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In this study, the high-resolution ensemble prediction system COSMO

(Consortium for Small Scale) EPS is used to predict the extreme rainstorm

that occurred from 27 to 31 August 2018 in Guangdong Province, China, which

leads to intensities exceeding historical extreme values. COSMO EPS is run with

a 2.8-km grid spacing, allowing for an explicit treatment of deep convection,

and 24 members of the EPS are initialized and laterally driven by the ICON

(ICOsahedral Nonhydrostatic) global model. We compare the predictions of

COSMO EPS against observations derived from the global precipitation

measurement (GPM) and with ensemble forecasts of both mesoscale EPS

and global EPS provided by GRAPES (Global and Regional Assimilation and

PrEdiction System), and with the deterministic forecasts of global models ICON

and ECMWF (European Centre for Medium-Range Weather Forecasts). Model

performances are evaluated both by gridpoint-based scores, such as the

equitable threat score (ETS), and by the Method for Object-based Diagnostic

Evaluation (MODE) for spatial verification. According to our results, COSMO EPS

could perform better forecasts for the rainstorms taken place in eastern

Guangdong than other models. However, the location and coverage area of

its predicted rainstorm is eastward and smaller in contrast with the observations.

Therefore, COSMO EPS exhibits relative high performance by object-based

spatial evaluations, while it could not display evident superiority in terms of the

gridpoint-based scores. The cause analysis of this extreme rainstorm shows that

Guangdong Province of China is mainly affected by monsoon depression.

Southwesterly and southerly winds continuously transport water vapor from

the South China Sea to Guangdong Province. The southwest monsoon low-

level jet advances northward over time, which promotes the occurrence and

development of continuous heavy precipitation in the coastal areas of

Guangdong. In an additional experiment, we investigate the benefit of

assimilation of radar data, by applying the latent heat nudging (LHN)

approach based on surface-based radar observations to the COSMO EPS.
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Subsequently, the prediction by assimilation of radar data more reasonably

reproduces the spatial distribution of precipitation observations, while the

coverage and intensity of the rainstorm in eastern Guangdong are still not

reflected satisfactorily.
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latent heat nudging, dynamic downscaling

1 Introduction

During the period of 27–31 August 2018, a continuous, long-

lasting, and heavy precipitation occurred in the Guangdong

Province, especially over the southern part of the Pearl River

Delta and eastern Guangdong. Both the total accumulated

precipitation over 5 days and daily precipitation over the

Huidong and Luhe regions exceeded historical maxima. From

21 UTC on 30 August to 21 UTC on 31 August, 1,057 mm of

precipitation fell over Gaotan Town in Huidong, resetting the

historical maximum for the whole Guangdong Province and for

non-typhoon precipitation over mainland China. This extreme

rainstorm event caused 23 reservoirs in Guangdong to exceed the

flood limit, and many places suffered severe waterlogging lasting

for more than a week. The lives of 1.9 million people were

strongly affected, with two people dying and two missing. The

direct economic loss exceeded 0.5 billion USD.

Guangdong Province is adjacent to the western Pacific

Ocean, the South China Sea, and the Bay of Bengal. Thus, it

is usually influenced by the East Asian monsoon, the Indian

monsoon, the western Pacific subtropical high, and typhoons,

resulting in abundant water vapor and frequent rainstorms (Wu

et al., 2018). The monsoon depression usually brings heavy but

not extreme precipitation to Guangdong. However, the extreme

rainstorm that occurred at the end of summer 2018 in

Guangdong was closely related to the monsoon depression.

None of the numerical models such as ECMWF (European

Centre for Medium-Range Weather Forecasts) used by the

Guangdong (Provincial) Meteorological Bureau successfully

predicted this event.

Extreme precipitation forecasting is one of the major

challenges in numerical weather prediction (NWP). Many

NWP models remain unable to predict the extreme weather

resulting from small-scale processes to a satisfactory degree

because of insufficient spatial resolution. Regional high-

resolution (~1 km) NWP (HR-NWP) models have been

developed to improve the prediction skill of these events

(Roberts et al., 2009; Mahoney et al., 2012; Sun et al., 2014;

Hoogewind et al., 2016) by better and more explicitly describing

themesoscale processes based on their non-hydrostatic dynamics

(Mass et al., 2002; Kain et al., 2008; Tang et al., 2013; Soares et al.,

2017; Knist et al., 2020). Nowadays, many national

meteorological centers operate HR-NWP models to provide

guidance for extreme weather warnings (Saito et al., 2006;

Skamarock and Klemp 2008; Staniforth and Wood 2008;

Weisman et al., 2008; Bouttier 2009; Baldauf et al., 2011; Seity

et al., 2011).

Since 2003, the Deutscher Wetterdienst (DWD; German

national meteorological service) has developed the convective-

scale HR-NWP model COSMO (Consortium for Small Scale

Modeling) with a horizontal grid spacing of 2.8 km, which has

been used for operational forecasts since April 2007. A detailed

model description can be found in the studies by Doms and

Schättler (1999), Steppeler et al. (2003), and Rockel et al. (2008).

