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With high imaging accuracy, high signal-to-noise ratio, and good amplitude

balance, least-squares reverse time migration (LSRTM) is an imaging algorithm

suitable for deep high-precision oil and gas exploration. However, the

computational costs limit its large-scale industrial application. The difference

between traditional reverse time migration (RTM) and LSRTM is whether to

eliminate the effect of the Hessian operator or not while solving Hessian matrix

explicitly or eliminating the effect of the Hessianmatrix implicitly has a very high

requirement on computation or storage capacity. We simulate the inverse

Hessian by training a cycle-consistent generative adversarial network

(cycleGAN) to construct a mapping relationship between the RTM results

and the true reflectivity models. The trained network is directly applied to

the RTM imaging results, which improves the imaging quality while significantly

reducing the calculation time. We select three velocity models and two velocity

models respectively to generate the training and validation data sets, where the

validation data is not involved in the training process. The prediction results on

the validation data sets show that the trained network significantly improves the

imaging quality with almost no additional in computational effort. Finally, we

apply the network trained with only synthetics to the field data. The predicted

results confirm the effectiveness and good generalization of the proposed

method.
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Introduction

For the high-precision imaging problem of complex geological formations and deep

reservoirs, the reverse time migration (RTM) based on the two-way wave-equation is

considered to be a better imaging method (Baysal et al., 1983; Chang, 1987). Essentially,

RTM is only the conjugate transpose of the forward operator, not its inverse (Lailly, 1983).

Therefore, influenced by the limited acquisition aperture, complex subsurface structure,

and limited seismic wave bandwidth, the RTM results suffer from migration noise, non-
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uniform illumination, and insufficient resolution (Cheng et al.,

2021), which prevents it from imaging deep and unconventional

oil and gas reservoirs finely. In addition, conventional RTM can

only image the subsurface discontinuities while the accurate

amplitude information of the real formation lithology changes

can not be guaranteed (Chen and Zhang, 2012).

To eliminate the effect of the Hessian matrix, the imaging

problem of RTM can be solved as a least-squares inverse problem

to suppress the migration noise, increase the resolution, and

improve the amplitude fidelity, which is the least-squares reverse

time migration (Tarantola, 1987; Chavent and Plessix, 1999;

Nemeth et al., 1999; Valenciano et al., 2006). The least-

squares reverse time migration (LSRTM) can be solved in

model space (Hu et al., 2001; Rickett, 2003; Guitton, 2004) or

in data space (Tarantola, 1987; Schuster, 1993; Chavent and

Plessix, 1999; Nemeth et al., 1999). The LSRTM in model space

requires solving the Hessian matrix explicitly and using its

inverse to deblurring the RTM imaging results. Directly

solving the full Hessian matrix in practical applications is

extremely demanding in terms of computation and storage

(Tang, 2009). Therefore, some researchers have proposed that

the Hessian matrix can be approximated as a diagonal matrix

under the assumption of high-frequency asymptotics and infinite

aperture (Beylkin, 1985; Chavent and Plessix, 1999; Plessix and

Mulder, 2004; Symes, 2008). However, this approximation is not

suitable for the limited frequency range and acquisition

geometry, and the Hessian matrix in this case is no longer

diagonally dominant (Pratt et al., 1998; Chavent and Plessix,

1999; Plessix and Mulder, 2004; Valenciano et al., 2006). In

regions below the high-velocity body or salt dome where

illumination is lacking, the energy on the diagonal of the

Hessian matrix is scattered along the non-diagonal direction

(Albertin et al., 2004; Valenciano, 2008). Therefore, the diagonal

Hessian matrix is of limited use for deblurring the migration

imaging results, especially in regions with severe energy

attenuation of seismic waves. Some non-diagonal elements of

the Hessian matrix can be properly computed to compensate for

the illumination unevenness in regions with severe absorption

attenuation and enhance the deblurring effect (Albertin et al.,

2004; Valenciano, 2008). However, solving the non-diagonal

elements of the matrix will significantly increase the

computational effort.

