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Extratropical cyclones give rise to most of the high impact weather in the mid-to

high-latitudes during the cool seasons, including heavy precipitation and strong

winds. Thus it is important for stakeholders to be informedof approachingperiodsof

increased or decreased cyclone activity. While individual cyclone tracks can be

predictedout to about aweekor so, fromweek 2on, statistics summarizing cyclone

activity, or storminess, are more useful. Storminess can be defined based on

Lagrangian cyclone tracking or by Eulerian variance statistics. The outlook

includes a combination of both methods. Lagrangian cyclone tracks provide

information about where cyclones pass through and are more intuitive to users,

while Eulerian variance statistics have been shown to be highly correlated with

cyclone-related weather and are expected to be more predictable given that they

are not as noisy. In this paper, we evaluate a storminess outlook tool developed

based on dynamicalmodel forecasts in theweek-2 andweeks 3-4 time ranges. The

outlook uses two 6-hourly subseasonal ensemble forecasts–the Global Ensemble

Forecast System version 12 (GEFSv12), and the coupled Climate Forecast System

version 2 (CFSv2). Hindcasts and operational forecasts from 1999–2016 are used to

assess the prediction skill. Our results show that the GEFSv12 and CFSv2 combined

ensemble has higher skill than either individual ensemble. The combined ensemble

shows some skill in predicting cyclone amplitude and frequency out to weeks 3-4,

with highest skill inwinter, and lowest skill in summer.Models also showsome skill in

predicting the statistics of deep cyclones for week 2. The prediction skills for an

Eulerian sea level pressure variance storminess metric is significantly higher than

those for Lagrangian track statistics. Our results also show that GEFSv12 performs

better than its predecessor GEFSv11. Correlations between the storminess indices

and surface weather, including precipitation and high winds, are examined. A

publicly accessible web page has been developed to display the subseasonal

predictions in real time. The web page also contains information on climatology

and forecast verification to enable users tomakemore informed use of the outlook.
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Introduction

Extratropical cyclones and their fronts are responsible for

much of the high impact and extreme weather over the mid-

latitudes. On the global scale, Pfahl and Wernli (2012) showed

that over most extratropical regions, precipitation extremes

frequently coincide with occurrences of cyclones. Over the

U.S., almost 80% of the extreme precipitation events are

caused by extratropical cyclones, not only during the cool

season, but throughout the year (Kunkel et al., 2012).

Extratropical cyclones also generate high wind events which

cause not only property damages but also fatalities (e.g., Ashley

and Black, 2008). Sustained high winds associated with

extratropical cyclones can also lead to storm surges that give

rise to coastal flooding (e.g., Colle et al., 2008; Salmun et al.,

2011). On top of these, during winter, extreme cold events are

associated with passages of cyclones and anticyclones that

develop and propagate along the storm track (e.g., Kocin

et al., 1988), and lack of cyclone events in summer can lead

to enhanced heat waves (Chang et al., 2016). All these adverse

weather events have caused significant economic losses and

fatalities in the past (e.g., Berko et al., 2014). Thus accurate

predictions of the possible occurrences of these events are needed

to enable policy makers and emergency management to have

sufficient lead time to plan for mitigation and adaptation.

Two types of metrics have been used to quantify storminess:

Lagrangian cyclone track statistics and Eulerian variance

statistics. In the first type, cyclones can be tracked using

automated cyclone tracking algorithms (for example Serreze,

1995; Hodges, 1994), by finding minima in gridded sea level

pressure (SLP) data, and connecting together closest centers at

consecutive time steps to form tracks. After the tracks have been

obtained, summary statistics such as track frequency and average

storm amplitude (e.g., in terms of the central SLP) can be

generated. The advantage of this type of statistics is that it is

intuitive to users–high impact weather events are frequently

located at specific locations around cyclone centers (e.g.

Lackmann, 2011), thus visualizing the predicted cyclone tracks

provide users with information about which areas will be

impacted by the expected weather associated with the cyclones.

The development and propagation of individual cyclones can

generally be predicted out to about one week (e.g., Froude et al.,

2007; Charles and Colle, 2009; Froude, 2010). However, to date it

is not clear how well Lagrangian cyclone track statistics can be

predicted in the subseasonal time scale. Lukens and Berbery

(2019) assessed weeks 3-4 cyclone track predictions near North

America by the coupled Climate Forecast System version 2

(CFSv2; Saha et al., 2014) in winter. They found that after

bias correction, the model climatology can well depict

observed features. However, the root-mean-squared (RMS)

errors in both predicted cyclone frequency and amplitude are

close to or exceed the standard deviation of variability over most

regions, suggesting little or no skill. Additionally, Lukens and

Berbery (2019) compared statistics derived from a single forecast,

instead of an ensemble mean forecast, to observed statistics. As

numerous studies have shown in the past (e.g., Atger, 1999; Zhu,

2005), in the extended time range, ensemble mean forecasts

generally outperform single member deterministic forecasts due

to the removal or reduction in the ensemble mean of the noise

related to the chaotic behavior of the atmosphere. Thus one can

hypothesize that ensemble mean track statistics forecasts may be

skillful for a sufficiently large ensemble in the subseasonal time

scale. Note that a recent study (Zhang et al., 2021) suggested that

certain statistics of wave breaking related to Lagrangian cyclone

tracks may be predictable in the seasonal time scale using large

ensembles.

The second type of metrics to quantify storminess is Eulerian

variance statistics. Given that cyclones are low pressure systems,

passages of cyclones over any location give rise to rapid pressure

changes. Thus 12- or 24-h pressure tendencies at a fixed location

have been frequently used to quantify cyclone activity (e.g.,

Alexander et al., 2005; Feser et al., 2015). One simple Eulerian

storminess metric is variance computed using the 24-h difference

filter which highlights eddy activity with periods between 1.2 and

6 days (Wallace et al., 1988), as follows:

ECApp � [(SLP(t + 24hr) − SLP(t)]2 (1)

In (Eq. 1), ECApp denotes Extratropical Cyclone Activity

(ECA) derived from 24-h filtered SLP variance. The overbar

denotes averaging over a time period (e.g., one week, two weeks,

or one month). This statistic can be computed at every grid point

or location using the time series of station observations, analysis,

or forecast SLP data. As shown in many previous studies

(Wallace et al., 1988; Chang, 2013; see also discussion below),

this metric highlights the Pacific and Atlantic storm tracks, along

with the extension of the storm track from the Pacific towards the

Atlantic across North America, and its climatological

distribution clearly exhibits significant resemblance to the

Lagrangian track statistics (see, e.g., Supplementary Figures S1,

S24). In addition, previous studies have shown that the variability

of this metric is highly correlated with variations in precipitation

(Chang, 2013; Chang et al., 2015; Zheng et al., 2018; Yau and

Chang, 2020) and frequency of extreme events including high

winds, heavy precipitation, and extremely cold temperatures (Ma

and Chang, 2017; Yau and Chang, 2020). Note that while

Eulerian and Lagrangian storminess exhibit quite a bit of

similarities, there are differences between them. For example,

quasi-stationary cyclones contribute to Lagrangian track

statistics and do not contribute much to Eulerian statistics. In

addition, variations in Eulerian statistics generally reflect a

combination of changes in cyclone frequency and amplitude

and cannot be decomposed to quantify variations in frequency or

amplitude, while Lagrangian statistics can provide additional

information such as cyclone genesis and lysis locations and

frequency.
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Is this Eulerian storminess metric predictable by the current

generation of climate prediction models? Previous studies (e.g.