Many studies have indicated the capability of the COSMOmodel

to simulate well severe weather events (Hohenegger et al., 2008;

Seifert et al., 2008; Schlüter and Schädler 2010; Bentzien and

Friederichs 2012; Kober et al., 2012; Sokol et al., 2014; Beck et al.,

2016), and the model has been implemented as the atmospheric

component in the regional Terrestrial SystemModeling Platform

(TerrSysMP, Shrestha et al., 2014; Simmer et al., 2014).

It is consensual that perfect numerical weather forecasts can

never be achieved because even the small uncertainties associated

with models and initial conditions will inevitably increase,

eventually making any deterministic forecasts probably useless

(Lorenz 1963, 1969). An ensemble prediction system (EPS)

produces a limited number of ensemble forecasts to estimate

the future atmospheric state instead of one deterministic forecast,

which not only improves the forecast accuracy but also provides

information about forecast uncertainty (Leith, 1974; Buizza et al.,

2005; Bowler et al., 2008; Bouttier et al., 2012; Röpnack et al.,

2013; Ben Bouallègue and Theis, 2014; Beck et al., 2016).

COSMO-DE-EPS is a regional EPS with 20 ensemble

members based on COSMO-DE and running operationally at

DWD every 3 h with a resolution of 2.8 km, producing 27-h

forecasts (up to 45 h at 03 UTC) since May 2012. The

uncertainties of the COSMO-DE-EPS are described by

perturbations of the initial state, lateral boundary conditions,

and model physics (Gebhardt et al., 2011; Peralta et al., 2012;

Kühnlein et al., 2014). On 15 May 2018, COSMO-DE-EPS was

upgraded with the horizontal resolution increasing from 2.8 to

2.2 km, and now it is called COSMO-D2-EPS (Hess, 2020).

In this study, we apply the COSMO EPS under the

framework of TerrSysMP to South China and verify its ability

to predict the heavy precipitation event over the Guangdong

Province, evaluating its performance against other models. In

Section 2, we describe the experiment design including the study

region, model configuration, observations, and the other model
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datasets that are compared with the COSMO forecasts. A

subsection introduces the adopted gridpoint-based and object-

based verification techniques. The comparisons among COSMO

predictions, observations, and other model predictions as well as

the impact of mesoscale data assimilation on COSMO forecasts

are presented in Section 3. A summary and discussion are

provided in Section 4.

2 Data and methods

2.1 Experiment design

2.1.1 Study region
Guangdong Province is located in the southernmost part of

mainland China, which is located between 20°13′N–25°31′N and

109°39′E–117°19′E. It is mostly characterized by a subtropical

monsoon climate with hot and rainy summers and mild and dry

winters. The annual mean precipitation in this province is

1,774 mm, and its annual mean temperature is 21.9°C. The

terrain is high in the north and low in the south, with an

average altitude of 100 m and a maximum altitude of 1,902 m.

The province is the one most affected by typhoons in China.

Figure 1 shows the model domain used for COSMO in this study

(dashed line), which has a spatial extension of roughly 2,240 ×

1,176 km2.

2.1.2 COSMO model configuration
All our predictions are performed with the COSMO model,

version 5.01. The model is constructed based on the primitive

thermo-hydrodynamical equations describing the compressible

flow of a moist atmosphere. The model equations are formulated

in rotated geographical coordinates with a generalized terrain

following a height coordinate (http://www.cosmo-model.org/).

The north pole is shifted in order to allow for similar grid area

extensions within the model area. The grid specifications for our

experiments are summarized in Table 1.

The regional model COSMO (2.8 km) uses predictions from

the global model ICON (ICOsahedral Nonhydrostatic; Zängl

et al., 2015) with the horizontal resolution of 13 km as initial and

lateral boundary conditions in our experiments. While the

boundary conditions for COSMO are only available every 3 h,

the model automatically (linearly) interpolates between these

times so that boundary conditions are available at any time.

Table 2 provides the basic model configuration parameters we

used for the COSMO predictions. Since tropical and sub-tropical

regions, as well as rough mountainous regions, are contained in

the model domain, the bottom height from which the Rayleigh

sponge layer extends to the top of the model domain needs to be

adjusted from its default value of 11–14 km (Wang et al., 2013).

The width of the lateral boundary relaxation layer is

recommended to be 10 to 15 times the grid mesh size; thus, it

is set to 28 km. The COSMO predictions are initialized daily at

00 UTC and run for 24 h from 27 to 31 August 2018.

The COSMO EPS used in our study is a multi-physics

ensemble. The different parameter values of the COSMO

model physics package used in our experiments are set

following the COSMO-DE-EPS guidance document (Kühnlein

et al., 2014) and are listed in Table 3. For the EPS, four parameters

are perturbed: the scaling factor for the thickness of the laminar

boundary layer for heat rlam_heat, themean entrainment rate for

shallow convection entr_sc, the critical value for normalized

over-saturation q_crit, and the asymptotic maximal turbulent

distance tur_len. To perturb the parameters equally and taking

the dependencies between the various parameters into account,

the product of the perturbation parameters rlam_heat and

rat_sea (ratio of laminar scaling factors for heat over sea and

land) should be kept constant (Theis et al., 2017). Thus, a total of

24 ensemble members are finally obtained by using all possible

combinations of default and perturbed values of the four

parameters listed in Table 3.

