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The large Harizha copper (Cu) polymetallic deposit is located in the eastern

section of East Kunlun Orogen. The ore-related lithologies include mainly the

granodiorite, monzogranite, and their porphyries. Zircon U-Pb dating of the

ore-bearing granodiorite porphyry and granite porphyry yielded Late Triassic

age of 217 Ma. The rocks are characterized by being rich in SiO2 (68.44–78.13

wt%) and high alkali (4.03–8.33 wt%) and peraluminous (A/CNK = 1.02–1.68). In

general, the granite samples are peraluminous and high-K calc-alkaline. The

rocks are significantly enriched in light rare earth elements (LREE), large ion

lithophile elements (e.g., K, Rb, Ba) and other incompatible elements (e.g., U,

Th), but are depleted in heavy rare earth elements (HREEs), with weakly negative

Eu and Ce anomalies, resembling I-S transitional granite. The zircons have

εHf (t) = -8 to -4, and the corresponding zircon two-stage Hf model age (TDM2)

from 1.5 to 1.8 Ga. We speculated that the ore-forming materials in the mining

area were mainly from partial remelting of crustal materials, and that the

tectonic regime was post-collisional extension.
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1 Introduction

Porphyry copper deposit is the world’s most important copper deposit type, and is

characterized by being large-scale, low-grade (Zhai et al., 2011; Park et al., 2021).

Porphyry copper deposits in the region were mainly formed in the late Mesozoic

(Yanshanian) and Cenozoic (Himalayan), when the Indian plate subducted northward

and collided with Eurasia, resulting in multiphase tectonism and magmatism that

provided favorable metallogenic conditions (Tang et al., 2010; Liu et al., 2019).
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Typical porphyry Cu deposits include the Aktogai in Kazakhstan

(Chen et al., 2010), the Escondida porphyry copper deposit and

Collahuasi porphyry Cu-Mo in northern Chile (Urqueta et al.,

2009; Karl et al., 2021), Saindak and Rekodiq in Pakistan (Yao

et al., 2013; Lv et al., 2017), and Zhunuo in Tibet, China (Sun

et al., 2021).

The large Harizha Cu-polymetallic deposit is located in

the East Kunlun metallogenic belt, with estimated ore

resource of 505 kt. Ore deposits in the district include

those of porphyry, skarn, and medium-low temperature

hydrothermal-altered rock types (Song et al., 2013; Sun

et al., 2016; Yan, 2019). In recent years, the Harizha

mining district has attracted much research attention.

Previous studies were mainly focused on the geological-

metallogenic conditions and the ages of the ore-related

magmatic rocks. Tectonism at Harizha is relatively

complex: NW-trending faults are the main structures, while

the NE trending faults are secondary structures. Previous

works have zircon U-Pb dated the ore-bearing granodiorite

porphyry (234.5 ± 4.8 Ma; Song et al., 2013) and the quartz

diorite (239.3 ± 2.2 Ma; Guo et al., 2016) at Harizha to be

Middle Triassic (Indosinian Orogeny). However, some

workers have reported older magmatic ages (diorite:

424.7 ± 4.8 Ma; granite porphyry: 242.6 ± 2.6 Ma) at

Harizha, and proposed multi-stage mineralization and a

diorite and/or granite porphyry ore-material source (Wang

et al., 2017). In terms of metallogenesis, geochemical analysis

shows that the northern Harizha mining area in Qinghai contains

mainly porphyry-hydrothermal vein-skarn polymetallic deposits

(Ma et al., 2016). Lithogeochemistry research and its relationship

with the Cu-polymetallic mineralization is largely inadequate, and

the mineralization age remains controversial. In this study, we

conducted LA-ICP-MS zircon U-Pb dating and whole-rock

geochemical analysis on the Harizha deposit, and discuss the

ore genesis and tectonic setting.

2 Geological background

2.1 Geologic setting

The East Kunlun Orogen is a key metallogenic belt in China,

and is located in the tectonically active belt of the northern

Qinghai-Tibetan Plateau. The belt is located in the southern

margin of the Chaidam basin and the northern margin of the

Paleo-Tethys tectonic domain (Qian et al., 2000; Pan et al., 2009;

Shao et al., 2017; Wu et al., 2020). The strong magmatism has led

to the formation of a giant granite belt and many sizeable

hydrothermal deposits (Figure 1) (Li, 2010; Du et al., 2012;

Wang, 2014), including those of shallow low-temperature

hydrothermal, orogenic, and hydrothermal-sedimentary types.

Many metal and non-metallic minerals with development value

had been discovered. It is one of the most important Mo-

polymetallic metallogenic belts in Qinghai Province (Qi, 2015;

FIGURE 1
Geotectonic location map of the eastern East Kunlun Orogen (modified after Yang et al., 2017).
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Han J. J. et al., 2020; Lei et al., 2020; Li Y. J. et al., 2020). Under the

influence of Elashan collision-extensional orogeny, the

intermediate-felsic magma in the eastern East Kunlun ore belt

may have ascent along the regional NW-trending deep faults, and

produce strong dissolution to surrounding strata, forming the

widely-distributed intermediate-felsic plutonic and volcanic

rocks. During this period, granitic magma may have formed

by partial melting of crustal material under intraplate extension.