Grise et al., 2013; Guo et al., 2017) have shown that Eulerian

storminess metrics are generally not as noisy as Lagrangian

metrics, suggesting that they may be more predictable. Yang

et al. (2015) showed that seasonal variations of this metric

associated with the El Nino-Southern Oscillation (ENSO) can

be predicted out to 9 months by the Geophysical Fluid

Dynamics Laboratory (GFDL) climate prediction model. For

the subseasonal timescale, Zheng et al. (2019) and Zheng et al.

(2021) demonstrated that the Subseasonal-to-Seasonal (S2S;

Vitart et al., 2017) and the Subseasonal Experiment (SubX;

Pegion, 2019) ensembles, including CFSv2 and the Global

Ensemble Forecast System version 11 (GEFSv11; Zhou et al.,

2017), exhibit significant skills in predicting this metric out to

week 4 in winter. Previous studies have shown that in the

subseasonal to seasonal timescale, extratropical storminess is

modulated by the large-scale, low frequency variability of the

climate system including ENSO (Straus and Shukla, 1997;

Eichler and Higgins, 2006); the Madden-Julian Oscillation

(MJO; Deng and Jiang, 2011; Guo et al., 2017; Zheng et al.,

2018); polar vortex variability (Baldwin and Dunkerton, 2001;

Walter and Graf, 2005); and the Quasi-Biennial Oscillation

(QBO; Wang et al., 2018). Zheng et al. (2019) and Zheng et al.

(2021) showed that the weeks 3-4 prediction skill exhibited by

the models is largely consistent with the ability of the models to

predict the impacts of ENSO and polar vortex variability on

mid-latitude storminess.

In this study, we will evaluate how well a combined ensemble

made up of CFSv2 and a newer version of GEFS (v12; Guan et al.,

2022) does in predicting the subseasonal variations of

extratropical storminess, for both Eulerian and Lagrangian

storminess metrics. We will address 3 main questions: 1)

Whether model ensembles can predict Lagrangian storminess

as well as Eulerian statistics; 2) How well models can predict

storminess in seasons other than winter; and 3) Whether

GEFSv12 predictions exhibit any improvement over those of

GEFSv11.

An extratropical storminess outlook tool based on both types

of metrics has been developed and will be described. We will also

discuss the sensitivity of model performance to choices of

parameters, including radius for accumulating cyclone track

statistics, cyclone depth cutoff, and bias correction.

As discussed above, much of the interests in storminess

prediction arise from the close relationship between the

variations in storminess and those in weather, such as

precipitation and strong winds. Yau and Chang (2020)

developed an index (CORMAX, see discussions in CORMAX

between Storm Track Metrics and Weather Section below) to

quantify the strength of this relationship, and we will use this

index to examine how well each of the different storminess

metrics examined in this study relates to the variability of the

weather elements.

Data and methods

Data

Subseasonal prediction model data
The model data for the subseasonal prediction are taken from

the 16-day and 35-day GEFSv12 and 45-day CFSv2 model

outputs available at a 6-h interval. The data consist of both

hindcasts and operational forecasts. The model data are on a

0.5° × 0.5° grid in GEFSv12 and a 1° × 1° grid in CFSv2. We have

focused on these two model ensembles because they are the only

models that provide 6-hourly data needed for cyclone tracking.

The data are interpolated onto a 2.5° × 2.5° grid for computational

efficiency, while allowing a reasonable representation of cyclone

activity which has decorrelation length scales that are much

larger than 250 km.

Hindcast data

The GEFSv12 16-day hindcasts are initialized at 00Z daily

with five members. The GEFSv12 35-day hindcasts are also

initialized at 00Z but on every Wednesday with 11 members.

Therefore, the 35-day hindcasts have more ensemble members

than the 16-day hindcasts, but with less frequent initializations.

The 45-day CFSv2 hindcasts are initialized 4 times daily at 00Z,

06Z, 12Z and 18Z with a total of four members every day. In this

study, data from 1999–2016, the same period examined by Zheng

et al. (2021), are used to assess the hindcasts. We have also

examined daily-mean data from the GEFSv11 35-day hindcasts

for the same period in comparison with GEFSv12 hindcasts.

Operational forecast data

For operational forecasts, both GEFSv12 and CFSv2 have

many more ensemble members than their hindcasts. The

GEFSv12 16-day forecasts are initialized at 00Z, 06Z, 12Z, and

18Z, each with 31 members and a daily total of 124 (31 × 4)

members. The GEFSv12 35-day forecasts are only available with

the 00Z initialization and thus have 31 members daily. Like the

GEFSv12 16-day forecasts, the CFSv2 45-day forecasts are also

initialized 4 times daily at 00Z, 06Z, 12Z, and 18Z. However, for

each initialization time, there are four ensemble members and a

daily total of 16 members. Operational forecast data are used to

generate the near real time subseasonal outlook and posted

online on the web page described in Real Time Outlook Tool

Web Page Section.

Reanalysis and observational data
To validate and assess the model forecasts, reanalysis data are

used, which are taken from the Climate Forecast System

Reanalysis (CFSR; Saha et al., 2010) with a 6-h interval and a

half degree resolution. The variables used include SLP,

precipitation, and 10-m wind. We have also used reanalysis

data from ERA5 (Hersbach et al., 2020) to assess the model

hindcasts. Assessment based on ERA5 data will be shown in this
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paper. Results based on CFSR are similar and will be displayed on

the web page described below.

To relate the storminess indices to precipitation, monthly-

mean precipitation data from the Global Precipitation

Climatology Project (GPCP; Adler et al., 2018) from 1979 to

2018 on a 2.5° × 2.5° grid are used.

To relate the storminess indices to high wind conditions,

following Yau and Chang (2020), we used a high wind index

defined as the 95th-percentile 6-hrly 10-m wind speed for each

month at each grid point derived from reanalysis data. This is

similar to the high wind index used by Paciorek et al. (2002). As

discussed in Paciorek et al. (2002), since reanalysis data are not

real observations, this index is used not to represent the actual

observed high winds, but as an indicator of when high wind

conditions are expected. We have also examined an alternative

high wind index defined by the frequency of 10-m wind speed

exceeding gale force (>17.2 ms−1) in a month at each grid point.

Methods

Storminess indices
In this study, we have examined both Lagrangian cyclone

tracking statistics that are derived from identifying and tracking

cyclones, as well as Eulerian variance statistics derived based on

the SLP time series at each grid box.

Lagrangian cyclone tracking statistics

Cyclones can be defined in many ways (see Neu et al., 2013),

including minima in SLP, minima in SLP anomalies (deviations

from a large-scale background field), surface vorticity maxima,

850 hPa vorticity maxima, and so on. In this study, cyclone

centers are defined by the minima in the total SLP field, mainly

because this is the definition that forecasters are most familiar

with–see, for example, the surface analyses produced by the

Weather Prediction Center.

Cyclone detection and tracking are based on the algorithm

developed by Serreze (1995) with the following criteria using 6-h

SLP data over the Northern Hemisphere on a 2.5° × 2.5° grid: 1)

Storm center SLP ≤1000 hPa, 2) Storm center SLP at least 1 hPa

lower than the neighboring grid points, and 3) Maximum

distance a storm can travel is 800 km/6 h.