The LSRTM in data space is used to find the reflectivity

model that best matches the observed seismic data by iterative

algorithms such as the steepest descent method and the conjugate

gradient method (Nemeth et al., 1999). Instead of solving the

huge Hessian matrix directly, this approach implicitly removes

the effect of the Hessian matrix by iteratively updating the

reflectivity model. However, iterative solving causes a large

amount of computation, and the convergence rate depends on

suitable preconditioning constraints (Tang, 2009;Wu et al., 2021;

Wu et al., 2022; Yao et al., 2022). To improve the computational

efficiency of LSRTM, one approach is to compress the massive

shot data into several super gathers to reduce the computational

effort, which is the multisource migration method (Romero et al.,

2000). To suppress the multi-source crosstalks, some researchers

proposed the shot encoding techniques, such as amplitude

encoding (Hu et al., 2016), phase encoding (Schuster et al.,

2011; Li et al., 2014; Li et al., 2017) and plane wave encoding

(Zhang et al., 2005; Dai and Schuster, 2013; Li et al., 2018). These

schemes reduce the correlation of crosstalk noise in the imaging

results of different super gathers by constructing suitable

encoding functions and finally stack the imaging results to

suppress the noise (Etgen, 2005; Zhang et al., 2005). However,

when the observation system is not fixed, the source wavefield of

the multisource forward simulation and the super gather

synthesized from the observation data cannot be matched,

resulting in slow convergence (Li et al., 2018). Liu and Peter

(2018) propose a one-step LSRTMmethod to design a deblurring

preconditioner using the Wiener filter, reducing the

computational effort to twice the RTM. In summary, LSRTM

in model space requires certain calculations and significant

storage costs to solve the Hessian matrix explicitly, while

LSRTM in data space requires a large amount of computation

to solve the reflectivity iteratively and does not require much

storage.

In recent years, with the popularity of artificial intelligence,

many researchers introduced deep learning techniques to solve

geophysical problems such as fault segmentation (Wu et al.,

2019), seismic data denoising (Yu et al., 2019; Saad and Chen,

2020), and first-arrival picking (Hu et al., 2019; Duan and

Zhang, 2020). These solutions use techniques such as DNN,

CNN, RNN, etc. These networks can be broadly classified into

two categories based on the application scenarios:

discriminative models that solve classification, identification,

or localization problems, and generative models that solve the

mapping relationship between data from two different

domains. The generative adversarial network (GAN)

combines the advantages of both types of networks by using

a generative model to produce data from another domain and

then using a discriminative model to evaluate the generated

data (Goodfellow et al., 2014). Through adversarial training,

GAN achieves state-of-the-art in solving the problem of style

transfer between data from different domains. The cycleGAN

(Zhu et al., 2017) consists of two GANs that ensure the

structural consistency of the input and output data through

cyclic consistency, taking full advantage of the mapping

relationship between the source and target domain data.

This network structure is well suitable for transferring the

RTM data into a true reflectivity model and eliminating the

blurring effect of Hessian matrix.

In this study, we propose to approximate the inverse Hessian

by using cycleGAN for the deblurring purpose. The cycleGAN is

trained by generating data sets of RTM imaging results with

reflectivity models. The trained network is directly applied to the

migration images to output high-quality imaging profiles. The
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training stage of the network consumes a certain computational

effort and has an almost negligible computational cost. The

proposed method is validated on both synthetic data and

field data.

Methodology

Migration theory

For a given reflectivity model m and a forward modeling

operator L , the observed data d can be expressed as:

d � Lm. (1)

The goal of seismic imaging is to find the exact m to fit the

observed data d. Conventional reverse time migration can be

expressed as:

mmig � LTd, (2)

where mmig is the matrix representation of the reverse time

migration imaging result and LT is the matrix representation of

the RTM operator. The LT is only the transpose of the forward

operator, not its inverse, and cannot completely reverse the

seismic wave propagation, so the migrated images of reverse

time migration do not accurately represent the true reflectivity

model.

The solution of the true reflectivity modelm can be solved in

a least-squares framework. We define themisfit function f(m) as
follows:

f(m) � 1
2
‖Lm − d‖2. (3)

Applying the transpose forward operator LT to both sides of

Eq. 1, Eq. 4 is derived as follows:

LTd � LTLm. (4)

Therefore, the precise least-squares solution of the reflectivity

model m can be obtained by:

m � (LTL)−1LTd, (5)

where (LTL)−1 is the inverse of the Hessianmatrix, and LTd is the

images of the reverse time migration. The relationship between

the RTM imaging result and the true reflectivity model can be

expressed as:

m � H−1mmig. (6)