2.2 Forecasts from other operational
prediction systems

We compare the COSMO EPS precipitation forecasts

with the deterministic forecasts of its global driving

model ICON, the deterministic forecasts of the

European Centre for Medium-Range Weather Forecasts

(ECMWF), and the ensemble forecasts of two GRAPES

(Global and Regional Assimilation and PrEdiction System)

EPSs, which are running operationally at China

Meteorological Administration (CMA) (for details, see

Table 4).

FIGURE 1
The study region encompasses the Guangdong Province.
Themodel domain of COSMO is indicated by the black dashed line
with its elevations above sea level displayed according to the color
bar. Thin black lines indicate the coastline and borders
between Chinese provinces; the full black line indicates the
continental Chinese–Vietnamese border.
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The GRAPES model has a fully compressible dynamical core

based on the non-hydrostatic approximation, a semi-implicit and

semi-Lagrangian scheme for time integration, and a height-based

terrain-following sigma coordinate system (Chen et al., 2019).

GRAPES mesoscale EPS (GRAPES MEPS) has 15 ensemble

members covering all regions of China, for which the initial

conditions and lateral boundary conditions are downscaled from

the corresponding members of the GRAPES global EPS

(GRAPES GEPS; Zhang et al., 2014; Xia et al., 2019).

GRAPES GEPS uses gridded statistical interpolation (GSI) for

the operational data assimilation, while ensemble data

assimilation (EDA) is employed by ECMWF. The global

model ICON running operationally at DWD adopts a hybrid

method with an assimilation cycle of 3 h, which consists of an

ensemble transform Kalman filter (ETKF) coupled with a three-

dimensional variational analysis (3D-VAR).

2.3 Verifying data

The global precipitation measurement (GPM) with a

horizontal resolution of 0.1° × 0.1° provided by the new

generation of precipitation observation satellites is used as the

observation. The GPM satellite was launched on 27 February

2017. It inherits and improves the algorithm and the detection

technology of the TRMM (Tropical Rainfall Measuring Mission)

satellite. The dual-frequency radar observation system is first

adopted to provide precipitation data with higher spatiotemporal

resolution over a wider spatial area, contributing to more

accurate descriptions of the precipitation distribution (Liu

et al., 2017; Huffman et al., 2019). All forecast data are

regridded to the observation grid.

In addition, the estimated precipitation rates derived from

ten S-band Doppler radars covering the Guangdong Province via

classic Z–R relations are used for latent heat nudging (LHN)

experiments, which are further discussed in Section 3.3. The

average separation of these radars is 100–150 km, and the

maximum observed range is 230 km.

TABLE 1 Grid specifications of the COSMO model.

Longitude (deg) Latitude (deg)

Horizontal grid

Rotated north pole location 65W 66 N

Rotated grid extension −10 to 10 −7 to 3.5

Rotated grid resolution 0.025 0.025

Number of grid points 800 420

Vertical grid

Number of vertical layers 50

The height of the 1st, 10th, 20th, 30th, 40th, and 50th vertical layer (unit: m) 22,000, . . . , 13,998.57, . . . , 7,539.64, . . . , 3,295, . . . , 907.5, . . . , 20

TABLE 2 Basic model configuration parameters for COSMO.

Model configuration

Convection scheme Shallow convection based on Tiedtke scheme

Lateral relaxation layer (rlwidth, km) 28

Rayleigh damping layer (rdheight, km) 14

Microphysics scheme Graupel scheme

Turbulence scheme Prognostic turbulent kinetic energy (TKE)

Radiation scheme Ritter and Geleyn (1992)

TABLE 3 Parameter values of the COSMOmodel physics package used
for the ensemble members of the COSMO EPS. Parameter
rlam_heat is the scaling factor for the thickness of the laminar
boundary layer for heat; entr_sc is the mean entrainment rate for
shallow convection; q_crit is the critical value for normalized
over-saturation; and tur_len is the asymptotic maximal turbulent
distance. The first line of numbers gives the default values also
used in the EPS.

rlam_heat entr_sc q_crit tur_len

1 0.0003 1.6 150

10 0.002 4 500

0.1 — — —
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2.4 Verification methods

2.4.1 Gridpoint-based evaluation
The pattern correlation coefficient (PCC), the mean absolute

error (MAE), and the equitable threat score (ETS) are used to

compare the model forecasts with the observations grid point by

grid point; they are defined by

PCC �
1
N
∑N

i�1(fi − �f)(oi − �o)��������������������������
1
N
∑N

i�1(fi − �f)2 1
N
∑N

i�1(oi − �o)2
√ , (1)

