I-D conditions with the same I or D

values (Zhang et al., 2022). Then, the screened I-D conditions

were plotted in a log–log plot (logI vs logD). Also, the

distribution of I-D conditions was fit to be the linear equation

of Eq. 3.

log I � β logD + log α, (3)

where I is the rainfall intensity (mm/h),D is the rainfall duration

(h), β is the slope, and logα is the intercept. After getting the α

and β, Eq. 3 was transferred into the power law equation (Eq. 4).

I � αDβ, (4)

Definition of I-D thresholds at the slope
unit scale.

In this study, the method proposed by Zhang et al. (2022) was

used to define I-D thresholds at the slope unit scale. The slope

units were delineated based on ridge and valley lines obtained by

using hydrology analysis tools in ArcGIS. (Xie et al., 2004; Wei

et al., 2018).

The flowchart of the definition of I-D thresholds at the slope

unit scale is shown in Figure 3B. The definition of rainfall

thresholds at the slope unit scale involves defining rainfall

FIGURE 9
I-D thresholds defined at the slope unit scale under the conditions: (A) 0.8·D0, (B) 0.9·D0, (C) 1.1·D0, and (D) 1.2·D0.
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thresholds for slope units with critical rainfall (i.e., under the

given rainfall conditions, the slope units can reach instability).

For each slope unit, af was calculated as the area of unstable grid

cells within its range to the area of the slope unit. The remaining

steps were the same as those for the basin scale.

Definition of I-D thresholds at the grid cell
scale.

In this study, the method proposed by Marin (2020) was

used to define I-D thresholds at the grid cell scale. Defining

rainfall thresholds at the grid cell scale involves defining

rainfall thresholds for grid cells with critical rainfall, that

is, under the given rainfall conditions, the grid cells can

reach instability. At the grid cell scale, the rule for

determining I-D conditions causing instability was Fs<1.
The remaining steps were the same as the abovementioned

methods (Figure 4).

Rainfall thresholds defined at any scale are not applicable to

rainfall events of any rainfall duration. The defined rainfall

thresholds are valid for a range of duration with initial and

final durations. The initial duration is the duration that causes

the whole study area or each slope unit unstable for the first time.

The final duration is the maximum duration at which the

increase in duration no longer affects the stability for the

given range of intensities.

Results

Factor of safety maps

When I and D are at the maximum, that is, I = 30 mm/h and

D = 60 h, the Fs maps under different soil mechanical and

hydraulic parameters conditions can reflect the number of

slope units and grid cells with critical rainfall and whether the

whole study area has critical rainfall.

Supplementary Video 1 (in the supplementary material)

shows the distribution variation of grid cells with Fs < 1 under

the maximum I-D condition when c, φ, and γs were 0.8, 0.9, 1.1,

and 1.2 times the standard values. The whole study area had

critical rainfall under given soil mechanical parameters. Figure 5

shows the number of slope units and grid cells with critical

rainfall under given soil physical parameters. When cwas 0.8, 0.9,

1.1, and 1.2 times the standard value, the number of slope units

with critical rainfall was 46, 45, 39, and 36, respectively. The

number of grid cells with critical rainfall was 13,518, 11,585,

7,613, and 3,414, respectively. The number of slope units and grid

cells with critical rainfall decreased when c increased. When φ

FIGURE 10
Location of the monitored unstable slope, coal mine, and built buffer zone.
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was 0.8, 0.9, 1.1, and 1.2 times the standard value, the number of

slope units with critical rainfall was 45, 44, 40, and 40,

respectively. The number of slope units with critical rainfall

was 10,930, 10,201, 8,800, and 8,122, respectively. The number

of slope units and grid cells with critical rainfall decreased when φ

increased. When γs was 0.8, 0.9, 1.1, and 1.2 times the standard

value, the number of slope units with critical rainfall was 37, 40,

45, and 45, respectively. The number of grid cells with critical

rainfall was 4,324, 7,789, 10,680, and 11,639, respectively. The

number of slope units and grid cells with critical rainfall

increased when γs increased.

Supplementary Video 2 (in the supplementary material)

shows the distribution variation of grid cells with Fs < 1 under

the maximum I-D condition when Ks and D0 were 0.7, 0.8, 1.2,

and 1.3 times the standard values. In these cases, the whole study

area had critical rainfall. The number of slope units and grid cells

with critical rainfall was 41 and 9,502. The number of slope units

and grid cells with critical rainfall did not vary with Ks or D0.

