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Time-series monitoring of landslide displacement is crucial for controlling the

geo-risk associated with sudden landslide occurrence and slope failure.

Accurate prediction is valuable for geohazard mitigation in advance of short-

term displacement. In this research, a novel chaotic modeling framework is

proposed to predict landslide displacement using a robust long short-term

memory (LSTM) network. To facilitate the prediction framework, daily instant

displacement ismeasured in three dimensions at 19monitoring locations. Then,

the chaotic characteristics are computed for data reconstruction purposes, and

the reconstructed data are selected as inputs in the prediction model. Next,

LSTM is applied as the prediction algorithm and is trained using reconstructed

field data. A generic LSTM is often trained to minimize the mean square error

(MSE) loss, which can be oversensitive to a few outliers. In this research, the

pseudo-Huber loss is adopted as the loss function and is integrated with LSTM

as an improvement over the MSE loss. The effectiveness and efficiency of the

proposed framework have been validated by the benchmark LSTM and other

machine learning algorithms. The computational results show that the

proposed approach performed better than conventional LSTM and other

machine learning algorithms. This framework may be valuable for engineers

for practical landslide hazard estimation or rapid preliminary screening of slope

stability.
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1 Introduction

Landslides, which are one of the most critical geohazards in mountainous regions,

pose threats to the lives, properties, and infrastructure of local communities (Li et al.,

2022). Monitoring landslide progress by collecting displacement time-series data has

become an indispensable approach for geologists worldwide (Zhou et al., 2021; Fan et al.,

2022). Daily or monthly displacement measurements enable experts to observe the

progression of landslides and predict incoming geohazards in advance (Fan et al.,
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2019). Therefore, the accurate and effective prediction of future

landslide displacement in the short term has an extraordinary

effect in practice.

According to a literature review, traditional physics

models have played a dominant role in predicting the

displacement in the temporal dimension (Fan and Cai,

2021). Saito (1965) proposed an empirical formula to

quantify the landslide deformation process. This research

became the initial point of study for landslide displacement

prediction. Then, Hungr (1995) developed a Lagrange

method-based continuum model to compute the potential

maximum slide distance. Miao et al. (2001) constructed a

block motion model to predict the long-distance movement of

shallow landslides. After a landslide occurrence, the whole

moving process can be simulated and the maximum runout

distance can be calculated using this approach. Herrera et al.

(2009) introduced the Mohr–Coulomb criterion and

incorporated it with the precipitation intensity to obtain the

one-dimensional infinite model for slope failure evolution

process prediction. All of the aforementioned physics-based

models provide valuable insights into performing

postoccurrence analysis of landslide displacement. However,

due to the high complexity of landslide systems, it is arduous

to derive an accurate physics model to depict the displacement

evolution in advance.

Meanwhile, data-driven methods, including statistical

models and machine learning models, are becoming

mainstream in learning the nonlinear patterns within

displacement time-series data. Pradhan and Lee (2010) first

applied an artificial neural network (ANN) with

backpropagation to forecast landslide displacement. Lian

et al. (2013) used an extreme learning machine (ELM) with

empirical mode decomposition (EMD) to develop prediction

models in subtime series and then merged the results for the

final prediction. Li et al. (2018) integrated the ELM with

parametric copula models to study the tail correlation

between displacements and other water-related triggering

factors. Li et al. (2019) used a least square support vector

machine (LS-SVM) to predict landslide displacement in the

Three Gorges Reservoir.

In recent years, the advances of AI have demonstrated the

superior performance of deep learning algorithms in terms of

time-series landslide displacement prediction. For instance,

Xie et al. (2019) introduced a long short-term memory

network to forecast short-term landslide displacement

considering multiple triggering factors. Aggarwal et al.

(2020) employed a deep neural network (DNN) to forecast

time-series displacement. Xing et al. (2020) proposed a hybrid

model that extracts the trend component via double

exponential smoothing and integrates the trend with

machine learning algorithms to predict displacement. Li

et al. (2020) integrated the deep belief network (DBN) and

control charts to obtain the risk threshold to classify the

seasonal fast displacement in water-induced landslides. All

machine learning algorithms and deep learning algorithms

sufficiently extracted valuable patterns within the dataset and

built reliable prediction models.

According to Ouyang et al. (2020), the time-series modeling

approach based on chaotic theory has offered a new solution to

the landslide displacement prediction task (Li et al., 2021a; Li,

2022a). Here, we consider that the multiple monitored landslide

displacement time series are all generated from a chaotic system.