We have also tested the impact of removing condition 1 - that

is, including all identified cyclone centers regardless of central

pressure for deriving track statistics. The results of the sensitivity

test will be discussed in Cyclone Minimum Pressure Cutoff Value

Section.

After the cyclone centers and tracks have been identified,

statistics such as track frequency (or density) and amplitude (or

intensity) can be computed. Since the cyclone related significant

weather, including precipitation and high winds, impact a region

out to hundreds of kms away from the cyclone center (Chang and

Song, 2006; Field and Wood, 2007; Bengtsson et al., 2009), many

studies have accumulated cyclone statistics within a radius of

~500 km of the center of each grid box (e.g. Sinclair, 1997; Grise

et al., 2013; Guo et al., 2017; Yau and Chang, 2020). After testing

accumulating statistics within radii of 250 and 500 km, we

decided to use 500 km as the radius for accumulating cyclone

statistics. The results of the sensitivity test will be discussed in

Radius for Accumulating Track Statistics Section.

Following Yau and Chang (2020), cyclone track frequency

(or density) is defined as the number of cyclone tracks that pass

within 500 km of the center of each grid box within the forecast

period. Each cyclone is only counted once regardless of how long

it stays within 500 km of a grid box. Track amplitude (or

intensity) is the average of the amplitude of all cyclones that

pass within 500 km of the grid box during the forecast period. For

a cyclone that stays within 500 km of the center of the grid box

for multiple time steps, the amplitude that is accumulated is the

maximum amplitude (lowest central SLP) the cyclone attains

during these time steps. To account for fast moving cyclones that

jump over multiple grid boxes within a single 6-h time period, the

cyclone track is linearly interpolated into hourly time steps before

the cyclone statistics are computed. Cyclone statistics are

accumulated on a 2.5° × 2.5° grid. The seasonal climatology

for track frequency and amplitude based on ERA5 data, as well as

the model forecast biases, are displayed in the Supplementary

Figures S1–S23.

Eulerian SLP variance

The Eulerian storminess statistic examined is the 24-h

difference filtered SLP variance statistic (ECApp) defined by

Eq. 1 above. This metric highlights synoptic timescale

(1.2–6 days) SLP variability. ECApp can be computed at each

grid point using (Eq. 1) based on the reanalysis or model forecast/

hindcast time series of SLP at that grid point. The statistic is

averaged over 1 week for week 2 forecasts, and 2 weeks for weeks

3-4 forecasts. The seasonal climatology and model forecast biases

for ECApp are displayed in the Supplementary Figures S24–S28.

Hindcast assessment
Hindcasts are assessed using the Anomaly Correlation

Coefficient (ACC) between storminess indices derived from

model hindcasts and reanalysis data at each grid point. As

discussed above, the 35-day GEFSv12 hindcasts are initialized

every 7 days (weekly at 00Z on Wednesdays) and provide an 11-

member ensemble for each hindcast. Hence we also only sample

CFSv2 hindcasts for the same initialization dates. Since

CFSv2 hindcasts are initialized every 6 h, but only provide

one-member for each initialization, to form a

CFSv2 ensemble, a lagged-ensemble strategy has to be

employed. Zheng et al. (2021) showed that for SLP variance

statistics, the weeks 3-4 hindcast ACC scores for CFSv2 increase

with the number of lagged members up to over 10 members.

Here, we use a 12-member lagged ensemble, hence including

hindcasts that are initialized up to nearly 3 days prior to the
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initialization time (00Z every Wednesday). Hence the combined

GEFSv12/CFSv2 ensemble has 23 members. Hindcast data from

1999 to 2016 have been assessed—a total of 18 years of hindcasts.

Anomalies are defined by subtracting the model ensemble-

mean hindcast storminess climatology from each model

ensemble-mean storminess hindcasts. Model climatology is

defined daily. Since the initialization dates are all on

Wednesday, with 18 years of data, each calendar day has only

2-3 initializations over the entire period. Hence the hindcast

climatology is smoothed by including all hindcasts within

20 days prior to or following the initialization date, thus

averaging over about 100 hindcast cases to produce the

climatology for each day. Reanalysis climatology is defined the

same way and thus represents a 41-day running mean, except

that there is no ensemble-mean for reanalysis storminess.

Previous studies have only examined storminess forecasts for

winter. In this study, the seasonal variation in the ability of

models to predict storminess is assessed. For assessment

purposes, model hindcasts are grouped into 2-month periods:

Fall (October/November or ON); early winter (December/

January or DJ); late winter (February/March or FM); spring

(April/May or AM); early summer (June/July or JJ); and late

summer (August/September or AS). The hindcast ACC for each

period is computed using hindcasts that have at least half of their

validation period falling within the 2-month period.

Given that model hindcasts have biases (Supplementary

Figures S1–S28 in the Supplementary Material), defining

hindcast anomalies by subtracting off model climatology

corresponds to bias correction. In Bias Correction Section we

will examine how this simple bias correction impacts model

hindcast skill.

For each 2-month period, there are about 150 hindcasts

over the 18 years. Since we only consider hindcasts that are

initialized one week apart, all week 2 hindcasts are non-

overlapping. Since week-to-week storm track variations at a

grid box are not significantly correlated, these 150 hindcasts can

be considered independent in time. For 150 independent data

pairs, an ACC value above 0.16 is statistically significant at the

95% level. For weeks 3-4 hindcasts, consecutive hindcasts

overlap for one week, and hence cannot be considered

independent. For each 2-month period, there are about

75 non-overlapping hindcasts which can be considered

independent. With 75 data pairs, an ACC value of 0.23 is

statistically significant at the 95% level.

To assess forecast skill, one should compare it to a reference

“no-skill” forecast. The most commonly used no-skill forecasts

are random or climatological forecasts. For both cases, the

expected ACC score is 0, hence model hindcasts that are

positive and statistically significantly different from 0 (see

previous paragraph) can be considered to be skillful compared

to both random and climatological forecasts.

Due to statistical fluctuations, even a no-skill forecast can

have some grid points that are statistically significant. Hence a

few isolated significant points on an ACC map may not

necessarily indicate that the model predictions are skillful,

while if most of the ACC values are significantly positive, the

model predictions are likely skillful. This can be assessed

quantitatively using a field significance test (Livezey and

Chen, 1983) based on the Monte Carlo technique. Details of

the field significance test can be found in the Supplementary

Material (Supplementary Text S2.1).

In this study, we have assessed model skill based on the ACC

score. Previous studies have assessed model skill by computing

the root-mean-squared-error (RMSE). We have conducted some

assessments using MSE as the skill metric and these results are

briefly discussed in the Supplementary Material (Supplementary

Text S2.2).

CORMAX between storm track metrics and
weather

As discussed in the Introduction, extratropical cyclones are

responsible for much of the sensible weather in the mid-latitudes,

including precipitation and high winds. Yau and Chang (2020)

quantified the statistical relationship between different

storminess metrics and surface weather using a metric that

estimates the maximum one-point correlation between the

precipitation (or the high wind index) at each grid box and

the storminess metric, and referred to that as CORMAX. Note

that CORMAX is computed based on monthly mean data, since

observed GPCP precipitation is only available at monthly

temporal resolution prior to October 1996. We expect that

weekly or bi-weekly correlations between weather and

storminess metrics to be slightly lower due to the data being

more noisy when averaged over shorter periods of time, but the

correlation patterns should be similar.