MAE � 1
N

∑N
i�1

∣∣∣∣fi − oi
∣∣∣∣ , (2)

ETS � NA − R(a)
NA +NB +NC − R(a) , (3)

R(a) � (NA +NB)(NA +NC)
NA +NB +NC +ND

, (4)

with N being the total number of grid samples in the spatial

field, fi the model forecast value of the i th sample, and oi the

corresponding observation. �f and �o denote the temporal

averages of the fi(i � 1, 2, . . . , N) and oi, respectively. NA is

defined as the occasion where both forecast and observation

are greater than or equal to a certain threshold; NB is the

occasion where the forecast is above a threshold, whereas

observation is under the same threshold; NC represents the

occasion where the observation is above a threshold and

forecast is under the same threshold; and ND is the

occasion where both forecast and observation are under the

threshold. The larger values of PCC and ETS and smaller MAE

values indicate better forecast skills. For a certain EPS (e.g.,

COSMO EPS), these three gridpoint-based metrics are

calculated based on the mean of the values derived by

using individual ensemble members.

2.4.2 Object-based evaluation
The gridpoint-based verification techniques introduced

earlier may not satisfactorily reflect the forecast spatial

features at convective scales because even small spatial

displacements between forecast and observation resulting from

the random components of the precipitation patterns will

strongly deteriorate these measures by double punishment.

Spatial verification methods such as the method for object-

based diagnostic evaluation (MODE, Davis et al., 2006; 2009;

Johnson et al., 2013; Mittermaier and Bullock, 2013), the

fractions skill score (FSS, Roberts, 2008; Mittermaier and

Roberts, 2009), the intensity scale (IS, Casati et al., 2004;

Casati 2009), and image warping (IW, Gilleland et al., 2010)

have been proposed and are in use to account for these

circumstances. In this study, the MODE is used to assess the

spatial features of the model forecasts.

The MODE first identifies precipitation objects by applying

an intensity threshold to the spatially filtered observed and

forecast precipitation fields. Second, several attributes of the

precipitation objects are determined. We use, similar to Ji

et al. (2020), the area coverage (the number of grid points

covered by the object), the orientation angle (the orientation

of the major axis in degrees counted clockwise starting at zonal

orientation), the aspect ratio (the ratio of the minor axis to the

major axis, i.e., 1.0 for a circular object and < 1 otherwise), and

the zonal (east-west) and meridional (south-north) centroid

location in this study. Third, an object from the forecast field

will be matched to an object in the observed field when the

centroid distance between these two objects is smaller than their

average size. If matched successfully, these two objects are

marked as one “object pair.” Finally, the fuzzy object-based

threat score (OTS) is calculated to quantify the similarity

between all observed and forecast objects (including matched

or not matched objects) based on their attribute differences.

OTS �
∑P

p�1I
p(apf + apo )

Af + Ao

, (5)

where P is the total number of object pairs. For the pth object

pair, Ip represents the value for their similarity which is a

quantitative combination of multiple attributes’ differences

between the object pair, apf and apo are, respectively, the areas

of the forecast and observed object. Af and Ao are the total areas

TABLE 4 Various models used for comparisons in this study.

Model Global/regional Data assimilation Resolution Ensemble members

COSMO-EPS Regional — 0.025° 24

ICON Global Ensemble transform Kalman filter (ETKF) coupled with a three-dimensional
variational analysis (3D-VAR)

0.12° 1

GRAPES-
MEPS

Regional — 0.15° 15

GRAPES-
GEPS

Global Gridded statistical interpolation (GSI) 0.28125° 15

ECMWF Global Ensemble data assimilation (EDA) 0.125° 1
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of all identified objects in the forecast and observed field. The

value of OTS ranges from 0 to 1, and larger values represent

better forecast performance. The details of object identification

and the calculations of OTS (including the object similarity Ip)

can refer to the study by Ji et al. (2020).

3 Results and analysis

3.1 Evaluations and comparisons of
different models

The spatial distribution of observed precipitation is

compared with different model forecasts in Figure 2. For an

EPS such as COSMO, the precipitation distribution is

represented by its ensemble median forecast in Figure 2. The

precipitation caused by the extreme storm event that

accumulated over the period 27–31 August 2018 is mainly

concentrated in the southeast coastal areas and gradually

decreases from southeast to northwest. Only COSMO EPS

and ECMWF predict the heavy precipitation over the eastern

coastal regions where the 5-day total precipitation exceeds

250 mm, but the location of the heavy precipitation in both of

them exhibits a larger eastward bias than the observations. The

coverage area of heavy precipitation predicted by ECMWF is

relatively small, while COSMO EPS’ prediction is closer to the

reality. However, COSMO EPS also predicts a second heavy

precipitation center in the northern inland, which is not

observed. In other regions of Guangdong Province, the

precipitation predicted by COSMO EPS is much weaker than

the observations, especially in the southern Pearl River Delta.