FIGURE 2
(A) Geotectonic map of Harizha; (B) Geological map of the Harizha deposit, showing the sampling locations (modified after Ma et al., 2016).
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During the late Indosinian to early Yanshanian orogeny

(227–205 Ma), the intermediate-felsic magma may have

formed the granite-granodiorite porphyries of various sizes

(Wang K. et al., 2020; Zhang et al., 2020; Zhou et al., 2020).

At present, the porphyry deposits are mainly concentrated in the

western part of the belt, with the Harizha deposit being a rare

exception in the eastern part of the belt.

At Harizha (Dulan County, Qinghai Province), the main

tectonic-magmatic activities occurred mainly in the Caledonian-

Yanshanian (Yang et al., 2015; Feng et al., 2017). The deposit is

7.8 km long, 7.1 km wide, 4,200 m in elevation (max 4,767 m)

(Zhong, 2018; Zhang et al., 2019). Exposed strata include mainly

the Paleoproterozoic Baishahe Formation, Upper Triassic

Elashan Formation, Neogene Youshashan Formation, and

Quaternary sediments (Figure 2). The ore-related lithologies

include mainly the granodiorite, monzogranite, and their

porphyries. The wallrocks have undergone varying degrees of

alteration, including mainly chlorite, epidote, sericite, and silicic.

The deposit is located between the northern Kunlun fault and

central Kunlun fault, and has recorded multi-stage of tectonic-

magmatic activities in the Early Paleozoic (Caledonian), Late

Paleozoic (Variscan), and Triassic (Indosinian). Structures are

well-developed and complex, and are dominated by

compressional/transpressional faults with rare folds. The faults

are NE-, NW-, and EW-trending, among which the NE- and

NW-trending ones are ore-hosting (Ma et al., 2013).

Magmatic rocks are multiphase and widely distributed.

Intrusive rocks include mainly gabbro, granodiorite

(porphyry) and monzogranite (porphyry). The volcanic rocks

include mainly the Elashan Formation dacite crystal tuff and

(minor) dacite. Our study focused mainly on the ore-related

granodiorite porphyry and granodiorite porphyry, whose

petrographic features are described below:

Granodiorite porphyry (Figure 3A) is grayish-white

(Figure 3B) and massive, and comprises phenocrysts (~40 vol

%) and groundmass (~60 vol%). The phenocrysts (size:

0.1–3.5 mm) include mainly quartz, plagioclase, and biotite,

and minor muscovite, hornblende, and K-feldspar. The

phenocrysts are randomly distributed and euhedral-subhedral.

The groundmass is composed mainly of plagioclase and quartz,

with minor dark minerals. Secondary minerals include kaolinite,

calcite and sericite.

The granite porphyry (Figure 3C) is grayish-white/pink

(Figure 3D) and massive, and comprises phenocrysts (~25 vol

%) and groundmass (~75 vol%). The phenocrysts (size:

0.2–2.5 mm) include plagioclase, K-feldspar, quartz, and biotite.

The phenocrysts are randomly distributed. The groundmass is

composed of quartz and feldspar laths with minor biotite.

Secondary minerals include mainly sericite and kaolinite.

2.1.1 Mineralization
A total of seven mineralization belts (zone I-Ⅶ) have been

identified (Figure 1). Mineralization belt I occurs in the

granodiorite porphyry, and the alteration styles include

mainly silicic, sericite, K-feldspar, propylitic, and kaolinite.

Mineralization belt II occurs in the biotite plagioclase gneiss,

and the alteration style is mainly silicic. Mineralization belt III

is hosted in the granodiorite and the biotite plagioclase gneiss.

Mineralization belt IV is located in the northeast tectonic

fracture zone. Mineralization belt V and VI occur in the

altered fracture zone and crystal tuff, respectively. Ore

minerals include mainly chalcopyrite, pyrite, and malachite.

Ore minerals include mainly chalcopyrite, pyrite, and

malachite. (Xia, 2018; Guo et al., 2019; Li, 2019).

The copper ore samples have vein-disseminated structure

(Figure 3E) and are semi-automorphic-heteromorphic granular.

The ores (Figure 3F) contain mainly pyrite (25 vol%), galena

(10 vol%), and chalcopyrite (1 vol%), together with non-metallic

minerals (55 vol%) of plagioclase, quartz, and biotite.

The lead ore samples have also vein-disseminated structure

(Figure 3G) and are semi-automorphic-heteromorphic granular.