Analysis of Hessian matrix

The expression of the conventional two-dimensional acoustic

wave equation is:

(∇2 + ω2σ2)u(xs, x, σ,ω) � −f(xs,ω), (7)

where σ(x) � 1/v(x) is the slowness field of the medium, v(x) is
the corresponding velocity field, and f(xs,ω) is the

representation of the source wavelet in the frequency domain,

indicating that the source point is at xs and the angular frequency

is ω. Based on the assumption that the inverse problem is

approximately linear, the expression of the Hessian matrix for

this two-dimensional acoustic wave equation can be written in

the following form:

H(x, y) � ∑
xs,xr

∫Re{ω4
∣∣∣∣fs(ω)

∣∣∣∣2G(xs, x,ω) × GT(xs, y,ω)
× G(x, xr,ω)GT(y, xr,ω)}dω,

(8)
where G(xs, x,ω) is the Green’s function at the source side,

G(x, xr,ω) is the Green’s function at the receiver side, and fs(ω)
is the source signature. The Green’s function term reflects the

illumination of the seismic wave during migration, while the

source wavelet term has an impact on the imaging resolution.

According to Eq. 6, it can be seen that the RTM results are

missing the deblurring filtering of the inverse Hessian matrix

with respect to the real reflectivity models. And according to Eq.

8, it can be concluded that the wavelet term and the Green’s

function term in the expression of the Hessian matrix affect the

imaging resolution and wavefield propagation, respectively.

Therefore, the migrated images of RTM exhibit low imaging

resolution, uneven illumination, and migration noise due to the

lack of the inverse Hessian filtering. By solving the inverse

Hessian matrix and applying it to the imaging results of the

RTM, the true reflectivity model can be obtained, which is the

least-squares reverse time migration in the model space.

Theoretically, the LSRTM in model space only requires a

certain computational cost to compute the inverse of the

Hessian matrix in advance, and then the true reflectivity

model can be acquired quickly. However, it is shown that

solving the Hessian matrix requires storing the Green’s

function, which is very large in practical applications,

especially for 3D seismic data. Another approach is the

LSRTM in the data space, which is an iterative solution to

continuously update the reflectivity model so that the error

between the simulated and observed data reaches the desired

value. The LSRTM in the data domain does not take into account

the storage cost, but it is computationally intensive, about 2N

times more than the conventional migration (N denotes the

number of iterations). Moreover, the convergence of the LSRTM

in data space is very slow without proper gradient

preconditioning.

Our goal is to approximate the inverse of the Hessian matrix

at a small cost. In the proposed method, we train cycleGAN to

simulate the inverse Hessian and apply the trained network to

process the RTM imaging data and play the role of the deblurring

operator. First, we select some velocity models and generate the
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true reflectivity model m. Through finite-difference forward

simulation, we can obtain the synthetic observation data

d � Lm. Then, the RTM imaging of the observation data d

yields the migrated images mmig � LTd after being filtered by

the Hessian blurring operator. The source domain datammig and

the target domain data m are fed into the network for training.

According to Eq. 6, the trained network is the approximate

inverse Hessian. After training, we apply the network to the

new RTM imaging data to quickly obtain the least-squares

solution in Eq. 5.

Network and loss function

The architecture of cycleGAN

GAN was proposed by Goodfellow et al. (2014), and it has

good applicability to the problem of the source-to-target domain

transformation. Conventional neural networks are used to find

an optimal mapping relationship from input to output by

backpropagation algorithms. The nature of the network can

be viewed as a complex higher-order polynomial. GAN

generally consists of two parts of the network, one as a

generator and the other as a discriminator. During the

training process of the network, the generator acts as a

regular neural network, converting the input into data similar

to the label, while the discriminator takes the output data of the

generator as input and tries to distinguish the generated data

from the real data in the training sets. Through this adversarial

training, both the generator and the discriminator are

continuously optimized, and eventually, we get the desired

generator as a prediction network.