ICON and GRAPES MEPS both underestimate the precipitation

in eastern Guangdong while predicting well in the central and

northern inland regions. GRAPES GEPS overforecasts

precipitation in most regions of Guangdong. The

corresponding gridpoint-based scores of different model

forecasts are consistent with the visual appearance (not

shown). Although ICON and GRAPES MEPS have the

smallest MAE and largest PCC values, their ETS values for

heavy precipitation above 250 mm are almost zero because

they both underforecast the extreme precipitation. In contrast,

COSMO EPS obtains the largest MAE and smallest PCC values,

but it performs best for heavy precipitation exceeding 250 mm by

showing the highest ETS value among all models.

The occurrence frequency of daily precipitation according to

its amount as quantified by the cumulative distribution function

(CDF) varies considerably between model forecasts and

observations (Figure 3). During the period of 27–31 August

2018, the CDFs of GRAPES MEPS and GRAPES GEPS

increased rapidly with the increase of the precipitation

amount, which are quite different from the observed

distributions. The CDFs will reach 1 when the daily

FIGURE 2
Spatial distributions of cumulative precipitation in Guangdong Province during the period of 27–31 August 2018 for (A) the observations; (B) the
ensemble median forecast of COSMO EPS based on the COSMO-noLHN experiment (i.e., pure downscaling of ICON global predictions); (C) the
deterministic forecast of the ICON global model; (D–E) the ensemble median forecast of GRAPES MEPS and GRAPES GEPS, respectively; (F) the
deterministic forecast of ECMWF global model.
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precipitation predicted by GRAPES MEPS is just around

40–60 mm, and GRAPES GEPS forecasts are generally below

80 mm. This phenomenon reflects the fact that both GRAPES

models (including regional and global EPS) underpredict this

extreme rainstorm event in Guangdong. ICON and ECMWF

perform similarly, with both models underestimating the

occurrence of the lower precipitation amounts and

overestimating the occurrence of precipitation amounts above

60 mm, especially on 29 and 30 August 2018. Compared with

these four models, the CDF curves of COSMO EPS are much

closer to the observations, except for 31 August 2018. Especially

for higher precipitation amounts, COSMO EPS CDFs almost

coincide with the observed CDFs, but it overestimates the

occurrence of precipitation below 40 mm. Visually and also

quantified by the non-parametric two-sample

Kolmogorov–Smirnov test, which does not require restrictive

assumptions about the distribution of the test statistic (Orskaug

et al., 2011), COSMOEPS reproduces the observed CDF best. But

none of the model CDFs—including the one produced by

COSMO EPS—stands the test for similarity with the

observations (not shown). The gridpoint-based statistics

(i.e., MAE, PCC, and ETS) for daily precipitation verification

are shown in Figures 5A–D. COSMO EPS performs again only

below average compared to the other models in terms of MAE

and PCC, but shows the best forecasts for the daily heavy

precipitation above 50 mm during 27–29 August 2018.

GRAPES GEPS performs well for the heavy precipitation that

occurred on 30 and 31 August 2018. ICON and GRAPES GEPS

exhibit relatively high performance for daily precipitation above

25 mm, but have almost no forecasting skill for heavy

precipitation.

To focus on the heavy precipitation, Figure 4 only displays

the daily precipitation objects with intensity exceeding 25 and

50 mm identified by the MODE. For the object identification, the

precipitation field is spatially smoothed with a convolution radius

of four grid points in our evaluations in order to account for an

effective resolution of a model being about seven grid points

(Skamarock 2004). The quantification of similarities between the

forecast objects and the observed objects by OTS metric is shown

in Figures 5E,F. The precipitation on 27 August 2018 is in the

early stage of development. The observed areas with daily

precipitation above 25 mm are mainly located in northern,

western, and eastern Guangdong. Only ECMWF predicts the

observed rain belt in northern Guangdong, contributing to its

highest OTS value. COSMO EPS predicts heavy precipitation

over the east coast, consistent with the observations, but with

stronger intensities. The other three models all underpredict the

precipitation. On 28 August, the heavy precipitation gradually

FIGURE 3
Cumulative distribution functions (CDF) of daily accumulated precipitation for the observations (the black solid line) and all model predictions
(the colored lines) used in this study. The horizontal axis represents the precipitation amount. The dashed lines represent the results of the regional
models (i.e., COSMO EPS and GRAPES MEPS) and the colored solid lines represent the global models.
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concentrated in the Pearl River Delta. The precipitation

distribution predicted by ICON is the one most similar to the

observations. COSMO EPS predicts a wide range of heavy

precipitation in coastal areas, most of which are not observed.