The ores (Figure 3H) have mainly galena (30 vol%), pyrite (15 vol

%), sphalerite (2 vol%), arsenopyrite (8 vol%), and chalcopyrite

(1 vol%), and non-metallic minerals (about 38 vol%) of

plagioclase, quartz, and calcite. Lead mineralization occurs

mainly in zones VI to Ⅵ.

2.1.2 Alteration
The wallrock alterations include silicic, sericite, potassic, kaolinite,

chlorite and carbonate. Among which the former two are closely ore-

related and widely developed. Quartz veins are relatively well-

developed (Figure 4A), and often accompanied by pyritization

(Figure 4B). Secondly, kaolinization, potassium and chloritization

are developed (Figure 4D). Malachite (Figure 4C) and limonite

supergene ores are developed on/near the surface. Therefore, the

alteration zoning can be divided into: K-felsparization-sericitization-

propylitization (Figure 5). Themain orebodies are located in the outer

part of the potassic zone and the sericite zone, similar to typical

porphyry copper deposits (Lv et al., 2017).

3 Samples and methods

The sampling locations are shown in Figure 2. The samples

were collected for thin-section petrography, LA-ICP-MS zircon

U-Pb dating, and whole-rock geochemical analysis. The ore-

related granodiorite porphyry and monzogranite porphyry were

zircon U-Pb dated, whilst samples analyzed for whole-rock

geochemistry include monzogranite, (altered/mineralized)

granodiorite porphyry, and syenogranite porphyry.

3.1 Zircon U-Pb dating

The selected zircon was mounted with epoxy resin, and is

then polished into half the thickness. LA-ICP-MS zircon U-Pb

Frontiers in Earth Science frontiersin.org04

Zhang et al. 10.3389/feart.2022.963351

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.963351


FIGURE 3
Representative photographs of rock and ore samples and corresponding micrographs of major mineral assemblages of the Harizha Cu deposit
(A). granodiorite porphyry; (B). porphyritic texture; (C). granite porphyry; (D). porphyritic-matrix microcrystalline texture; (E). copper ore samples; (F).
microscopic image of copper ore; (G). lead ore samples;(H) microscopic image of lead ore; Pl-Plagioclase; Kfs-K-feldspar; Qz-Quartz; Bt-Biotite;
Hbl-Hornblende; Py-Pyrite; Gn-Galena; Ccp-Chalcopyrite).
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dating used an Agilent 7500 ICP-MS, a Geo Las 200 M optical

system, and a Com Pex 102 ArF excimer laser. Helium was

used as the carrier gas. 91500 were used as the external standards,

and each standard was measured once every six samples. GJ-1

zircon standard sample was analyzed as an unknown to monitor

the stability of the test process. NIST610 is used as an external

standard to calculate the content of U and Th in zircon to ensure

the accuracy of the test process. NIST610 and GJ-1 were

measured once every 20 samples. Detailed analytical

procedures are as described in Horn, Rudnick, and

McDonough (2000) and Yuan et al. (2003). The data were

processed using the Glitter program, and the age calculation

and concordia plotting were conducted using Isoplot 3 (2006).

3.2 Zircon Hf isotope analysis

Based on zircon U-Pb dating, LA-MC-ICP-MS Hf isotope

analysis was performed on the same or nearby zircon spots on the

granodiorite porphyry and granite porphyry. This study was

performed using a GeoLas Pro laser-ablation system coupled to

a Neptune multiple-collector ICP-MS. A stationary laser ablation

spot with a beam diameter of 32 μmwas used for the analyses. The

ablated aerosol was carried by helium and then combined with

argon in amixing chamber before being introduced to the ICP-MS

plasma. A total of 10 spots were analyzed for each sample, and the

raw data were processed with the Hfllow macro program.

3.3 Whole-rock geochemical analysis

Whole-rock major element contents were measured with an

Axiosmax X-ray fluorescence (XRF) spectrometer. First,

500–1,000 mg samples were place in an oven for 200 min.

After cooling to room temperature, the samples were weighed

and the loss on ignition was calculated. Then, 600 mg of the

sample was added with Li3BO3 and cosolvent, and the mixture

was fully mixed and fused into a glass disc at high temperature.

After cooling, the sample was analyzed by X-ray fluorescence

spectrometer. The analysis accuracy is better than 1%. The trace

element compositions were analyzed with an X Series 2 ICP-MS.

HNO3, HF, and HClO4 were added to 50 mg sample to dissolve it

completely, and then the solution was analyzed after cooling and

dilution. The analysis accuracy is better than 5–10%. The ambient

temperature of chemical analysis was 18–27 °C, with relative

humidity of 25–50%.

FIGURE 4
Photos showing the characteristics of ores and wallrock alteration at the Harizha deposit: (A). Quartz veins; (B). Pyrite associated with quartz
veins; (C). Malachite; (D). Chloritization.