CycleGAN consists of 2 mirror-symmetric networks

GAN(GXY, GYX,DY) and GAN(GYX, GXY,DX), which

together form a cycle network. As shown in Figure 1,

cycleGAN has 2 discriminators DX and DY, and shares two

generators GXY and GYX. A sample x from the data distribution

X in the source domain is input to the first network

GAN(GXY, GYX,DY), and fake y and cyclic x are produced

by generators GXY and GYX in turn, then, fake y enters the

discriminator DY to be identified as true or false. Similarly, for

any sample y in the data distribution Y in the target domain, it

can also be used as input to train the second network

GAN(GYX, GXY,DX). The generator consists of an encoder, a

converter, and a decoder. As shown in Figure 2, the encoder-

decoder structure is similar to most convolutional neural

networks, with convolutional and deconvolutional layers for

feature extraction and reduction, and the converter structure

is implemented by a multilayer Resnet. The discriminator is

presented in Figure 3, which is implemented by a basic

convolutional neural network, whose discriminating image

requires extracting features from the input and finally adding

FIGURE 1
The architecture of cycleGAN.
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a one-dimensional output convolutional layer to determine

whether the extracted features belong to a specific class.

Loss function analysis

The loss function is a measure of how good the output of

the network is, and it is also the basis for correcting the tensor

gradient in the backpropagation process. For a given size

training batch, assuming the data distribution of the source

domain is px and the data distribution of the target domain is

py, the data distribution of each training data x and y can be

denoted as x ~ px and y ~ py. The mathematical expectation

of the training data can be expressed as Ex~Px and Ey~Py.

Therefore, the objective function of a conventional GAN

can be expressed as (Goodfellow et al., 2014; Benaim and

Wolf, 2017; Zhu et al., 2017):

LGAN(GXY,DY,X, Y) � Ey~Py[logDY(y)]
+ Ex~Px[log(1 −DY(G(x)))]. (9)

During training, the generator GXY tries to generate GXY(x)
that is more similar to the reflectivity model, while the

discriminator DY tries to distinguish the generated GXY(x)

from the real reflectivity model y in the target domain. Thus,

the goal of the generator is to minimize the objective function,

while the discriminator tries to maximize it. For the first GAN,

the final goal is minGmaxDYLGAN(GXY,DY,X, Y), and similarly,

for the other GAN, its target is

minGmaxDXLGAN(GYX,DX, Y,X).
By the above constraint of the objective function, GAN can

theoretically map any data from the source domain to the target

domain. However, only this constraint may result in the

generator just generating a result with reflectivity

characteristics, while the structural content is not the same as

the source domain data. That is, only style transfer is achieved by

training, and there is no guarantee that the content does not

change. For any source domain data x, we need to guarantee

x → GXY(x) → GYX(GXY(x)) ≈ x, which is also called forward

cycle consistency. Similarly, for any target domain data y, we

need it to satisfy the backward cycle consistency:

y → GYX(y) → GXY(GYX(y)) ≈ y. Therefore, cycleGAN

introduces a cyclic consistency error function as follows (Zhu

et al., 2017):

Lcycle(GXY, GYX) � Ex~Px[‖GYX(GXY(x)) − x‖1]
+ Ey~Py[

����GXY(GYX(y)) − y
����1], (10)

FIGURE 2
The specific structure of the generator, consists of 2 convolutional layers forming the encoder, 7 Resnet blocks as the converter, and
2 deconvolutional layers as the decoder.

FIGURE 3
The detailed architecture of the discriminator, 4 convolutional layers are used to extract the features of the input data, and finally, a
convolutional layer is added to output the discriminant score.
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With the above loss function constraint, any data in the source or

target domain can be effectively restored to the original data

features in the end after two generator cycles. However, when the

network is trained for application, the situation that the style

completes the migration but the content changes still occurs. The

analysis shows that only one generator is used as the prediction

network when applied, and the cyclic consistency error function

does not impose constraints on the intermediate variables.

Therefore, we introduce the identity loss function to constrain

the intermediate variables, and its expression is (Taigman et al.,

2016; Benaim and Wolf, 2017; Zhu et al., 2017):

Lidentity(GXY, GYX) � Ey~Py[
����(GXY(y)) − y

����1]
+ Ex~Px[‖(GYX(x)) − x‖1]. (11)

Therefore, the full loss function when training the cycleGAN

is shown as follows:

L(GXY, GXY,DX,DY) � LGAN(GXY,DY, X, Y)
+ LGAN(GYX,DX, Y,X)
+ Lcycle(GXY, GYX)
+ Lidentity(GXY, GYX).