I-D thresholds at the basin scale

Supplementary Video 3 (in the supplementary material)

show the variation of I-D thresholds defined at the basin scale

when c, φ, and γs were 0.8, 0.9, 1.1, and 1.2 times the standard

values. Figures 6A–C show the comparison of thresholds defined

at the basin scale under given c, φ, and γs values, respectively. The

results showed that the threshold with higher c or φ was located

on the higher part of the graph. The threshold with higher γs was

located on the lower part of the graph.

Supplementary Video 4 (in the supplementary material)

and Figure 7 show the variation of thresholds defined at the

basin scale whenKs andD0 were 0.7, 0.8, 1.2, and 1.3 times the

standard values. Figure 6D shows the comparison of

thresholds defined at the basin scale under given Ks values.

The results showed that the variation in Ks did not

significantly influence the position of thresholds defined at

the basin scale. The threshold with higher Ks had a larger

FIGURE 11
I-D thresholds defined at the grid cell scale under different soil mechanical and hydraulic parameters: (A) c, (B) φ (the thresholds were the same
under the condition of 1.1·φ and 1.2·φ), (C) γs , and (D) Ks .
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applicable duration range. Meanwhile, under the condition

evaluated, D0 did not influence the position of thresholds

defined at the basin scale.

I-D thresholds at the slope unit scale

Supplementary Video 5 (in the supplementary material)

show the variation of I-D thresholds defined at the slope unit

scale whenc, φ, and γs were 0.8, 0.9, 1.1, and 1.2 times the

standard values. Figures 8A–C show the comparison of

thresholds defined at the slope unit scale under given c, φ,

and γs values, respectively. The results showed that the

thresholds with higher c or φ tended to be the higher part of

the graph. The thresholds with higher γs tended to be the lower

part of the graph.

Supplementary Video 6 (in the supplementary material) and

Figure 9 show the variation of thresholds defined at the slope unit

scale when Ks and D0 were 0.7, 0.9, 1.1, and 1.2 times the

standard values. Figure 8D shows the comparison of thresholds

defined at the slope unit scale under given Ks values. The results

showed that the variation in Ks did significantly influence the

position of thresholds defined at the slope unit scale. The

thresholds with higher Ks tended to be applicable to large

duration ranges. D0 did not influence the position of

thresholds defined at the slope unit scale under the condition

evaluated.

I-D thresholds at the grid cell scale

Amonitored unstable slope is located near a coal mine in the

study area. A buffer zone was built with a radius of 50 m around

the unstable slope (Figure 10). I-D thresholds were defined for

the grid cells with critical rainfall in the buffer zone.

Supplementary Video 7 (in the supplementary material)

show the variation of I-D thresholds defined at the grid cell

scale when c, φ, and γs were 0.8, 0.9, 1.1, and 1.2 times the

FIGURE 12
I-D thresholds defined at the grid cell scale under the conditions: (A) 0.8·D0, (B) 0.9·D0, (C) 1.1·D0, and (D) 1.2·D0.
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standard values. Figures 11A–C show the comparison of

thresholds defined at the grid cell scale under given c, φ, and

γs values, respectively. The results showed that the thresholds

with higher c or φ tended to be the higher part of the graph. The

thresholds with higher γs tended to be the lower part of the graph.

Supplementary Video 8 (in the supplementary material)

and Figure 12 show the variation of I-D thresholds defined at

the grid cell scale when Ks and D0 were 0.7, 0.9, 1.1, and

1.2 times the standard values. Figure 11D shows the

comparison of thresholds defined at the gird cell scale

under given Ks values. The results showed that the

variation in Ks did significantly influence the position of

thresholds defined at the grid cell scale. The thresholds

with higher Ks tended to be applicable to large duration

ranges. D0 did not influence the position of

thresholds defined at the grid cell scale under the condition

evaluated.