Frontiers in Earth Science frontiersin.org06

Zhang et al. 10.3389/feart.2022.963351

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.963351


FIGURE 5
Geological profile of the Harizha mineralization zone I and orebodies.
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TABLE 1 LA-MC-ICP-MS zircon U-Pb isotope dating results for the Harizha.

Sample and point number Isotopic content/ppm Isotope ratio Isotopic age/Ma

Th U Th/U 207Pb/206Pb 2σ 207Pb/235U 2σ 206Pb/238U 2σ 207Pb/206Pb 2σ 207Pb/235U 2σ 206Pb/238U 2σ

HRZ-03

1 225 414 0.5 0.0517 0.00222 0.2384 0.01029 0.0335 0.0008 270.4 95.6 217.1 8.4 212.3 5.0

2 246 647 0.4 0.0504 0.00126 0.2397 0.00631 0.0345 0.00077 213.2 56.8 218.2 5.2 218.7 4.8

3 358 664 0.5 0.0516 0.00127 0.2443 0.00635 0.0343 0.00077 268.9 55.4 222 5.2 217.6 4.8

4 326 741 0.4 0.0513 0.0014 0.2396 0.00683 0.0339 0.00076 252.6 61.7 218.1 5.6 214.9 4.8

5 504 471 1.1 0.0502 0.00144 0.2332 0.00691 0.0337 0.00076 204.1 65.2 212.8 5.7 213.6 4.7

6 428 744 0.6 0.0510 0.0014 0.2435 0.00693 0.0347 0.00078 239.3 62.0 221.3 5.7 219.6 4.9

7 320 558 0.6 0.0557 0.00141 0.2620 0.00693 0.0341 0.00076 440.9 55.0 236.3 5.6 216.2 4.8

8 117 177 0.7 0.0523 0.00235 0.2492 0.01118 0.0346 0.00083 299.7 99.3 225.9 9.1 218.9 5.2

9 430 780 0.6 0.0550 0.00209 0.2625 0.01002 0.0346 0.00081 411.7 82.1 236.7 8.1 219.4 5.0

10 211 285 0.7 0.0523 0.0025 0.2465 0.01172 0.0342 0.00083 298 105.5 223.7 9.6 216.7 5.2

11 400 478 0.8 0.0506 0.00131 0.2406 0.0065 0.0345 0.00077 221.5 58.9 218.9 5.3 218.6 4.8

12 324 525 0.6 0.0504 0.00149 0.2382 0.00724 0.0343 0.00077 211.9 67.2 216.9 5.9 217.3 4.8

13 278 657 0.4 0.0499 0.00131 0.2386 0.00651 0.0347 0.00077 188.4 60.0 217.3 5.3 219.9 4.8

14 422 886 0.5 0.0543 0.00144 0.2566 0.00706 0.0343 0.00076 382.1 58.5 231.9 5.7 217.3 4.7

15 282 774 0.4 0.0514 0.00119 0.2425 0.00591 0.0342 0.00075 259.3 52.3 220.5 4.8 216.8 4.7

16 373 850 0.4 0.0516 0.00177 0.2471 0.00857 0.0347 0.00079 268.4 76.7 224.2 7.0 219.9 4.9

17 356 618 0.6 0.0516 0.00147 0.2445 0.00715 0.0343 0.00076 268.6 64.1 222.1 5.8 217.6 4.8

18 174 621 0.3 0.0505 0.00163 0.2373 0.00775 0.0340 0.00077 219.4 72.9 216.2 6.4 215.7 4.8

19 216 353 0.6 0.0520 0.00267 0.2396 0.0122 0.0334 0.00081 283.9 113.5 218.1 10.0 211.9 5.1

20 219 522 0.4 0.0487 0.00129 0.2306 0.00633 0.0344 0.00076 131.4 61.4 210.7 5.2 217.7 4.7

21 202 562 0.4 0.0491 0.00123 0.2322 0.00606 0.0343 0.00075 151.5 57.9 212 5.0 217.3 4.7

22 228 562 0.4 0.0494 0.00135 0.2318 0.00653 0.0340 0.00075 164.3 62.9 211.6 5.4 215.7 4.7

23 222 541 0.4 0.0488 0.00144 0.2308 0.00704 0.0343 0.00077 140.1 67.9 210.8 5.8 217.2 4.8

24 174 656 0.3 0.0517 0.0013 0.2449 0.00648 0.0343 0.00077 273.6 56.5 222.4 5.3 217.5 4.8

25 610 1,417 0.4 0.0503 0.00169 0.2381 0.00816 0.0343 0.00079 208 76.1 216.9 6.7 217.6 4.9

26 160 430 0.4 0.0524 0.00147 0.2454 0.00718 0.0340 0.00077 302.1 62.8 222.9 5.9 215.4 4.8

27 210 512 0.4 0.0527 0.00141 0.2511 0.00701 0.0346 0.00078 314.9 59.5 227.4 5.7 219 4.8