The coverage area of heavy precipitation expands significantly on

29 August and is located in the coastal regions with the rain belt

northeast–southwest oriented. To a certain extent, the heavy

precipitation in eastern Guangdong has been predicted by

COSMO EPS and ECMWF. In contrast, both ICON and

GRAPES MEPS underestimate the precipitation above 50 mm

but predict well the precipitation above 25 mm. Therefore, the

former two models obtain the highest OTS values for the

threshold of 50 mm, and the latter two models have the

highest OTS values for the threshold of 25 mm. On

30 August, the heavy precipitation moves to eastern

Guangdong. The distributions of heavy precipitation above

50 mm predicted by COSMO EPS and GRAPES GEPS are

similar. Their forecast coverage area of heavy precipitation in

FIGURE 4
Daily precipitation objects identified by the MODE in the observed field and all models’ forecast fields (in the columns) during the period of
27–31 August 2018 (in the row) with a four-gridpoint averaging radius and thresholds of 25 and 50 mm.
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eastern Guangdong is much smaller than the observations, and

heavy precipitation predicted in other regions has not actually

happened. The coverage area and intensity of heavy precipitation

decrease on 31 August, which is mainly located in Heyuan city.

All five models’ precipitation distributions are different from the

observations. COSMO EPS and GRAPES GEPS predict some

regions in which heavy precipitation occurs, but with incorrect

locations.

3.2 Cause analysis

In order to obtain multiple meteorological variables such as

pressure, temperature, specific humidity, relative humidity, and

wind, the ECMWF reanalysis data (ECMWF Reanalysis v5,

ERA5) are used as the observations in this section. First, the

large-scale circulation background during the occurrence and

development of this extreme rainstorm event is analyzed, as

shown in Figure 6. During the whole period, the South Asia high

(200 hPa) is continuously and stably located over the Tibetan

Plateau, and divergent airflow persists over South China. The

middle and high latitudes of the middle troposphere (500 hPa)

are controlled by the circulation of two troughs and one ridge.

The high-pressure ridge is located on the west side of Lake Baikal

and moves slowly. The western Pacific subtropical high exhibits

an abnormal shape with double ridges, of which the north and

south ridge line are, respectively, located at about 5°N and 30°N.

Therefore, a belt-shaped high-pressure dam is formed between

the Yangtze–Huaihe river basin and the Yellow-Huaihe river

basin. The southwest monsoon is strong in the lower troposphere

(850 hPa), but it is blocked by the high-pressure dam when

advancing northward, causing it to mainly affect areas south of

30°N. The southwest monsoon continuously transports warm

and moist airflow to the monsoon depression to strengthen its

development. Coupled with the slow-moving large-scale weather

systems, the monsoon depression has a lasting impact on

Guangdong, providing favorable conditions for the occurrence

and development of extreme rainstorms (Cai et al., 2019).

Combined with the analysis of gridpoint-based (i.e., PCC,

MAE, and ETS) and object-based (i.e., MODE) evaluations, the

regional model COSMO EPS and the global model ECMWF,

respectively, predict well the precipitation above 50 and 25 mm.

FIGURE 5
Gridpoint-based and object-based evaluations for daily accumulated precipitation obtained from different models during the period of
27–31 August 2018. (A)MAE (unit: mm); (B) PCC; (C,D) ETS for precipitation exceeding 25 and 50 mm; (E,F)OTS for precipitation exceeding 25 and
50 mm.
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Therefore, a more in-depth comparative analysis of these two

models from the aspects of circulation background and water

vapor conditions will be conducted. Figure 7 shows the

distributions of wind flow and relative humidity in the

lower troposphere (850 hPa). Guangdong Province is

mainly under the control of the monsoon depression on

27–28 August. The southwest airflow in the southeast side

of the monsoon depression transports water vapor from the

South China Sea to Guangdong. The monsoon depression

then moves westward, with low-level winds shifting from

southwesterly to southerly. The southerly wind over the

coastal areas has proven to be an important factor for the

continuous extreme rainstorm (Li et al., 2020). The circulation

distributions of COSMO EPS and ECMWF are roughly the

same as the observations, while the water vapor distributions

predicted by COSMO EPS are more similar to the

observations.

The evolution of the low-level jet (LLJ) over time in the

northern South China Sea (113°E) is shown in Figure 8. From

00 UTC on 27 August to 18 UTC on 31 August, the LLJ

progresses gradually northward and strengthens. The LLJ core

front with a wind speed greater than 12 m s−1 on 850 hPa lands

on the coastal areas of Guangdong at 00 UTC on 29 August. It

is conducive to the convergence of water vapor and dynamic

uplift here, and then promotes the occurrence and

development of the extreme rainstorm. Subsequently, the

LLJ intensifies to above 14 m s−1 and is located over the

southern Pearl River Delta, contributing to the heavy

precipitation occurring in most of the coastal areas. After

06 UTC on 30 August, the monsoon depression begins to

weaken; thus, the LLJ weakens and then the precipitation in

the coastal areas gradually disappears. COSMO EPS predicts

the evolution and intensity of LLJ more closely to the reality

than ECMWF.