(12)

Data sets preparation and training

Training data sets production

As shown in Figures 4A–C, the Sigsbee2A model, SEAM

model, and Pluto model are selected as the base models to

produce the training data sets. The migrated images

corresponding to the three models are generated by 2-8 finite-

difference forward simulation and reverse time migration as

shown in Figures 4D–F. Meanwhile, we produce the

reflectivity model based on the velocity model as shown in

Figures 4H–J. Considering the large band range variability

between the reflectivity model and the migration imaging

results, we adopt the convolution approach and conduct it

with the reflectivity and the Ricker wavelet as the target

domain data. Finally, we apply data enhancement such as

cropping and resampling to generate 300 pairs of training

data. Some of the training data are shown in Figure 5. The

first row shows the RTM imaging data in the source domain, and

the second row shows the convolution results in the target

domain.

FIGURE 4
Three velocitymodels for producing training data sets in the source and target domains. (A) Sigsbee2A velocity model, (B) SEAM velocity model,
and (C) Pluto velocity model. The corresponding RTM imaging results (D–F) and reflectivity models (H–J) for making the input and output samples
respectively.
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Training process

For GAN(GXY, GYX,DY), the training first fixes the

generator GXY and trains the discriminator DY separately to

improve the discriminator’s ability to identify the output results

of the generator, and then fixes the discriminator DY and trains

the generator GXY individually to generate more realistic results

and bypass the discriminator’s recognition. With this adversarial

training approach, the ability of the generator GXY to map to the

target domain can be greatly improved. Similarly, for the other

GAN(GYX, GXY,DX), such adversarial training is also used.

When the two GANs are trained for one epoch, the values of

all loss functions are accumulated for backpropagation. Finally,

the generator GXY is used as the expected prediction network for

approximating the inverse Hessian matrix.

The number of epochs of the network training is set to

200 with a learning rate of 0.0002, which gradually decreased

after the 100th epoch. The network is weighted with a cyclic

consistency loss of 10 and the weight of the identity loss is set to 5.

The training is based on the PyTorch platform, using a single

NVIDIA RTX5000 GPU, and the total training time is 10 h.

Numerical tests on validation sets

BP 2.5D model

Figure 6A shows the BP2.5D velocitymodel with the reflectivity

model shown in Figure 6B. We perform a finite-difference forward

simulation of the velocity model in Figure 6A, then smooth the

velocity model into migration velocity and perform reverse time

migration to generate the imaging profile in Figure 6C. There are

obvious low-frequency noise and acquisition footprints in the

migrated image of the RTM, and the imaging energy is

discontinuous in the region of violent tectonic undulations,

meanwhile, the illumination is uneven on both sides of the

model. We input the imaging result of Figure 6C into the

trained network, and the obtained prediction result is shown in

Figure 6D. The imaging quality in the predicted result is

significantly improved, the surface acquisition footprints are

eliminated very cleanly, and the low-frequency noise is well

removed. The trained network compensates well for the uneven

illumination in the migration result, and the overall imaging energy

distribution is relatively uniform. It can be noted that the network is

not completely accurate in predicting the result at the depth of

2 KM on the left side of the model since the imaging energy of the

original RTMprofile is very heterogeneous, resulting in the network

not being able to predict it well. Figure 7 shows an enlarged view of

the red dashed boxed area in Figure 6, with the first column

showing the RTM imaging results, the second column denoting

the network prediction results, and the third column representing

the true reflectivity models. Comparing the first set of results

(Figures 7A–C), it can be seen that the proposed method can

better play the role of the deblurring operator and significantly

improve the imaging quality. The second set of results (Figures

7D–F) shows that the trained network can not fully reduce the

image of the RTM to the true reflectivitymodel, and it relies to some

extent on the structure information of the original migration image,

which differs from the real reflectivity model in some details, but

generally maintains the consistency with the real reflectivity model.

FIGURE 5
Four pairs of representative samples from the training data sets. The first row (A–D) are the migrated images in the source domain, and the
second row (E–H) denotes the reflectivity in the target domain.

Frontiers in Earth Science frontiersin.org07

Huang et al. 10.3389/feart.2022.967828

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.967828


Marmousi model

Figure 8A shows the Marmousi velocity model, and

Figure 8B shows its corresponding reflectivity model. The

imaging result obtained after finite-difference simulation and

reverse time migration of Figure 8A is shown in Figure 8C. The

migrated image of RTM has more low-frequency noise in the

shallow layer due to the blurring filtering of Hessian matrix. At

the same time, the imaging resolution of the model bottom

structure is low due to the influence of the deep high-speed

layer shielding. Figure 8D shows the result of network prediction.