Then, the data reconstruction from the original series can contain

both numerical characteristics and structural information.

Intuitively, the reconstructed data that provide both temporal

correlation and spatial factors can be utilized as input into the

prediction algorithm and provide improved prediction

performance.

This research contributes to the accurate prediction of

landslide displacement by using a chaotic modeling approach

to handle the time-series displacement dataset. The chaotic

characteristics are computed to determine the optimal

approach to reconstructing the original dataset and the size

of the input. The LSTM is selected as the prediction algorithm

to output the predicted displacement. Meanwhile, a robust

loss function, namely, the pseudo-Huber loss, has been

utilized as a replacement for the conventional mean square

error (MSE) loss to train the LSTM model. Computational

experiments have been conducted, and the results confirm the

proposed approach outperforms the other models.

2 Methodology

2.1 Reconstruction of landslide
displacement

The displacement time-series data contain dynamic

information on the original landslide system. By embedding

the time series into a higher-dimension space, the data

structure of the original data can be easily reproduced. Thus,

data reconstruction in the phase space can be a feasible solution

for modeling chaotic time series. For instance, an original

displacement time series Xn can be expressed as 1) in the

phase space:

Xn � (xn, xn+1, xn+2, . . . , xn+(m−1)τ) ∈ Rm, (1)

where Xn is the reconstructed data point in the high-

dimensional space Rm; n is a value from 1, 2, . . . , N0; N0

is equal to N − (m − 1)τ, which denotes the total number of

reconstructed data; N denotes the total number of original

data; and τ m represent the time delay and a number of

embedded dimensions, respectively, and are two key

parameters in the data reconstruction process.

Here, the time delay denotes the correlation between the

current time series and the historical time series. During phase
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reconstruction, an appropriate time delay is crucial for the

quality of data reconstruction. The time delay is determined

based on the autocorrelation function (ACF) and partial

autocorrelation function (PACF), which can be computed

by (2,3):

rk � corr(Yt ,Yt−k) � ∑n−k
i�k+1(yi − �y)(yi−k − �y)∑n

i�1(yi − �y)2 , (2)

ϕk � corr(Yt ,Yt−k|Yt−1,Yt−2, . . . ,Yt−k+1), (3)

where Yt is the original time series, Yt−k is the kth lag, yi is the ith

element in the series Yt , and corr() denotes the function to

compute Pearson’s correlation coefficient.

Another important factor that impacts the quality of data

reconstruction is the embedded dimension. The number of

dimensions determines the size of the reconstructed phase

space, which is often used to reflect the number of

independent factors in the underlying complex landslide

system. The false nearest neighbor (FNN) method is

effective for obtaining the optimal number of embedded

dimensions.

The FNN approach detects the number of neighbor points

when the embedding dimension is large. When we increase the

number of embedded dimensions from m to m+1, we can

determine that the reconstructed space is completely unfolded

if we do not observe a large variance in the number of FNNs.

To achieve the computation, the nearest point of a

displacement Xn can be regarded as X′
n, and thus, the

distance between these two points can be expressed in (4)

as follows:

Rm � ����Xn − X′
n

����, (4)

where Rm represents the distance between the two points in

the m-dimensional phase space. In practice, the Euclidean

distance is utilized to compute the distance between the

points. When we increase the embedded dimension from m

to m+1, the new distance Rm+1 can be expressed, as shown

in (5):

Rm+1 �
�������������������
R2
m + ����Xn+mτ − Xn+mτ

′
����2√
. (5)

According to (5), if the term ‖Xn+mτ − Xn+mτ
′ ‖2 becomes large

in the increased embedding dimension space, the two points can

be determined as FNN since they are separated in a higher-

dimension space. The FNN can be quantified by the criterion

expressed in (6):

α(n,m) �
����Xn+mτ − Xn+mτ

′
����

Rm
p 100%, (6)

where α(n, m) is the value of the judge function, which

determines if two points are FNN. In practice, the common

threshold is usually set between 0.1 and 0.3.

2.2 Lyapunov exponent

To confirm the chaotic characteristics, the Lyapunov

exponent, which is a widely used metric, was computed in

this study. The Lyapunov exponent examines whether a

complex system is chaotic (Tang et al., 2022). Basically, the

Lyapunov exponent measures the average exponential rates of

divergence (expansion) or convergence (contraction) of the

nearest points in the embedded phase space. Thus, a positive

exponent indicates the chaotic nature of a complex system, and a

negative value indicates the reverse scenario.