To calculate CORMAX for precipitation at a grid box, the

monthly GPCP precipitation time series at that grid box is used

as the reference time series. As will be shown below, models do

best in predicting both Eulerian and Lagrangian storminess

metrics during winter, hence we will focus on CORMAX for

winter (DJFM) in this study. Monthly data from 1979–2018, a

total of 160 months of data, are used. First, the reference time

series is correlated with the storminess metric, for example the

monthly SLP variance metric (ECApp), at all grid points. The

resulting one-point correlation map for precipitation at 38.75 °N,

121.25 °W (over California), is shown in Figure 1A. As Chang

et al. (2015) showed, precipitation over California in winter is

highly correlated with ECApp over eastern Pacific just offshore of

the west coast of North America, with the maximum correlation

reaching a value of 0.76. This value is taken to be the value for

CORMAX at this grid box (38.75 °N, 121.25 °W). Note that the

maximum correlation in general does not occur at the reference

grid box, since the weather associated with extratropical cyclones

extends hundreds of kms away from the cyclone centers. Similar

one-point correlation maps can be computed using the

precipitation at every grid box as the reference time series,
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and the maximum correlation found on each one-point

correlation map in the vicinity of the reference grid box can

be plotted on each grid box to form the map displaying the value

of CORMAX for all grid boxes. This summary map is shown in

Figure 2A for the relationship between GPCP precipitation and

ECApp.

Similar correlations can be computed based on the high wind

index described in Reanalysis and Observational Data Section

(the 95th percentile wind speed for each month based on

ERA5 6-hrly 10-m wind data). Again, based on the monthly

time series of this index at a grid-box, a one-point correlation

map between this reference time series and ECApp can be

computed. An example, based on the high wind index time

series at 36.25 °N, 133.75 °W (over eastern Pacific), is shown in

Figure 1B. The correlation between this time series and ECApp in

its vicinity is quite high, with a broad area showing correlation

over 0.7. Themaximum value of about 0.76 is then taken to be the

value for CORMAX at this grid box. Similar correlationmaps can

be computed for all other grid boxes, and the CORMAX value for

each grid box can be found. The resultant summary map is

shown in Figure 2B.

The same procedure can be repeated to relate ECApp to other

weather elements, or to relate other storminess metrics (e.g.

cyclone track frequency) to precipitation (Figures 1C, 2C) or

other weather elements (e.g., the high wind index, Figures 1D,

FIGURE 1
(A)One-point correlation between GPCP precipitation at 38.75 °N, 121.25 °W (marked by ‘X’) and ECApp at each grid point. (B) Similar to (A), but
for the high wind index at 36.25 °N, 133.75 °W and ECApp at each grid point. (C,D) Similar to (A,B), but for cyclone track frequency instead of ECApp.

FIGURE 2
(A) CORMAX relating GPCP precipitation at each grid box to
ECApp. (B) Similar to (A), but relating the high wind index at each
grid box to ECApp. (C,D) Similar to (A) and (B), but for cyclone track
frequency instead of ECApp.
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2D). These will be discussed further in Correlation with

Precipitation and Wind Section below.

In summary, CORMAX between a weather element (e.g.,

precipitation or high wind) and a storminess metric (e.g.,

ECApp or cyclone track frequency) summarizes how strong

the correlation between the two are. The value of CORMAX

at a grid point quantifies the maximum correlation between

the variations in the weather element at that grid point and

the variations in the storminess metric in the vicinity of that

grid point. A high value of CORMAX indicates that there is

high correlation between the variations of storminess and the

weather element at that grid point, while a low value

indicates that the correlation between the two is weak.

Results

Evaluation of SLP variance hindcasts

Week 2
As discussed above, model performance in predicting

storminess is assessed by computing the ACC score between

model predicted and reanalysis storminess. We have examined

the ACC score for the individual ensembles as well as the

combined ensemble. An example is shown in Figure 3, for week

2 SLP variance in late winter (February/March). Overall, the

models can predict this storminess metric with high accuracy

(ACC >0.5) over extended regions over the Northern

Hemisphere. Comparing the performance of the

GEFSv12 and CFSv2 ensembles (Figures 3A,B),

GEFSv12 performs better. The ACC for GEFSv12 is

generally higher (see the number on the top right corner of

each panel), except over northeastern Siberia near Alaska. We

hypothesize that overall GEFSv12 performs better partly

because the CFSv2 hindcast ensemble is a lagged ensemble

using hindcasts initialized up to nearly 3 days old, while all

GEFS ensemble members are initialized at day 0. Overall, the

combined ensemble (Figure 3C) performs better than either

individual ensemble, with the combined ensemble having the

highest ACC scores over most regions, as well as when averaged

over the northern hemisphere. This is true for all cases that we
FIGURE 3 (Continued)

FIGURE 3
(A) ACC scores for week 2 hindcasts of late winter (February/
March) SLP variance (ECApp) by GEFSv12 ensemble; (B) Same as
(A) but for CFSv2 ensemble; (C) Same as (A) but for the combined
GEFSv12/CFSv2 ensemble. As discussed in the text, for week
2 hindcasts, an ACC value of 0.16 is statistically significant at the
95% level, hence all shaded areas, apart from the light blue shade
for small negative correlations, are statistically significant. For this
and subsequent figures, the number on the top right corner of
each panel corresponds to the ACC score averaged over the
western hemisphere (180 °W—0 °E; 25–70 °N).
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tested. From now on we will only discuss results for the

combined GEFSv12/CFSv2 hindcast ensemble with

23 members.

Zheng et al. (2021) only examined model hindcasts for

winter (December-January-February). Figure 4 shows how

the hindcast ACC score varies as a function of the year. The

highest scores are for winter–December/January and

February/March (Figures 4B,C), when the ACC scores are

above 0.5 over extended regions across the Northern

Hemisphere, including much of the North Pacific, North

Atlantic, the northern part of North America, as well as the

eastern part of Asia. Model prediction skill is overall not as

good as winter during the transition seasons (Figures 4A,D),

with high ACC scores over more or less similar regions as in

winter, but overall scores being lower by between 0.05 and

0.1. The ACC scores were lowest in summer (Figures 4E,F),

with only isolated regions showing high ACC, for example

over the Pacific extending into the western part of North

America as well as over the northeastern part of Asia in both

June/July and August/September. In summary, for week

2 hindcasts, model predictions are best in winter and

worst in summer.

Weeks 3-4
Results for weeks 3-4 hindcasts are shown in Figure 5.

Model prediction skill is best in late winter (February/March,

Figure 5C), when the ACC scores are relatively high over

parts of the North Pacific extending towards Alaska, parts of

northeastern North America, parts of the Atlantic extending

towards the British Isles and Scandinavia, and part of East

Asia. During early winter (December/January, Figure 5B),

high scores occur over more limited regions–over the eastern

Pacific extending towards North America, and over the

Atlantic extending towards Europe. These results are

consistent with those of Zheng et al. (2019, 2021), who

FIGURE 4
ACC scores for week 2 hindcasts of SLP variance by the
combined ensemble, for (A) fall (October/November); (B) early
winter (December/January); (C) late winter (February/March); (D)
spring (April/May); (E) early summer (June/July); (F) late
winter (August/September). An ACC value of 0.16 is statistically
significant at the 95% level.