28 159 243 0.7 0.0522 0.00391 0.2474 0.01829 0.0344 0.00095 292.7 162.5 224.5 14.9 217.9 5.9

29 253 816 0.3 0.0511 0.00123 0.2396 0.00613 0.0340 0.00076 243.5 54.6 218.1 5.0 215.7 4.7

30 431 858 0.5 0.0517 0.00197 0.2460 0.00951 0.0345 0.00081 270.3 85.3 223.3 7.8 218.8 5.0

31 233 562 0.4 0.0492 0.00136 0.2342 0.00675 0.0345 0.00078 155.1 63.4 213.6 5.6 218.9 4.9
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TABLE 1 (Continued) LA-MC-ICP-MS zircon U-Pb isotope dating results for the Harizha.

Sample and point number Isotopic content/ppm Isotope ratio Isotopic age/Ma

Th U Th/U 207Pb/206Pb 2σ 207Pb/235U 2σ 206Pb/238U 2σ 207Pb/206Pb 2σ 207Pb/235U 2σ 206Pb/238U 2σ

32 256 552 0.5 0.0489 0.00129 0.2327 0.00646 0.0345 0.00078 144.8 60.8 212.5 5.3 218.5 4.8
33 579 593 1.0 0.0502 0.00139 0.2380 0.00686 0.0344 0.00078 204 62.9 216.7 5.6 217.8 4.8

HRZ-12

1 131 203 0.6 0.0519 0.00215 0.2466 0.01031 0.0345 0.00083 278.7 92.1 223.8 8.4 218.6 5.1

2 353 316 1.1 0.0496 0.00152 0.2340 0.00741 0.0342 0.00079 176 69.8 213.5 6.1 216.9 4.9

3 171 236 0.7 0.0511 0.00221 0.2447 0.01064 0.0348 0.00084 242.9 96.6 222.2 8.7 220.3 5.2

4 222 520 0.4 0.0501 0.00163 0.2342 0.00785 0.0339 0.00079 197.8 74.0 213.6 6.5 215.1 4.9

5 218 407 0.5 0.0494 0.00158 0.2348 0.00773 0.0345 0.0008 164.8 73.0 214.1 6.4 218.6 5.0

6 120 211 0.6 0.0520 0.0041 0.2402 0.01864 0.0335 0.00096 284.8 170.5 218.6 15.3 212.5 6.0

7 449 804 0.6 0.0523 0.00164 0.2412 0.00782 0.0334 0.00077 300.4 69.9 219.4 6.4 211.9 4.8

8 332 616 0.5 0.0541 0.00268 0.2661 0.01316 0.0357 0.00089 375.6 107.2 239.6 10.6 225.9 5.5

9 157 385 0.4 0.0493 0.00202 0.2297 0.00951 0.0338 0.00081 164.1 93.0 209.9 7.9 214 5.0

10 127 198 0.6 0.0484 0.00268 0.2331 0.01287 0.0349 0.00088 120.3 125.7 212.7 10.6 221.1 5.5

11 234 298 0.8 0.0504 0.00168 0.2417 0.00828 0.0348 0.00081 213.1 75.5 219.8 6.8 220.4 5.0

12 178 215 0.8 0.0498 0.00169 0.2372 0.00825 0.0345 0.0008 186.3 77.1 216.1 6.8 218.8 5.0

13 123 252 0.5 0.0512 0.00198 0.2426 0.00952 0.0344 0.00081 250.2 86.7 220.5 7.8 217.7 5.1

14 200 328 0.6 0.0511 0.0017 0.2432 0.00829 0.0345 0.0008 245.9 74.6 221 6.8 218.7 5.0

15 196 317 0.6 0.0503 0.00163 0.2414 0.00804 0.0348 0.00081 210.5 73.2 219.6 6.6 220.4 5.0

16 99 179 0.6 0.0519 0.0018 0.2438 0.00866 0.0341 0.0008 280.5 77.4 221.5 7.1 216 5.0

17 155 279 0.6 0.0517 0.00176 0.2463 0.00858 0.0346 0.00081 272.5 75.9 223.6 7.0 219 5.0

18 140 267 0.5 0.0503 0.00155 0.2402 0.00766 0.0347 0.0008 207.6 69.8 218.6 6.3 219.6 5.0

19 158 283 0.6 0.0525 0.0025 0.2429 0.01158 0.0336 0.00083 307.2 104.9 220.8 9.5 212.7 5.2

20 94 181 0.5 0.0528 0.00237 0.2492 0.01126 0.0342 0.00083 318.9 99.0 225.9 9.2 217.1 5.2

21 239 271 0.9 0.0506 0.00152 0.2422 0.00756 0.0347 0.0008 222.2 67.9 220.2 6.2 220 5.0

22 636 573 1.1 0.0522 0.00141 0.2494 0.00711 0.0347 0.00079 293.6 60.6 226.1 5.8 219.7 4.9