More specifically, the computation of the Lyapunov

exponent can be obtained following the work of Wolf et al.

(1985). With a start point Xn and its nearest neighbor in the

reconstructed phase space X′
n, the distance between them is

regarded as Li. Then, with the evolution of a certain time T,

two new points in the reconstructed phase space can be derived

as nearest neighbors and their Euclidean distance in this space

can be computed again. After repeating this process k times, the

value of the Lyapunov exponent can be obtained by (7):

λ � 1
kT

∑k

i�1
Li

Li−1
, (7)

where T is the evolution time, k is the number of total repetitions,

and Li denotes the Euclidean distance in each repetition

respectively.

2.3 Long short-term memory network

To predict the daily landslide displacement in the short term,

the long short-term memory (LSTM) network is trained to

discover the nonlinear mapping between the input data and

output target (Li et al., 2021b). The LSTM has a recurrent neural

network (RNN) architecture that enables it to learn temporal

dependency in nonlinear sequence prediction tasks (Hochreiter

and Schmidhuber, 1997). The LSTM consists of a memory cell

and a recurring cell that interacts with the input gate, output gate,

and forget gate. These 2 cells remember values at arbitrary time

intervals in the long term and enable time-series prediction in the

temporal domain (Fischer and Krauss, 2018).

The operation steps of an LSTM can be summarized as

follows. First, the values of input xt and historic memory ht−1
are acquired and input through a sigmoid function, as expressed

in (8). A determination is made on whether to discard this

information in the cell state.

ft � σ(Wt · [ht−1, xt] + bf), (8)

where Wt denotes the weight matrix and bf denotes the bias.

Then, a determination is made on which new information is

stored in the cell state by a sigmoid layer, as shown in (9).
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Meanwhile, the new candidate cell state value ~Cst is computed by

a tanh() function with inputs including xt and ht−1.

it � σ(Wi · [ht−1, xt] + bi), (9)
~Cst � tanh(Wc · [ht−1, xt] + bC), (10)

whereWi andWc denote the weight matrixes in the computation

process to derive cell state and corresponding weight for the cell

state; and bi and bC denote the biases within the same

computation process. In addition, the cell state value Cst is

updated from the previous cell state Cst−1 and the new cell

state candidate value ~Cst following (11). Additionally, the

output is determined in (12), and the value stored in the cell

state is computed in (13). The formula to compute the tanh()
function is expressed in (14).

Cst � ft × Cst−1 + it × ~Cst, (11)
ot � σ(Wo · [ht−1, xt] + bo), (12)

ht � otptanh(ft × Cst−1 + it × ~Cst), (13)

tanh(x) � ex − e−x

ex + e−x
. (14)

2.4 Pseudo-Huber loss

In most regression tasks, the mean square error (MSE) loss

is the state-of-the-art loss function, as it penalizes the

prediction errors. However, in some scenarios, more

weights are added to the outliers, which generates larger

errors. In this research, the pseudo-Huber loss is proposed

as a replacement for the MSE loss, as it is less sensitive to large

errors and can enhance the robustness of the regression

algorithm. The computation of the pseudo-Huber loss is

expressed in (15) as follows:

Loss � θ2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

������������
1 + (yi − ŷi

θ
)2

√√
− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (15)

where θ is the controlling parameter. It simultaneously combines

the advantages of both squared error and absolute error and thus

ensures the robustness of the prediction algorithm. Therefore, it

is adopted to train the LSTM model in predicting landslide

displacements in the temporal domain.

FIGURE 1
Case study region in the Tianchi village, Jinyang County, Liangshan Yi Autonomous Prefecture.
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2.5 Training strategy

The training and validation strategies implemented in this

research follow day forward-chaining, which is inspired by the way

time-series data can be split. Here, the dataset is split into subsets

with a rolling origin approach, and the temporal relationship

between the data points is maintained. In the rolling-based

evaluation, the predicted values provide the direction of

revision for the prediction algorithm. Successive revisions to the

prediction can arise from the addition of a new data point to fit the

new time stamp or from a recalibration of the smoothing weights

as the new data point is fed into the algorithm (Arize and Rios,

2019; Li, 2022b).

In summary, in this research, the time-series displacements are

split into a fixed number of slices. In total, 70% of slices are used for

training and validation purposes. The split between the training and

validation in each slice follows the 70%–30% rule. The remaining

30% slices are reserved to test the prediction performance.