FIGURE 5
Same as Figure 4, but for weeks 3-4 hindcasts of SLP variance.
For weeks 3-4 hindcasts, an ACC value of 0.23 is statistically
significant at the 95% level, hence all shaded areas, apart from the
light blue shade for small negative correlations, are
statistically significant.
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showed that S2S and SubX model ensembles exhibit similar

abilities to predict SLP variance during winter for weeks 3-4.

For spring (Figure 5D), models are able to predict storminess

with moderate ACC scores over northeastern North America

extending into the North Atlantic, western and central Pacific,

and parts of east Asia. The ACC scores for fall (Figure 5A) are

highest over the similar regions as for spring but are generally

slightly lower. During summer (Figures 5E,F), model predictions

only show isolated regions of moderate ACC scores for weeks

3–4. Overall, similar to week 2, models predict storminess best

during winter and worst over summer. Not surprisingly, the ACC

scores for weeks 3-4 are much lower than those for week 2. We

have also examined the ACC scores for week 3 predictions alone

(not shown), and the results showed that the ACC scores for

weeks 3-4 combined are generally slightly higher than those for

week 3 alone, probably because averaging over weeks 3 and

4 reduces noise. Hence we will combine weeks 3-4 together for

the subseasonal outlook instead of splitting the two-week period

into week 3 and week 4 separately.

Evaluation of cyclone statistics hindcasts

Week 2
The ACC scores for week 2 hindcast of track frequency for

all cyclones are shown in Figure 6. It is clear that the ACC scores

for track frequency are much lower than those for SLP variance

(Figure 4), with only limited regions displaying ACC scores

of >0.5. Models again show highest ACC scores for winter

(Figures 6B,C), with moderate scores over much of the Pacific,

parts of the continental U.S., much of the Atlantic, extending

into Europe and the northern part of Eurasia. Slightly lower

scores are found over the similar regions for fall (Figure 6A) and

spring (Figure 6D), with more regions showing very low ACC

scores (<0.2 or even negative) during summer (Figures 6E,F),

suggesting that the models have limited ability to predict

cyclone track frequency during summer. Over the U.S.,

especially over the Ohio Valley and Great Lakes region, the

model hindcasts show moderate ACC scores for most of the

year except during early summer (Figure 6E).

In Figure 7, similar scores for the model hindcasts of track

amplitude (or cyclone intensity) for all cyclones are shown. The

highest scores are again for winter (Figures 7B,C) over the main

FIGURE 6
Same as Figure 4, but for week 2 hindcasts of cyclone track
frequency of all cyclones. The thick solid contour corresponds to a
cyclone track frequency of 0.1/week.

FIGURE 7
Same as Figure 6, but for week 2 hindcasts of cyclone
amplitude of all cyclones.
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Pacific and Atlantic storm track regions. The ACC scores are

again lower for fall and spring (Figures 7A,D), and lowest for

summer (Figures 7E,F). The ability of models to predict track

amplitude over North America seems to vary across the seasons,

with moderate ACC scores over much of the eastern part of the

U.S. in early winter (Figure 7B) and spring (Figure 7D), but

rather low scores over this region during the other months.

As discussed above, previous studies have shown that cyclone

tracks may not be robust for weak cyclones (Hodges et al., 2011;

Neu et al., 2013), with agreement across different tracking

algorithms and data sets being more robust for moderate and

strong cyclones. Hence, we also examined how well models

predict cyclones with minimum SLP <1000 hPa, by removing

all instances when the SLP at the cyclone center is above

1000 hPa. The results for track density are shown in Figure 8.

Compared to the same statistic for all cyclones (Figure 6), when

we only sample cyclones when their minimum SLP is lower than

1000 hPa, the ACC scores are slightly higher for all seasons, while

the patterns are very similar.

However, the ACC scores for track amplitude for cyclones

deeper than 1000 hPa are lower than those for all cyclones

(compare Figure 9 to Figure 7). Moderate scores are found over

the eastern Pacific and the Atlantic for the winter months

(Figures 9B,C), and over similar regions in Fall but with

lower scores (Figure 9A). During spring and summer

(Figures 9D–F), models do not show appreciable skill in

predicting this metric. This may be partly due to the fact

that when only cyclones deeper than 1000 hPa are retained,

the range of variation in cyclone intensity becomes rather

narrow over most regions, except for the vicinity of the

Aleutian and Icelandic low regions where cyclones can be

very deep and even cyclones deeper than 1000 hPa can have

amplitude spanning a large range.

We have also examined whether models can predict the

statistics of deep cyclones–those with central pressure below

970 hPa. These cyclones are most frequent in winter, and are

rare in the other seasons except for fall (see Supplementary

Figure S21), hence we will only show evaluations for fall and

winter (Figures 10A–C). Over the main regions where these

cyclones frequent, the models show some ability to predict the

frequency of deep cyclones, with highest ACC scores close to

Alaska in the northeastern Pacific, and close to Iceland in the

FIGURE 8
Same as Figure 6, but for week 2 hindcasts of cyclone track
frequency of moderate cyclones with central SLP <1000 hPa.

FIGURE 9
Same as Figure 8, but for week 2 hindcasts of cyclone
amplitude of moderate cyclones.
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Atlantic. Overall, models predict these cyclones slightly better

during late winter than early winter or fall.

Weeks 3-4
Figure 11 shows how well the 23-member combined

GEFSv12/CFSv2 ensemble predicts cyclone track frequency for

moderate cyclones (those with central pressure below 1000 hPa)

for weeks 3–4. Overall, the ability to predict track statistics for

this period is quite low. Models do best for winter (Figures

11B,C), with statistically significant ACC scores over parts of

eastern Pacific, and parts of the Atlantic extending from the east

coast of North America towards Europe. The models seem to do

slightly better during late winter than in early winter. Outside of

these regions, the ACC scores are not statistically significant, and

are even negative (but not significant) over some regions. The

ACC scores for the other seasons are generally very low and are

only statistically significant over very isolated regions. Hence our

results suggest that dynamical models display limited ability to

predict cyclone track statistics in the subseasonal time scale, apart

from over parts of the Pacific and Atlantic in winter. From now

on we will focus on winter.

The results for track amplitude for moderate cyclones for

winter are shown in Figures 12A,B. Statistically significant ACC

scores are only found near Iceland. The ACC scores for model

predictions of all cyclones are shown in the remaining panels of

Figure 12. Similar to the results for week 2, the ACC scores for

predicting the track frequency for all cyclones (Figures 12C,D) are

generally lower than those for the track frequency of moderate

cyclones (Figures 11B,C), while those for predicting the track

amplitude of all cyclones (Figures 12E,F) are higher than those for

the track amplitude of moderate cyclones (Figures 12A,B).

How about deep cyclones (those with central pressure below

970 hPa)? Results for the track density of deep cyclones are

shown in Figures 10D–F. Out in the subseasonal timescale,

models show some ability to predict the frequency of deep

cyclones near Iceland during late winter (Figure 10F), likely

leveraging model ability to predict both the frequency and

amplitude of cyclones over that region (Figures 11C, 12B,F).

FIGURE 10
(A–C): Same as Figure 6, but for week 2 hindcasts of cyclone
track frequency of deep cyclones (central SLP <970 hPa). (D–F):
Same as (A–C), but for weeks 3-4 hindcasts of cyclone track
frequency of deep cyclones.

FIGURE 11
Same as Figure 8, but for weeks 3-4 hindcasts of cyclone
track frequency of moderate cyclones.
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Overall, models show little ability to predict cyclone track

statistics for weeks 3-4, and the ACC scores for track statistics are

much lower than those for variance statistics shown in Figure 5.