23 160 192 0.8 0.0480 0.0019 0.2245 0.00895 0.0339 0.00079 99 92.2 205.7 7.4 214.9 4.9

24 348 665 0.5 0.0501 0.00124 0.2344 0.00608 0.0339 0.00075 201.2 56.3 213.8 5.0 214.9 4.7

25 277 345 0.8 0.0506 0.00157 0.2376 0.00754 0.0341 0.00077 221.5 70.1 216.5 6.2 216 4.8

26 141 275 0.5 0.0517 0.00172 0.2412 0.00819 0.0339 0.00077 270 74.7 219.4 6.7 214.7 4.8

27 76 141 0.5 0.0481 0.00294 0.2246 0.01358 0.0339 0.00086 104.5 138.4 205.7 11.3 214.6 5.4

28 303 499 0.6 0.0505 0.00141 0.2352 0.00682 0.0338 0.00076 215.9 63.5 214.5 5.6 214.3 4.7
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4 Results

4.1 LA-ICP-MS zircon U-Pb dating

Zircon U-Pb dating was carried out on two samples from

Harizha. The data are presented in Table 1, whilst representa-

tive zircon cathodoluminescence (CL) images and analytical

spots are shown in Figure 6. The analyzed zircons are euhedral

long columnar and (minor) short columnar, with aspect ratios

of 1:1 to 3:1. Oscillatory zoning is well developed, and the high

Th/U values (0.3–1.1) resemble typical magmatic zircons.

Therefore, the U-Pb age can reflect the rock crystallization

age (Hoskin and Schaltegger 2003; Wang et al., 2014; Yang et al.,

2020).

A total of 33 spots were measured for the granodiorite

porphyry (HRZ-3) (Table 1). The zircons have Th =

116.99–610.14 ppm, U = 177.49–1,416.97 ppm, Th/U =

0.20–1.27, and 206Pb/238U = 211.9–219.9 Ma. All the 33 zircon

spots are concordant and plot on/near the concordia (Figures 7A,

B). The weighted average age (217.3 ± 1.8 Ma; MSWD = 0.17)

likely represents the crystallization age of the granodiorite

porphyry.

A total of 33 spots were measured for the granite porphyry

(HRZ-12) (Table 1). The zircons have Th = 75.54–635.59 ppm,

U = 140.56–804.24 ppm, Th/U = 0.52–0.79, and 206Pb/238U =

211.9–225.9 Ma. All the 33 zircon spots are concordant and plot

on/near the concordia (Figure 7C, D). The weighted average age

(217.0 ± 1.7 Ma; MSWD = 0.35) likely represents the

crystallization age of the granite porphyry.

4.2 Zircon Hf isotopes

The study performed 40 Hf isotope spot analyses on the

granodiorite porphyry and granite porphyry (20 spots each)

(Table 2). Twenty analyses on the granodiorite porphyry yielded
176Lu/177Hf = 0.000611–0.001957, 176Hf/177Hf = 0.282,417–0.282,510,

and εHf(t) = -7.98 to -4.58, fLu/Hf = -0.98 to -0.94. Calculated zircon

two-stage Hf model age (TDM2) = 1.5 to 1.8 Ga. Twenty analyses on

the granite porphyry yielded 176Lu/177Hf = 0.000585–0.001118,
176Hf/177Hf = 0.282,442–0.282,509, and εHf(t) = -6.89 to -4.65, fLu/

Hf = -0.98 to -0.97. Calculated zircon two-stage Hf model age

(TDM2) = 1.5 to 1.7 Ga.

4.3 Whole-rock geochemical
compositions

The rock samples have SiO2 = 68.44–78.13 wt% (avg.

73.06 wt%), K2O = 0.75–5.46 wt% (avg. 4.22 wt%), total

alkali (K2O+Na2O) = 4.03–8.33 wt% (avg. 7.09 wt%), Al2O3 =

12.22–15.17 wt% (avg. 13.86 wt%), CaO = 0.44–3.65 wt%

(avg. 1.50 wt%), and A/CNK = 1.02–1.68 (avg. 1.18) (Table 3).T
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FIGURE 6
Representative zirconCL imagesof theHarizhagranitoids. Solid-lineanddotted-linecirclesdenote the locationsofU–PbandHf isotopic analysis spots, respectively.

FIGURE 7
Zircon U–Pb concordia age and weighted mean age diagrams of the Harizha granitoids. (A–D) MSWD, mean square weighted deviation.
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In the total alkali-silica (TAS) classification diagram (Figure 8A),

the rock samples plot in the subalkaline granite field. In the

A/NK-A/CNK (Figure 8B) and SiO2-K2O (Figure 8C) diagrams,

the rocks are classified as peraluminous and high-K calc-alkaline.

In the (Na2O+K2O-CaO)/SiO2 diagram (Figure 8D), the data

points fall into the calc-alkaline field.