2.6 Other deep learning models

To demonstrate the validity of using the proposed

approach, other deep learning algorithms, including deep

neural networks (DNNs), deep belief networks (DBNs), and

conventional LSTM networks using MSE loss, are selected for

comparative analysis.

The DNN serves as the benchmark algorithm in the deep

learning community. It is a type of ANN that usually

contains more than three hidden layers and is capable of

hierarchically extracting the features of the dataset and

learning deep features that are invariant to most local

changes in the input. According to a literature review, the

DNN produces robust prediction performance in most

supervised learning tasks, such as regression and

classification.

The DBN is another popular type of deep learning

algorithm. Instead of hidden layers, the DBN contains a

hierarchically stacked single-layer restricted Boltzmann

machine (RBM). Thus, a well-performing DBN also

requires pretraining each RBM in a hierarchical manner.

The DBN is capable of learning features quickly

and reaching the optimal solution for the underlying

problem.

The LSTM network trained in a conventional approach

using MSE loss is also selected for comparison in this research.

The details of implementing LSTM are described in

Section 2.3.

FIGURE 2
Autocorrelation analysis for the displacement series in each direction.
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2.7 Performance evaluation metrics

To evaluate the performance, two widely utilized metrics,

namely, the mean absolute error (MAE) and root mean absolute

error (RMSE), is selected in this study.

The MAE measures the absolute difference between the

measured displacement and predicted displacement. It

provides the arithmetic average of the absolute error by

computing the total of absolute errors divided by the total of

data points, which can be expressed as shown in (16):

MAE � ∑N
i�1
∣∣∣∣yi − ŷi

∣∣∣∣
N

, (16)

where yi denotes the actual measured displacement, ŷi denotes

the predicted displacement, and N denotes the total number of

test samples.

In comparison, the RMSE measures the root mean square of

the errors. This means that we need to compute theMSE first and

then compute its root. In comparison with the MAE, the RMSE

penalizes large errors during MSE computation. The

computation of the RMSE is expressed in (17):

RMSE �
������������∑N

i�1(yi − ŷi)2
N

√
, (17)

where yi denotes the actual measured displacement, ŷi denotes

the predicted displacement, and N denotes the total number of

test samples.

3 Data collection

3.1 Case study region

Our case study area is located in Tianchi Village, Jinyang

County, Liangshan Yi Autonomous Prefecture in southwest

Sichuan Province, China. The whole mountainous region

covers the latitude between 26°03′N-29°27′N and the

longitude between 100°15′E-103°53′E. The case study region is

FIGURE 3
Size of the embedded dimension with respect to the percentage of FNN.

TABLE 1 Summary of the data reconstruction parameters.

GPS m τ

X Y Z X Y Z

1 13 10 9 4 2 1

2 12 12 14 2 3 1

3 9 11 12 1 4 3

4 11 14 11 3 2 2

5 18 15 20 3 3 3

6 16 18 17 3 2 3

7 18 16 16 3 3 3

8 14 15 12 2 2 1

9 15 17 18 2 3 2

10 22 20 17 1 1 1

11 24 20 20 4 2 2

12 20 21 20 1 1 2

13 19 20 16 1 3 2

14 16 12 11 2 3 3

15 14 15 18 1 1 1

16 19 19 19 4 2 1

17 11 16 13 3 1 4

18 9 11 12 2 2 2

19 10 12 11 3 3 3

X, Y, and Z denote the three axes in the three-dimensional space. Each landslide

displacement-monitoring location measures the instant displacement in the three

dimensions independently.
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in the middle section of the Xikang-Yun’nan structural belt,

which is aligned in an almost N-S direction.

As a transition zone between the first and the second ladder-

type regions in China, the majority of this area is covered by

sharply undulating terrain andmountain landforms. Almost 70%

of the area is covered by mountains, and the elevation difference

is between 305 and 5,633 m. This natural intrinsic characteristic

provides sufficient conditions for the development of hazardous

landslides.

The geological structure in this area is complicated and

includes intense neotectonic movements as well as frequent

seismic activity. This structure results in various loose

deposits, fully exposed sedimentary rocks, and igneous rocks.

Slope failures, landslides, and debris flows are developed in

diverse phases and directions that confirm the complexity of

the geological history and tectonic movements.

As illustrated in Figure 1, the landslide occurrence location is

next to the Tianchi Village. The experts divided the slope failure

region into six subareas. In each area, there is a shallow landslide

occurrence triggered by precipitation or tectonic movement. The

geomorphological conditions are unstable, and slope

deformation is progressive. Multiple experts were invited for

the on-site investigation to assess the potential geo-risk in both

the short term and long term.