Discussion

Correlation with precipitation and wind

As discussed in CORMAX Between Storm Track Metrics and

Weather Section, CORMAX (Figure 2) between a weather

element (e.g. precipitation) and a storminess metric (e.g.

ECApp) quantifies how strongly the variations in that weather

element at that grid point correlate with the storminess metric in

the vicinity of that grid point. CORMAX between precipitation

and ECApp is shown in Figure 2A. The correlation between

precipitation and ECApp is high over the western part of the U.S.

extending into the eastern Pacific. It is also high over much of

western Europe extending into eastern Atlantic, as well as parts of

Siberia and the coastal regions of northeastern Asia. Over these

regions, the correlation generally exceeds 0.6, and exceeds

0.7 over parts of the region. Correlation between GPCP

precipitation and ECApp is generally low over the western

parts of the ocean basins. We have also computed CORMAX

using ERA5 monthly precipitation (see Supplementary Figure

S29A). The pattern is quite similar, except that the correlation

between ERA5 precipitation and ECApp is generally higher,

especially over the oceans.

CORMAX between the high wind index (the 95th-percentile

wind in each month; see Reanalysis and Observational Data

Section) and ECApp is shown in Figure 2B. The correlation

between this high wind index and ECApp is generally high over

much of the main storm track regions. We have also examined

CORMAX based on the monthly frequency of occurrence of gale

force wind (wind speed >17.2 m/s), and the correlation between

this high wind index and ECApp is also generally high over the

main oceanic storm track (see Supplementary Figure S29B). Note

that the 95th percentile high wind index is relevant over both

land and ocean, while over land, 10-m wind speed rarely exceeds

gale force and hence the gale force wind index is only relevant

over oceanic regions.

Previous studies (e.g. Osburn et al., 2018; Yau and Chang

2020) have shown that cyclone track statistics are also well

correlated with precipitation and high wind. The one-point

correlation between the GPCP precipitation at the California

reference point and cyclone track frequency for moderate

cyclones (minimum SLP <1000 hPa) is shown in Figure 1C. It

can be seen that precipitation over California is moderately

correlated with cyclone track frequency just offshore of the

U.S. west coast. The correlation is lower than that between

precipitation and ECApp (Figure 1A), consistent with the

results of Yau and Chang (2020). Yau and Chang (2020) also

showed that the correlation between precipitation and track

frequency is higher if cyclones are defined by 850 hPa

vorticity anomalies instead of by SLP, likely reflecting the

dynamic impact of differential vorticity advection in forcing

rising motion.

CORMAX for all grid boxes relating precipitation at that grid

box to cyclone track frequency is shown in Figure 2C. Compared

to that between precipitation and ECApp (Figure 2A), the pattern

is similar, but the overall correlation is lower. Again, moderate

correlations can be found near the U.S. west coast, the western

and northern parts of Europe, central Siberia, and the

northeastern part of Asia.

CORMAX relating the high wind index at all grid boxes to

cyclone track frequency is shown in Figure 2D, showing generally

lower correlations between high winds and track frequency than

those between high winds and ECApp (Figure 2B). This is also

the case if the frequency of gale force wind is used as the high

wind index (Supplementary Figure S29). This is not surprising,

FIGURE 12
(A) ACC scores for weeks 3-4 hindcasts of cyclone amplitude
of moderate cyclones for early winter (December/January); (B)
Same as (A) but for late winter (February/March); (C,D): Same as (A,
B) but for weeks 3-4 hindcasts of cyclone track frequency of
al cyclones; (E,F): Same as (A,B) but for weeks 3-4 hindcasts of
cyclone amplitude of all cyclones.
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since the occurrence of high winds not only depends on the

proximity of a cyclone center, but is also related to cyclone

intensity. Cyclone track frequency does not take into account

cyclone intensity, but ECApp is an integrated measure of

storminess that contains the information of both cyclone

frequency and amplitude, hence it is not surprising that

ECApp is better correlated to weather elements such as

precipitation and high wind compared to cyclone frequency.

We will discuss this further in Combining Cyclone Frequency and

Intensity Information Section.

Sensitivity to parameter settings

Radius for accumulating track statistics
One important parameter for accumulating cyclone track

statistics is the radius used to accumulate cyclone statistics

around the center of each grid box. Extratropical cyclones

generally cover a broad region, and previous studies found

that the maximum wind and heavy precipitation generally

extends out to about 500 km or more away from the cyclone

center (e.g. Chang and Song 2006; Field and Wood 2007;

Bengtsson et al., 2009). Thus, it is not surprising that many

previous studies used 500 km radius or 5-degree polar cap

(~555 km radius) to accumulate cyclone statistics (e.g. Sinclair,

1997; Grise et al., 2013; Guo et al., 2017; Yau and Chang, 2020).

Nevertheless, some studies used a larger radius–for example,

Pinto et al. (2005) used a radius of 7.5° (~832 km). There are also

some studies that used a smaller area–for example, Serreze and

Barrett (2008) used 250 km grid boxes, although the statistics are

smoothed with adjacent grid boxes, thus effectively using larger

grid boxes.

We tested the sensitivity of our results to accumulating

statistics using a radius of 500 km versus a radius of 250 km.

We examined how well models can predict the track statistics, as

well as how well correlated the track statistics are with

precipitation and high winds. The results are summarized in

Table 1, which shows ACC and CORMAX values averaged over

the region 180–0 °W, 25–70 °N. Comparing the second and third

rows, we can see that cyclone track frequency accumulated using

a radius of 500 km is better predicted than that accumulated

using a radius of 250 km, which is likely because statistics

accumulated using a radius of 250 km is much noisier. The

correlation between weather and track statistics is also slightly

better for track statistics accumulated using a radius of 500 km,

which is not surprising given that weather associated with

cyclones usually extends out to 500 km away from the cyclone

center. Given these results, we have decided to use a radius of

500 km to accumulate cyclone statistics. Note that, as discussed

in the Supplementary Text S2.1, while many of the average ACC

values for weeks 3-4 listed in column 3 of Table 1 are less than the

significant ACC value for individual grid points (0.23), because

these values are averages of ACC values over a large number of

grid points, all these values are statistically significant at the 95%

level based on a Monte Carlo field significance test.

Cyclone minimum pressure cutoff value
In Results Section, we showed that the models predict cyclone

track frequency better for moderate cyclones than for all

cyclones. This is confirmed by the statistics shown in Table 1

(compare rows 3 and 4). The average CORMAX values for GPCP

precipitation for both types of track statistics are similar, but The

CORMAX for high wind events is slightly higher for the

frequency of moderate cyclones than for all cyclones, which is

not surprising since the highest winds experienced at each grid

box are likely related to the stronger cyclones rather than weak

cyclones. We have also computed the statistics for keeping

cyclones with SLP <1010 hPa instead of 1000 hPa. The

summary statistics are shown in row 5 of Table 1. Compared

to row 3, the results are rather similar, but the statistics for

keeping cyclones with SLP <1000 hPa are slightly better. After

consultation with forecasters, we decided to generate cyclone

statistics for moderate cyclones (SLP <1000 hPa) for our

outlook tool.

Bias correction
When we computed the ACC scores between predicted

and reanalysis storminess metrics, bias correction was applied

TABLE 1 Summary statistics for different storminess indices averaged over 180–0 °W, 25–70 °N for DJFM.