Compared with Figure 8C, it can be concluded that the global

FIGURE 6
BP 2.5D velocity model (A) and the corresponding reflectivity model (B). Input the RTM imaging result (C) into the well-trained network, the
prediction result is shown in (D).

FIGURE 7
The zoom views of the red dashed boxed area in Figure 6. The first column represents the RTM results (A,D), the second column denotes the
predictions (B,E) of the network and the third column is the true reflectivity model (C,F).
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resolution of the predicted imaging result is improved, and the

reflection layer is finer. Most of the low-frequency noise in the

shallow layer is removed, with a small amount of residual on both

sides, and the trained network is also very clean for removing the

acquisition footprints in the profile. The imaging quality of the

deeper layers is also improved, however, some artifacts appear

since some stray imaging energies in the result of the RTM are

mistaken by the network as layers and recovered. Figure 9 shows

an enlarged view of the red dashed boxed area in Figure 8.

Figure 9A shows a shallow zoom of the RTM imaging result,

where strong low-frequency noise and acquisition footprints

exist within 0.5 KM of depth. These clutter energies are barely

FIGURE 8
The Marmousi velocity model (A) and the corresponding reflectivity model (B). Input the RTM imaging result (C) into the well-trained network,
the prediction result is shown in (D).

FIGURE 9
The zoom views of the red dashed boxed area in Figure 8. The first column represents the RTM results (A,D), the second column denotes the
predictions (B,E) of the network and the third column is the true reflectivity model (C,F).
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visible in the predicted result in Figure 9B, and the imaging

energies at the interface are more converged. Comparing the

second set of zooming results, it can be seen that the resolution of

the result predicted by the network has improved significantly

and the overall imaging energy is more balanced.

Field data test

We test the effectiveness of the proposed method with field

data. We take the velocity model in Figure 10A as the migration

velocity and perform the reverse time migration to obtain the

imaging result shown in Figure 10B. We approximate the

deblurring operator with the network previously trained on

synthetic data, which acts directly on the migrated image of

the field data. We input the migration result in Figure 10B into

the network, and the prediction result output by the generator

GXY is shown in Figure 10C. Compared with Figure 10B, there is

a significant improvement in the resolution of the network

prediction result, and a large amount of migration noise in

the RTM image is well removed. Without damaging the

effective signal, the surface acquisition footprints are

eliminated very cleanly, and the shallow reflection layer is

more obvious with more imaging details. However, the

network does not handle the deep high steep structure very

well. This is because the reflectivity model of our constructions is

calculated along the depth direction. When the discretized model

is small or not adequately sampled, its structure has poor

continuity in the lateral direction. In contrast, the seismic

wavefield propagates in all directions, and the imaging results

have good continuity even on small models. Therefore, this

results in an incompletely accurate mapping relationship

between source-domain data and target-domain data, which

affects the prediction results of the network.

Conclusion

We propose a fast least-squares reverse time migration

method based on cycleGAN. In the proposed method,

cycleGAN is used to approximate the inverse Hessian matrix

to play the role of a deblurring operator that acts directly on the

RTM imaging results. By constructing a training data sets

consisting of source domain data (migration imaging results)

and target domain data (true reflectivity model), two GANs are

trained separately from the two domains, and a generator

mapping the source domain to the target domain is taken as

the final prediction network after adversarial training. Synthetic

data tests demonstrate the effectiveness of the proposed method

in removing low-frequency noise, improving resolution,

balancing illumination, and compensating for deep imaging

energy. Applying the network trained only with synthetics

directly to the field data, the prediction result shows that the

proposed method has good generalization and good applicability

to data sets with large variability. One point worth noting is that

in the prediction result of the field data, the recovery of high

steepness structures by the method is not very well. This problem

can be solved by optimizing the label-making scheme and

reducing the spatial sampling interval. Compared with the

massive storage requirement of the Hessian matrix by the

FIGURE 10
(A) migration velocity model, (B) RTM imaging result, and (C) the prediction result of the network trained only by synthetic data sets.
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LSRTM in the model space, the storage demands of the proposed

method are not high. Compared with the LSRTM in data space,

the proposed method only consumes certain computational

resources in the training stage and requires almost no

computational costs in the prediction process.
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