3.2 Dataset summary

According to Figure 1, a total of 19 web-based global

positioning system (GPS) points are configured to monitor

the slope deformation for all six landslides in real-time. The

displacement time series depicting the slope deformation process

are measured on a daily basis, and the measurement unit is

millimeters. The data collection process was initiated on 11 Mar

2017, and we collected daily displacement data until 24 Nov 2019,

for the analysis. The raw displacement data were measured in

three separate directions, including the X, Y, and Z directions. In

this study, the prediction models are separately developed in each

direction to extract useful features in a certain direction.

FIGURE 4
Lyapunov exponents in three directions.

TABLE 2 Summary of the Lyapunov exponents for all GPS points.

GPS λ

X Y Z

1 0.00817 0.01093 0.00922

2 0.01211 0.01014 0.00783

3 0.00452 0.01993 0.01706

4 0.00998 0.01155 0.00711

5 0.01106 0.00918 0.01024

6 0.00996 0.01491 0.00493

7 0.01619 0.01917 0.01052

8 0.00967 0.01268 0.01089

9 0.01726 0.01875 0.01612

10 0.01679 0.01637 0.01378

11 0.00825 0.00391 0.01087

12 0.00465 0.01231 0.00395

13 0.00893 0.00451 0.01043

14 0.00725 0.01294 0.01394

15 0.00317 0.00982 0.00327

16 0.01838 0.01306 0.01907

17 0.01302 0.01677 0.01987

18 0.00981 0.01792 0.01359

19 0.01224 0.01231 0.00672

X, Y, and Z denote the three axes in the three-dimensional space. Each landslide

displacement-monitoring location measures the instant displacement in the three

dimensions independently.
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4 Experimental results

To predict the future displacement following the proposed

approach, autocorrelation analysis is first performed. The

autocorrelation analysis computes the ACF and PACF (see

Eqs 2, 3) and computes the correlation between the current

displacement and the average historic displacements. As

illustrated in Figure 2, the ACFs and PACFs for 15 lags are

computed.

As shown in Figure 2, the ACFs and PACFs for GPS point

#5 in three directions are visualized as an example. Here, all the

lag-zero ACFs or PACFs that measure the autocorrelation

between the displacements versus themselves are equal to 1,

as they are completely identical. The green region denotes the

threshold of significance if an ACF or PACF is significantly

nonzero. The thresholds are computed based on the Ljung–Box

statistics, and those outside of the threshold are considered

statistically significant. In each direction, it is evident that the

first three historic lags (i.e., t-1. t -2, and t -3) are significantly

above zero and thus are considered as input for the prediction

model.

Figure 3 shows the nonlinear relationship between the

embedded dimension versus the percentage of FNN during

data reconstruction. Here, we examined a total of 25 possible

dimensions and correspondingly computed the percentage of

FNN. The turning points (m points) denote the optimal

choice for selecting the appropriate embedded dimensions.

Thus, 18 embedded dimensions are suitable for displacements

in the X direction, and 15 dimensions are suitable for

displacements in the Y direction. In total, 20 dimensions

are appropriate for the embedded dimensions in the Z

direction. Integrated with the results of ACFs and PACFs,

the summary of the data reconstruction parameters in each

direction for GPS point #5 are summarized in Table 1. Then,

the Lyapunov exponents for the reconstructed series are

shown in Figure 4.

Figure 4 illustrates the Lyapunov exponents for the

embedded displacement time series for GPS #5 in all three

directions. Here, Figure 4 shows the curve between the

temporal domain (days) and ln(L), and the solution of the

Lyapunov exponent is computed by the slope coefficient.

Thus, the X, Y, and Z directions have Lyapunov exponents of

0.01106, 0.00918, and 0.01024, respectively. The values of the

Lyapunov exponents (i.e., lambda) for GPS point #5 are all

positive, which indicates that all the reconstructed

displacement series are chaotic. For all 19 GPS points, the

Lyapunov exponents are summarized in Table 2.

After confirming the chaotic characteristics of the

displacement series in all three directions, the LSTM networks

are trained and tested for all GPS points. Following the training

strategy described in Section 2.5, the prediction performance on

the test dataset is obtained. Figure 5 displays the distribution of

errors between the predicted displacement and measured

displacement in all three directions. Additionally, the error

between the merged measured displacement versus the

merged predicted displacement is also computed. A summary

FIGURE 5
Error analysis in three directions and the merged outcome.
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of the MAE and RMSE (see Section 2.7) is also presented in

Table 3.