The transport of water vapor is necessary to maintain

continuous precipitation; thus, Figure 9 calculates the

integrated atmosphere (1,000–200 hPa) water vapor flux

divergence. The observed convergence at 18 UTC on

29 and 30 August are significantly stronger than that at

06 UTC, which is related to the characteristics of monsoon

precipitation (Guo et al., 2019). However, both COSMO EPS

and ECMWF do not capture this feature. Starting from

06 UTC on 29 August, the observed water vapor flux

convergence occurs in the coastal areas of Guangdong

Province, and the maximum convergence exceeds 70 ×

10−6 g cm−2·s−1. At 18 UTC on 31 August, the water vapor

flux convergence significantly weakens, and the maximum

center is shifted westward. The area with strong convergence

on 29 August predicted by COSMO EPS is located in the

coastal area, and then it mainly appears in the eastern and

northern parts of Guangdong. ECMWF predicts that there

will be strong convergence in eastern Guangdong on

29 August and the convergence intensity will weaken in the

following 2 days. The distributions of water vapor flux

convergence predicted by both COSMO EPS and ECMWF

are quite different from the observations, while the

convergence intensity predicted by COSMO EPS is

generally stronger than that of ECMWF.

FIGURE 6
200 hPa geopotential height (red dashed line, unit: gpm), 500 hPa geopotential height (thick black solid line, purple line denotes 5,880 gpm
contour, unit: gpm), and 850 hPa wind (vector, unit: m·s−1, wind speed greater than 8 m s−1 is shaded) at (A) 00 UTC on 27 August 2018 and (B)
00 UTC on 31 August 2018.

Frontiers in Earth Science frontiersin.org10

Ji et al. 10.3389/feart.2022.969742

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.969742


3.3 COSMO LHN experiments

The regional model forecasts by COSMO EPS and GRAPES

MEPS compared so far are initialized and driven at the

boundaries by the predictions of their global models. Thus,

there are no mesoscale data assimilation involved. However,

several COSMO experiments with different initial conditions

show that the forecasts of this extreme rainstorm event in

Guangdong Province are very sensitive to the initial

conditions (not shown). Therefore, in this section, we feed the

in-built LHN scheme of COSMO with the precipitation rate

retrieved by radar in order to explore its impact on the forecast

quality of COSMO EPS. The LHN scheme is developed for a 2.8-

km resolution and introduces increments in temperature and

moisture to the thermodynamic equation, which is expected to

enable the model dynamic to react in generating similar

precipitation patterns as observed (Stephan et al., 2008). It

assumes that the latent heat release is proportional to the

model surface rain rate (Jones and Macpherson, 1997).

Accordingly, the LHN scheme adds positive temperature

increments to increase model precipitation and negative

increments to decrease it. We run COSMO LHN experiments

with two setups. The results of the EPS without LHN (COSMO-

noLHN EPS, first setup) have been already discussed in Section

3.1. For the second setup, we stop LHN each day after an analysis

window of 3 h (COSMO-3hrLHN EPS). Thus, we have each day

a 21-h free (not nudged) forecast.

The results of two setups for the 21 h of the free forecast from

the LHN runs are summarized in Figure 10. Without LHN

(Figure 10C), the results are similar to the ones discussed

already in the previous subsection. Note that differences

between Figure 2B and Figure 10C relate to the shorter

FIGURE 7
850 hPa wind vector and relative humidity (contour, unit: %) obtained from the observations, ensemble median forecasts of COSMO EPS, and
deterministic forecasts of ECMWF at 18 UTC on 27, 29, and 31 August 2018.
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periods—21 instead of 24 h/day—for the latter. COSMO-

3hrLHN EPS reproduces the overall observed precipitation

pattern for amounts above 50 mm, which significantly

improves the gridpoint-based scores compared to the

COSMO-noLHN experiment (not shown). Although the

precipitation intensity in eastern Guangdong predicted by

COSMO-3hrLHN EPS is still too weak, its location has

moved westward compared with COSMO-noLHN EPS, which

is closer to the observations. The daily precipitation (21 h/day) is

spatially evaluated by the MODE with thresholds of 25 and

FIGURE 8
Time-latitude cross sections of 850 hPa wind (vector, unit: m·s−1, wind speed greater than 4 m s−1 is shaded) along 113°E from 00 UTC on
27 August to 18 UTC on 31 August 2018 for (A) the observations, (B) the ensemble median forecast of COSMO EPS, and (C) the deterministic forecast
of ECMWF.

FIGURE 9
Integrated atmosphere (1,000–200 hPa) water vapor flux divergence (unit: 10−6 g cm−2·s−1) from the observations, ensemble median forecasts
of COSMO EPS, and deterministic forecasts of ECMWF at 06 UTC and 18 UTC on 29–31 August 2018.
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50 mm, and the OTS values are listed in Table 5. For the

threshold of 25 mm, the OTS values of COSMO-3hrLHN EPS

are generally higher than those of COSMO-noLHN EPS,

indicating the forecast skill improvements by LHN. However,

there are no obvious differences between the COSMO-3hrLHN

EPS and COSMO-noLHN EPS predictions for the threshold of

50 mm.

4 Conclusion and discussions

In this study, an ensemble system of the high-resolution

regional model COSMO, obtained by variations of parameters in

its physics package, is used to predict an extreme rainstorm event,

which occurred over the Guangdong Province during

27–31 August 2018. Predictions are performed first without

and then with the in-built latent heat nudging scheme driven

by the observed precipitation. The COSMO predictions are

compared against observations and also with the forecasts of

several regional and global models/EPSs.