Week 2 ACC Week 3/4 ACC CORMAX GPCP CORMAX wind

ECApp 0.447 0.257 0.441 0.600

Tr Freq 250 km 1000 hPa 0.223 0.103 0.316 0.340

Tr Freq 500 km 1000 hPa 0.327 0.159 0.334 0.367

Tr Freq 500 km all cyclones 0.295 0.150 0.333 0.335

Tr Freq 500 km 1010 hPa 0.305 0.154 0.338 0.343

Tr Freq 500 km 1000 hPa ERA5 climatology 0.317 0.137

ATA 500 km 1000 hPa 0.376 0.181 0.328 0.413
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by computing model predicted anomalies using the models’

own climatologies. The biases in model climatologies are

shown in Supplemental Figures S3–S10, S13–S20, S22–S23,

S25–28.

We have tested how much improvement this simple bias

correction provides, by computing model anomalies not by

subtracting off the model’s own climatology, but by

subtracting off ERA5 climatology–i.e. no bias correction is

performed. The results are shown in row 6 of Table 1. We can

see that as expected, the ACC scores are lower compared to

those shown in row 3 when bias correction is made, but only

slightly lower. This demonstrates that while bias correction

does improve the quality of the model forecasts, it is not

essential for the model to show positive skill.

Combining cyclone frequency and
intensity information

In Results Section, we saw that the ACC scores for ECApp

(SLP variance statistics) are much higher than those for track

frequency or amplitude/intensity. We hypothesize that one

contributing factor might be related to the fact that ECApp

combines information from cyclone frequency and

amplitude, and since models show some ability to predict

both frequency and amplitude, the combination of the two

might be more predictable.

One way of combining cyclone frequency and amplitude is

the Accumulated Track Activity (ATA) introduced by Yau

and Chang (2020). In short, ATA at any grid box is computed

by summing the maximum amplitude reached by all cyclones

within 500 km of the center of the grid box over the time

period, with each cyclone only counted once at its peak

amplitude within the 500 km radius. Following Hoskins

and Hodges (2002), in Yau and Chang (2020), cyclones are

defined by removing the large-scale background, using

spherical spectral decomposition of either SLP or 850 hPa

relative vorticity and retaining only the spectral components ≥
T5 (triangular truncation retaining total wavenumber 5 or

above). Given this definition, cyclone amplitude is easy to

define as the minimum SLP or maximum relative vorticity of

the retained anomaly field.

In this work, we use a more traditional way of defining

cyclones, by tracking the minima in the total SLP field. Thus

it is not entirely clear how to define an amplitude to be

accumulated for ATA. Since we are removing the portion of

all cyclone tracks with SLP >1000 hPa, one way to define the

cyclone amplitude is 1000-SLPmin, where SLPmin is the

minimum SLP (in hPa) found at the center of the cyclone.

Using this definition, ATA can be readily computed.

The statistics for this metric are summarized by row 7 of

Table 1. Compared to the statistics for track frequency (row

3), models predict ATA with higher ACC for both week 2 and

weeks 3-4, but the ACC scores are still lower than those for

ECApp (row 1). Average CORMAX between GPCP

precipitation and ATA is similar to that between GPCP

precipitation and track frequency, but the CORMAX

between the high wind index and ATA is higher than that

between the high wind index and track frequency. This is not

surprising since ATA contains information of cyclone

intensity which should make it better correlated with high

winds than track frequency alone. Nevertheless, the average

CORMAX scores for ATA are still substantially lower than

those for ECApp (row 1). This is likely in part due to the

suboptimal definition of cyclone amplitude, since with this

definition, a cyclone with SLPmin equals to 1000 hPa does

not contribute to ATA.

Here we have demonstrated that combining cyclone track

frequency and amplitude information can result in improved

forecasts as well as higher correlations with weather, especially

high winds. However, one of the main advantages of considering

cyclone track statistics over variance statistics is the additional

information provided by these statistics by separating out the

information on cyclone frequency and intensity, and combining

the information together to form ATA removes these additional

information. Hence we have not attempted to fine tune the definition

of ATA, and instead encourage users to consider the variance statistics

ECApp instead of ATA if only information on the total cyclone

activity is needed.

FIGURE 13
(A) ACC scores for weeks 3-4 hindcasts of winter
(December-March) SLP variance (ECApp) by GEFSv12 ensemble
using daily mean data; (B) Same as (A) but for GEFSv11 ensemble;
(C) Same as (A) but for GEFSv12 ensemble using 6-hrly data.
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Comparing GEFSv11 and
GEFSv12 hindcasts

GEFSv12 is an updated version of its predecessor GEFSv11,

hence it is of interest to compare their performance in predicting

storminess. GEFSv11 data are retrieved from the SubX database,

which only provides daily mean data. Since cyclone tracking

requires 6-hrly data, we can only compute variance statistics

using GEFSv11 data. To directly compare GEFSv12 predictions

with those of GEFSv11, the 6-hrly GEFSv12 data are averaged

into daily mean data, before ECApp is computed based on Eq. 1.

Since we have shown above that models predict ECApp best

in winter, here we compare GEFSv11 and GEFSv12 hindcasts for

December to March for weeks 3–4. The ACC values for

GEFSv12 hindcasts are shown in Figure 13A, while those for

GEFSv11 are shown in Figure 13B. Moderate ACC scores are

found in the same regions as those discussed above (Figures

5B,C), and overall GEFSv12 exhibits slightly higher skill than

GEFSv11.

It is also of interest to compare the sensitivity of the model

skill to the data frequency, i.e., whether daily mean or 6-hrly data

are used to compute ECApp. The ACC for using 6-hrly data for

GEFSv12 is shown in Figure 13C. It is clear that the model can

predict ECApp computed using 6-hrly data (Figure 13C) better

than that computed based on daily mean data (Figure 13A), likely

because ECApp is more noisy when computed using daily mean

data because of averaging over much fewer time steps.

Real time outlook tool web page

The week-2 and weeks 3-4 storminess outlook products and

CFSR verification are available at the real-time forecast website

(https://ftp.cpc.ncep.noaa.gov/hwang/YP/week2/), with a daily

update.

The outlook products include the following variables: 1)

Storm tracks and track density, storm intensity and duration,

2) Total precipitation, mean SLP, 10-m wind and wind speed,

and 3) Day-to-day SLP variance. The website provides GEFSv12,

CFSv2, and GEFSv12+CFSv2 combined storminess outlooks.

The website also includes regional maps over Alaska/Arctic,

North Pacific, North America and North Atlantic.

The outlooks consist of both deterministic forecast

(ensemble mean forecast) and probabilistic forecast. The

latter is based on the distribution of individual member

forecasts. Both the week-2 and weeks 3-4 probabilistic

forecasts for precipitation and 10-m wind speed exceeding

75th and 90th percentiles, and storm intensity lower than 990,

980, 970, and 960 hPa are provided.

Verification of the real-time forecasts against the CFSR is

provided when the CFSR data are available for the forecast target

weeks. Therefore, there is a 16-day delay for the real-time week-2

forecast and 29-day delay for the real-time weeks 3-4 forecast.