From Figure 5, it can be observed that the majority of the

errors in GPS point #5 between the measured daily

displacement and predicted daily displacement follow a

Gaussian distribution with a mean close to zero and a

certain level of variance depending on the displacement

direction. The first row of pictures depicts the probability

density distribution (PDF) for the error distribution.

Meanwhile, the cumulative density functions (CDFs) of all

errors are displayed in the second row. According to both rows

of pictures, the region close to zero has high probability

densities, while the distribution of prediction error is

symmetric. A summary of the MAE and RMSE (see Section

2.7) is also presented in Table 3.

Table 3 presents the performance evaluation for all GPS

points measured displacement. The DNN, DBN, and

conventional LSTM are also tested for comparative

performance analysis, and the results are presented in Table 4.

The proposed robust LSTM trained with pseudo-Huber loss

provides the best prediction performance among all

algorithms tested with the smallest MAE and RMSE. Thus,

the validity of using the proposed approach in the time-series

displacement prediction is confirmed.

5 Conclusion

In this research, the displacement prediction performance of

a robust LSTM network and other machine learning algorithms

TABLE 3 Summary of the prediction performance by robust LSTM for all GPS points.

GPS MAE (mm) RMSE (mm)

X Y Z Merged X Y Z Merged

1 0.80 3.30 1.60 3.85 0.72 3.63 1.92 3.75

2 2.00 3.40 1.90 4.08 2.20 3.74 1.71 4.66

3 1.30 3.90 1.80 4.79 1.04 4.68 1.98 6.22

4 1.40 4.50 1.60 5.08 1.26 4.50 1.44 5.38

5 1.40 3.60 1.10 3.82 1.12 3.24 1.21 4.36

6 0.70 3.20 2.00 3.54 0.63 3.52 2.20 4.20

7 1.20 2.70 1.10 3.15 1.20 2.43 1.32 2.71

8 0.60 2.80 0.90 2.70 0.60 3.08 0.99 2.96

9 2.00 3.60 1.20 4.09 1.60 4.32 1.20 5.71

10 1.10 4.40 1.90 4.72 1.32 5.28 2.47 6.57

11 0.90 2.50 1.90 3.07 1.08 2.75 2.47 4.62

12 1.60 2.80 0.90 3.25 1.28 2.24 0.72 2.95

13 1.10 3.60 1.50 4.25 1.21 3.60 1.50 4.90

14 1.30 3.10 1.50 3.68 1.56 2.48 1.20 2.85

15 1.20 4.20 0.80 4.64 1.32 3.78 0.80 4.08

16 1.60 3.70 1.50 4.40 1.60 3.33 1.50 3.99

17 1.50 3.60 2.00 4.58 1.20 3.96 2.00 5.51

18 1.80 2.80 0.80 3.12 1.44 2.80 1.04 2.98

19 0.80 3.40 0.90 3.41 0.72 4.08 0.81 4.22

X, Y, and Z denote the three axes in the three-dimensional space. Each landslide displacement-monitoring location measures the instant displacement in the three dimensions

independently.

TABLE 4 Summary of the prediction performance for the algorithms tested.

Metric DNN DBN LSTM (conventional) Robust LSTM

MAE (mm) 6.32 5.51 4.04 3.91

RMSE (mm) 7.01 5.35 4.45 4.35

For point out optimal computation.
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is evaluated. The proposed framework contains a data

reconstruction step for capturing the chaotic characteristics of

the time-series displacements. Meanwhile, the LSTM network

has been adopted as the prediction algorithm and is integrated

with the pseudo-Huber loss to prevent impact from a few

outliers.

The efficiency of the proposed framework has been

validated by testing the field displacement dataset in our

case study area. The computational results demonstrate

that the proposed framework outperforms the conventional

LSTM network as well as other machine learning algorithms

in terms of all performance evaluation metrics. This study has

also revealed that the pseudo-Huber loss is capable of

providing improved performance in handling time-series

displacement datasets.

The proposed approach can benefit on-site landslide

hazard prevention in multiple ways. For instance, the

pretrained algorithm can be installed in the chip of a GPS

monitoring instrument for real-time prediction. Once the

prediction errors surpass the statistical threshold, it triggers

the alarm for faster displacement which usually caused

casualties and property loss. In addition, it can be

incorporated with other sources of information such as

images or vibration to produce comprehensive landslide

deformation monitoring, respectively.
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