The rocks have total rare earth element (REE) contents of

46.13–211.16 ppm (avg. 132.05 ppm), and negative Eu anomalies

TABLE 2 Results of LA-ICP-MS Hf isotopes of zircon from the Harizha.

Point
number

t (Ma) 176Yb/
177Hf

176Lu/
177Hf

176Hf/
177Hf

εHf(0) ±1σ εHf(t) ±1σ TDM1(Hf)
(Ma)

TDM2(Hf)
(Ma)

fLu/Hf

HRZ-03

4 219 0.023409 0.000823 0.282,475 -10.44 0.74 -5.83 0.74 1,095 1,620 -0.98

5 218 0.029516 0.000948 0.282,437 -11.79 0.58 -7.21 0.58 1,152 1706 -0.97

6 215 0.025840 0.000823 0.282,440 -11.67 0.59 -7.14 0.59 1,143 1,699 -0.98

9 220 0.027370 0.000989 0.282,510 -9.19 0.51 -4.58 0.51 1,050 1,541 -0.97

11 219 0.039069 0.001378 0.282,430 -12.01 0.63 -7.48 0.63 1,174 1724 -0.96

13 219 0.030174 0.001048 0.282,495 -9.72 0.71 -5.14 0.71 1,073 1,576 -0.97

15 217 0.034530 0.001229 0.282,470 -10.61 0.86 -6.10 0.86 1,114 1,635 -0.96

16 219 0.059911 0.001957 0.282,419 -12.43 0.73 -7.98 0.73 1,209 1755 -0.94

18 217 0.018640 0.000611 0.282,417 -12.49 0.62 -7.89 0.62 1,169 1748 -0.98

21 217 0.021716 0.000736 0.282,425 -12.20 0.60 -7.61 0.60 1,162 1731 -0.98

24 218 0.031473 0.001046 0.282,453 -11.22 0.53 -6.66 0.53 1,132 1,671 -0.97

25 216 0.021050 0.000746 0.282,445 -11.50 0.56 -6.94 0.56 1,134 1,687 -0.98

27 218 0.026999 0.000921 0.282,473 -10.50 0.53 -5.93 0.53 1,100 1,625 -0.97

28 217 0.020878 0.000700 0.282,439 -11.72 0.56 -7.13 0.56 1,142 1700 -0.98

29 216 0.024017 0.000850 0.282,500 -9.56 0.61 -5.01 0.61 1,061 1,566 -0.97

31 217 0.030312 0.001023 0.282,458 -11.03 0.65 -6.49 0.65 1,124 1,660 -0.97

36 219 0.021892 0.000754 0.282,438 -11.75 0.51 -7.13 0.51 1,145 1702 -0.98

37 218 0.029066 0.001031 0.282,479 -10.29 0.79 -5.73 0.79 1,095 1,613 -0.97

41 219 0.023010 0.000823 0.282,461 -10.92 0.56 -6.31 0.56 1,114 1,650 -0.98

42 218 0.031473 0.001046 0.282,453 -11.22 0.53 -6.66 0.53 1,132 1,671 -0.97

HRZ-12

2 219 0.026083 0.000964 0.282,493 -9.80 0.66 -5.21 0.66 1,074 1,580 -0.97

3 217 0.023014 0.000823 0.282,487 -10.00 0.72 -5.43 0.72 1,078 1,593 -0.98

4 220 0.022979 0.000763 0.282,492 -9.83 0.62 -5.19 0.62 1,069 1,580 -0.98

6 219 0.022265 0.000813 0.282,472 -10.56 0.68 -5.94 0.68 1,099 1,627 -0.98

12 226 0.025410 0.000972 0.282,442 -11.61 0.86 -6.87 0.86 1,146 1,691 -0.97

15 221 0.022072 0.000810 0.282,493 -9.80 0.65 -5.14 0.65 1,069 1,578 -0.98

16 220 0.029311 0.000998 0.282,490 -9.90 0.67 -5.29 0.67 1,079 1,586 -0.97

17 219 0.020417 0.000723 0.282,465 -10.78 0.62 -6.15 0.62 1,105 1,640 -0.98

18 218 0.017553 0.000604 0.282,481 -10.22 0.59 -5.60 0.59 1,080 1,604 -0.98

23 220 0.025253 0.000892 0.282,462 -10.90 0.67 -6.28 0.67 1,115 1,649 -0.97

24 216 0.018425 0.000617 0.282,469 -10.64 0.60 -6.07 0.60 1,097 1,632 -0.98

25 219 0.016809 0.000585 0.282,507 -9.30 0.66 -4.65 0.66 1,043 1,545 -0.98

26 220 0.019302 0.000681 0.282,498 -9.60 0.54 -4.95 0.54 1,058 1,565 -0.98

28 217 0.027198 0.000931 0.282,479 -10.27 0.62 -5.72 0.62 1,091 1,611 -0.97

30 220 0.033061 0.001118 0.282,448 -11.38 0.63 -6.78 0.63 1,141 1,681 -0.97

31 215 0.023751 0.000868 0.282,454 -11.17 0.59 -6.65 0.59 1,125 1,668 -0.97

34 215 0.029260 0.000972 0.282,448 -11.40 0.53 -6.89 0.53 1,137 1,684 -0.97

36 214 0.024548 0.000843 0.282,509 -9.24 0.63 -4.74 0.63 1,048 1,547 -0.97

38 218 0.017713 0.000625 0.282,459 -11.00 0.61 -6.38 0.61 1,111 1,653 -0.98

40 216 0.022412 0.000781 0.282,459 -11.01 0.66 -6.46 0.66 1,116 1,657 -0.98
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FIGURE 8
Geochemical classification diagrams for the Harizha granitoids: (A) TAS (after Middlemost and Sun 1985); (B) Al2O3/(Na2O+K2O) versus Al2O3/