Discussion

The methods of defining rainfall thresholds at different

scales have their own characteristics. At the basin scale, given

that the threshold is defined for the entire area, the process is

the simplest. However, the defined threshold can only judge

the occurrence of landslides and cannot provide detailed

spatial information for landslide prediction. At the slope

unit scale, given that the thresholds are defined for slope

units with critical rainfall, the process is relatively

complicated. The defined thresholds can provide spatial

information specific to the range of slope units for

prediction. At the grid cell scale, given that the thresholds

are defined for grid cells with critical rainfall, the process is the

most complicated. The defined thresholds can provide the

most spatial information (i.e., specific to the range of grid

cells) for prediction. When defining rainfall thresholds at the

basin and slope unit scales, an additional condition is used to

determine whether I-D conditions cause instability (af > ac).

When defining rainfall thresholds at the grid cell scale, the rule

for determining whether I-D conditions cause instability is

simply Fs < 1 without additional conditions.

Soil physical parameters influence the number and

position of rainfall thresholds defined at various scales. The

number of rainfall thresholds is the number of objects warned

by thresholds (i.e., the objects with critical rainfall). At the

basin scale, the rainfall threshold was defined for the entire

study area, and the entire study area had critical rainfall under

the considered conditions in this study. At the slope unit and

grid cell scales, the number of rainfall thresholds was

positively correlated with γs and negatively

correlated with c and φ. Ks and D0 did not cause any

variation (Figure 5).

For threshold position, the position of thresholds varied

positively with c and φ and varied negatively with γs. Under

the considered conditions, Ks did not significantly influence

the threshold position. The thresholds with higher Ks were

applicable to larger duration ranges. D0 did not influence the

threshold position. Marin and Velásquez (2020) discovered

that Ks did not produce a noticeable variation on the position

of the I-D threshold defined at the basin scale, and D0 did not

affect the position of threshold, which are in line with the

results of this study. Wu et al. (2017) conducted a sensitivity

analysis of soil physical parameters to evaluate the rainfall

threshold determined by using TRIGRS. In the literature (Wu

et al., 2017), rainfall threshold is defined as the critical rainfall

condition causing the simulated Fs to be less than a specific

critical value under a specific warning duration. Actually, this

study conducted the sensitivity analysis of soil physical

parameters to Fs. Wu et al. (2017) proposed that Fs varied

positively with c and φ, negatively with γs. c, and φ, and γs
affected Fs more significantly than Ks and D0. Thus, the

influence of soil physical parameters on the

position of rainfall thresholds is the same as the influence

on Fs.

TRIGRS does not have a function for defining rainfall

thresholds. Rainfall thresholds are defined by analyzing the

relationship between the output Fs grid and the input rainfall

conditions of TRIGRS. The conditions for determining

landslide occurrence differ in defining rainfall thresholds

at various scales. The methods at the basin and slope unit

scales take the condition that serval grid cells with Fs < 1 exist

for given rainfall conditions to determine landslide

occurrence, which is to analyze the overall behavior of

unstable grid cells. The method at the grid cell scale

analyzes the individual behavior of a single unstable grid

cell by treating a single grid cell with Fs < 1 as a landslide. The

variation of Fs of a random single grid cell directly influences

the definition of rainfall thresholds at the grid cell scale. For

example, under the conditions of c was 0.8 and 1.2 times the

standard value, the variation in the number of grid cells with

Fs < 1 is 10,104. The variation directly caused the variation of

10,104 for the number of rainfall thresholds defined at the

grid cell scale. However, the variation only caused the

variation of 10 for the number of rainfall thresholds

defined at the slope unit scale. Thus, the method at the

grid cell scale is easier affected by the uncertainty and

spatial variability of soil physical parameters.

Conclusion

The influence of soil mechanical and hydraulic parameters

on the definition of I-D thresholds based on TRIGRS can be

divided into the influence on the number of rainfall thresholds

and threshold position.
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The number of rainfall thresholds defined at the slope unit

and grid cell scale decreased with c and φ, increased with γs, and

did not vary with Ks and D0. Under the considered conditions,

the number of thresholds defined at the basin scale was not

affected by soil physical parameters.

The position of rainfall thresholds varied positively with c

and φ and negatively with γs. Ks did not produce a noticeable

variation in the threshold position. D0 did not

influence the threshold position. The

thresholds with greater Ks were applicable to larger

duration ranges.

Soil mechanical and hydraulic parameters have less effect

on rainfall thresholds defined by analyzing the overall

behavior of unstable grid cells (i.e., basin and slope unit

scales) than the thresholds defined by analyzing

the individual behavior of unstable grid cells (i.e., grid cell

scale).
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