Summary and conclusion

In this study, we have evaluated the ability of GEFSv12 and

CFSv2 in predicting Northern Hemisphere extratropical

storminess for week 2 and weeks 3-4 using 18 years of

hindcast data. Both Lagrangian cyclone track statistics, as well

as Eulerian SLP variance statistics, have been examined. Our

results showed that GEFSv12 generally performs better than

CFSv2—one contributing factor is that CFSv2 is a lagged

ensemble, including members that are nearly 3 days old, while

all GEFSv12 members are initialized at day 0. Overall, we found

that the combined GEFSv12/CFSv2 multi-model ensemble

consistently outperforms either individual ensemble, thus we

focused on evaluating the performance of the combined

ensemble.

For week 2, as indicated by the ACC scores, SLP variance is

quite well predicted in winter (December to March) over much

of the Pacific, parts of North America, much of the Atlantic

extending towards Europe, and parts of East Asia. Model

predictions are slightly less skillful for spring and fall, and

the ACC scores are lowest for summer. For weeks 3-4, the ACC

scores are much lower, and rarely exceed 0.5. For winter,

moderate scores are found over the areas mentioned above.

For spring and fall, models show some ability to predict SLP

variance over parts of the central Pacific and parts of eastern

North America extending into western Atlantic. Model

prediction skill for SLP variance is generally low in summer

for weeks 3–4. Our results also show that GEFSv12 exhibits

higher skill than its predecessor GEFSv11. To put these results

into perspective, the average model ACC scores for predicting

SLP variance in weeks 3-4 in winter are slightly lower than those

for predicting 2 m temperature over land (~0.3), and higher

than those for predicting precipitation (~0.1; e.g., Richter et al.,

2022). Zheng et al. (2019, 2021) showed that model skill in

predicting storminess is mainly associated with the

modulations of storminess by ENSO and polar vortex

variations. Since both ENSO teleconnections and polar

vortex variability are strongest in winter, it is not surprising

that models predict storminess best in winter. While this result

is not unexpected, our analyses explicitly quantified how much

better model predictions are in winter compared to the other

seasons.

For track statistics, models show the ability to predict both

track frequency and intensity with moderate ACC scores over

much of the main storm track regions in week 2. Again, the ACC

scores are highest for winter, and lowest for summer. Models

predict the frequency of moderate cyclones (those with

minimum SLP <1000 hPa) better than the frequency of all

cyclones, and show some ability to predict the frequency of

deep cyclones (near the Aleutian and Icelandic lows) during fall

and winter. For weeks 3-4, models only have some ability to

predict the frequency of moderate cyclones over parts of the

Pacific and the Atlantic in winter, and some ability to predict
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deep cyclones near Iceland in late winter, and little ability to

predict track statistics for the other seasons. Overall, models

predict SLP variance much better than Lagrangian track statistics

both for week 2 and weeks 3-4.

In this study, we have assessed model performance based on

the ACC score. Some previous studies have assessed model

performance based on the RMSE (e.g., Lukens and Berbery,

2019). We have also conducted some assessments based on

the MSE. Our results indicate that the 23-member ensemble

considered in this study exhibits skill (relative to the no-skill

climatological forecasts) based on both the ACC andMSE scores.

However, a 1-member CFSv2 hindcast, similar to that analyzed

by Lukens and Berbery (2019), exhibits some skill according to

the ACC score, but no skill according to the MSE score,

consistent with the results of Lukens and Berbery (2019).

These results highlight that the ensemble mean forecast

performs much better than the forecast by a single member

regardless of the assessment metric. These results are discussed in

the Supplementary Material (Supplementary Text S2.2).

Our interest in predicting storminess is due to the link

between storminess and weather, including precipitation and

high winds, especially during the cool season. We have examined

the correlation between the storminess metrics and weather

indicators in winter. The weather indicators include GPCP

precipitation and a high-wind index derived from reanalysis

data. Our results indicate that SLP variance is highly

correlated with precipitation over the eastern Pacific extending

into western North America, eastern Atlantic extending towards

western Europe, and the coastal regions of northeastern Asia. SLP

variance is also highly correlated with the high wind index over

much of the main storm track regions. Correlations of cyclone

track frequency and precipitation with the high wind index are

also highest over those regions, but are much lower than those for

SLP variance.

Generation of cyclone track statistics requires some

subjective choices, including the radius for accumulation of

cyclone track statistics, and whether to include all cyclones or

only include cyclones that are deeper than a certain cutoff limit.

Our results indicate that cyclone statistics that are accumulated

with a radius of 500 km are better predicted and correlate better

with weather indices than those accumulated with a radius of

250 km. We also found that cyclone track frequency for

moderate cyclones (those with SLP <1000 hPa) is slightly

better predicted and also correlates slightly better with

weather indices than cyclone track frequency for all cyclones.

Thus, for our outlook tool, we use 500 km to accumulate

cyclone statistics, and focus on the statistics of moderate

cyclones. The real time outlook webpage is described in Real

Time Outlook Tool Web Page Section, and includes forecast

information for both SLP variance and track statistics. Given

that the operational ensembles have many more members than

those used for the hindcast evaluations, we expect that we may

find higher skills in operational forecasts. We will monitor the

products and update the evaluations using the larger

operational ensembles after we have accumulated several

seasons of forecast data.

Apart from the ACC scores, we have also generated the

seasonal climatology for both SLP variance and cyclone track

statistics, and computed the systematic model biases for

GEFSv12 and CFSv2 in predicting these storminess metrics.

The results, based on ERA5 reanalysis data, are displayed in

the Supplementary Material. Results based on CFSR reanalysis

data will be posted on the outlook webpage.

Our results show that SLP variance statistics are generally

better predicted than cyclone track statistics, and also

correlate better with precipitation and high winds. This is

probably partly due to the fact that SLP variance combines

information from both cyclone track frequency and intensity

into one metric. We tested a metric, the Accumulated Track

Activity (ATA), that attempts to combine information from

both cyclone track frequency and intensity into a single

metric, and found that indeed models predict this metric

better, and this metric also correlates better with weather

(especially high winds) than cyclone track frequency.

Nevertheless, the ACC scores as well as the correlation

with weather for ATA are still much lower than those for

the SLP variance. Given these results, we encourage

forecasters and users of our outlook tool to consider the

use of SLP variance as an indicator of storminess activity in

the subseasonal time scale, unless the application requires

specific knowledge about cyclone frequency and/or intensity,

which cannot be separately provided by SLP variance

statistics.

In this study, we have focused on storminess metrics derived

from SLP data, largely because users, including forecasters, are more

familiar with cyclones defined by minima in SLP (see, e.g., the

surface analysis generated by the Weather Prediction Center). Yau

and Chang (2020) examined the correlation between multiple

storminess metrics with precipitation and high winds, and found

that among Eulerian variance metrics, eddy kinetic energy (EKE) at

850 hPa level correlates slightly better with precipitation than SLP

variance, and that cyclone track statistics derived from tracking

850 hPa relative vorticity maxima also correlate better with weather

than those derived from SLP data. Results presented in Stan et al.

(2022) showed that current S2S models have some ability to predict

the MJO modulation of 850 hPa EKE over the Pacific and the

Atlantic. Currently we are investigating how well cyclone statistics

derived from tracking 850 hPa relative vorticity maxima are

predicted by models, as well as whether 850 hPa EKE can serve

as a proxy for predicting severe weather such as heavy precipitation

and high winds over the subseasonal timescale. Finally, Zheng et al.

(2019) showed that for SLP variance, in the subseasonal timescale,

the prediction skill is mainly due to models’ ability to predict the

storm track response to the modulations of ENSO and polar vortex

variability. It would be of interest to see whether this is also the case

for the other storminess metrics.
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