In this extreme rainstorm event, the precipitation was mainly

concentrated in the coastal areas of Guangdong Province, and

precipitation intensity decreased from south to north. According

to the gridpoint-based and object-based evaluations, COSMO EPS

has the best forecast for the heavy precipitation that occurred in

eastern Guangdong among all numerical models. However, its

forecast location is easterly and the coverage area is smaller when

than the observations. The deterministic forecasts of the global

models (i.e., ECMWF and ICON) perform well for daily

precipitation above 25 mm, but have limited ability to predict

heavy precipitation exceeding 50 mm. GRAPES MEPS

underestimates the precipitation amount during the whole

period. The forecast skill of GRAPES GEPS for this extreme

rainstorm event is generally higher than that of GRAPES MEPS,

and it has certain forecast ability for heavy precipitation above

50 mm. Global models such as ECMWF generally perform better

than regional models (i.e., COSMO EPS and GRAPES MEPS) for

daily precipitation below 50 mm. Since the regional versions are

simply downscaled versions of global predictions, this result may be

a consequence of independent weather development in the regional

model because predictions are not constrained by data assimilation

in the inner model regions. The predicted intensity distributions by

all models are significantly different from the observed ones, but the

statistics of the two-sample Kolmogorov–Smirnov test suggest that

the COSMO EPS CDF is clearly closest to the observations.

The cause analysis shows that Guangdong Province is under

the control of themonsoon depression southwesterly airflow in the

early stage. The southwesterly monsoon low-level jet lands on the

coastal regions on 29 August, and then strengthens, promoting the

occurrence and development of continuous heavy precipitation

there. As the monsoon depression slowly moves westward, the

strong southerly wind dominates in the Guangdong Province.

Strong water vapor flux persists in the South China Sea, and

southwesterly and southerly winds transport a large amount of

water vapor to Guangdong. The predictions of COSMO are much

closer to the observations than those of ECMWF.

An additional experiment with the in-built latent heat

nudging scheme switched on for the first 3 h of the forecast

shows that these predictions indeed lead to significant

improvements, especially in terms of the spatial distribution,

FIGURE 10
Spatial distributions of cumulative precipitation in
Guangdong Province during the period of 27–31 August 2018
(precipitation of the first 3 h are removed of each day) for (A) the
observations, (B) the ensemble median forecast of COSMO-
3hrLHN EPS, and (C) the ensemble median forecast of COSMO-
noLHN EPS.

TABLE 5 OTS values of COSMO-noLHN EPS and COSMO-3hrLHN EPS at a precipitation threshold of 25 and 50 mm, respectively.

Model 27 August (25/
50 mm)

28 August (25/
50 mm)

29 August (25/
50 mm)

30 August (25/
50 mm)

31 August (25/
50 mm)

COSMO-
noLHN EPS

0.32/0.27 0.46/0.26 0.49/0.32 0.38/0.48 0.45/0.18

COSMO-
3hrLHN EPS

0.34/0.26 0.53/0.34 0.565/0.47 0.48/0.37 0.45/0.21
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but the heavy precipitation intensity still remains too weak

compared to the observations.

Since the forecast capabilities of various models are different, if

the forecast information of multiple models is integrated, the

advantages of each model may be fully utilized to reduce forecast

deviation and then improve forecasting skills. Therefore, the

multimodel ensemble forecast will be compared with the dynamic

downscaling forecasts in the next work. We also observed that the

spread of the COSMO EPS is rather small compared to the spread of

other EPSs (not shown). This is because only one lateral boundary

condition is available from the ICON global model. In the future, we

will use the ICON EPS as the driving ensemble for COSMO EPS,

which will, however, need an intermediate downscaling step because

the global ICON EPS has a resolution of only 40 km.

The COSMO EPS in our experiment is constructed based on

varying physics packages. The multi-physical process

parameterization method was first proposed by Houtekamer et al.

(1996) by combining different physical parameters to reflect the

model uncertainty in ensemble forecasts. The multi-physics EPS

favors providing a larger ensemble spread and improving

probabilistic forecast skills, and it has been widely used in regional

EPSs (Stensrud et al., 2000; Berner et al., 2011; Gebhardt et al., 2011;

Zhang et al., 2017). However, multi-physics ensembles usually result

in an inconsistent distribution and thus are contrary to the

assumptions of statistical post-processing. Each ensemble member

has different climate characteristics and forecast bias by using multi-

physics, which is one reason why the multi-physics parameterization

scheme can improve the ensemble spread (Eckel and Mass, 2005).

But this result contradicts the fundamentals of forecast errors, where

forecast uncertainty is a stochastic rather than a systematic

component. Preliminary research shows that the combination of

multi-physical process parameterizations with initial condition

perturbations can further improve the ensemble spread and

significantly improve the forecast accuracy of precipitation (Huang

et al., 2016), which is worthy of further investigation.
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