(CaO+Na2O+K2O) (Maniar and Piccoli, 1989); (C) K2O versus SiO2 (after Middlemost 1985); (D) (Na2O+K2O-CaO) versus SiO2 (Frost et al., 2001).

FIGURE 9
(A) Chondrite-normalized REE patterns; (B) Primitive mantle-normalized trace element patterns. Chondrite and primitive-mantle normalizing
values are from Sun and McDonough (1989) and Rudnick and Gao (2004), respectively.
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(δEu = 0.21–0.60, avg. 0.41). In the chondrite-normalized REE plot

(Figure 9A), the rocks show right-inclining patterns (LREE/HREE

enrichment), with LREE/HREE = 4.30–12.82, (La/Yb)N =

3.34–19.67, indicating significant fractionation (Han Z. H. et al.,

2020). The rocks have slightly negative Ce anomalies (δCe =

0.89–1.07, avg. 0.98), indicating that the oxidized conditions

were relatively stable during the magmatic evolution (Wang P.

X. et al., 2020). In the primitive mantle-normalized multi-element

spider diagram (Figure 9B), the element distribution curves of the

different rock samples are similar, and are featured by enrichments

in large ion lithophile elements (LILE; e.g., Rb, K), other

incompatible elements (e.g., Th and U), and depletions in high

field strength elements (HFSE; e.g., Nb, Th) (Table 3).

5 Discussion

5.1 Petrogenesis and magma source

-From the diagram of Zr+Nb+Ce+Y−(K2O+Na2O)/CaO

(Figure 10A), it can be seen that most of the samples fall into the I-

,S-andM-typeregionsoftheundifferentiationgranite. Inthediagram

ofSiO2–Zr(Figure10B),mostofthesamplesfall intotheS-typeregion.

In general, A/CNK = 1.1 is the threshold for distinguishing I- from

S-type granite (Sylvester, 1998). The aluminum saturation index of

Harizha samples is between 1.02 and 1.68 (avg. 1.18). Therefore, we

speculated that the Harizha samples have the characteristics of I- to

S-type transitional granite.

When discussing the magma source region, previous studies

suggested that Rb/Sr > 0.5 and Nd/Th ≈ 3 indicate likely crustal

material remelting during orogenic process (Gibbs, 1986;

McDonough and Sun 1995; Xiao et al., 2002), similar to our

samples (Rb/Sr = 0.44–2.69 (avg. 1.53); Nd/Th = 0.31–1.72 (avg.

1.15)), which indicates a crustal source for the Harizha

granitoids. Meanwhile, the rocks have low Sr

(56.20–306.50 ppm) but high Y (13.50–34.70 ppm) and Yb

(1.04–3.51 ppm), consistent with the content of mafic rocks in

the crust. The high SiO2 and K2O but lowMgO contents, and the

LREE/HREE enrichment again support a crustal magma source

(Gao and Sun, 2021).

The zircon Lu-Hf isotope system has high closure temperature,

and can reflect the Hf isotopes during petrogenesis (Wu et al.,

2007). In this study, the 176Lu/177Hf ratios of the two samples

were <0.002, and the variation range is very small. It shows that Hf

isotopes are rarely accumulated after zircon formation, which can

represent Hf isotopic composition of magmatic system during

zircon formation (Zhang et al., 2020). The f Lu/Hf ratios are

significantly lower than the average continental crust (-0.55)

(Griffin et al., 2000). Thus, its two Hf model ages (TDM2) can

better reflect the average crustal retention age of the source

material (Huang et al., 2016). In the Age-εHf (t) diagram

(Figure 11), the granodiorite porphyry and granite porphyry

samples from Harizha fall below the meteorite evolution line.

The εHf (t) value is mainly distributed between -8 and -4, and

the corresponding TDM2 is mainly concentrated between

1.5 and 1.8 Ga. In this study, the εHf (t) values of

granodiorite porphyry and granite porphyry are negative,

indicating that the ancient crustal material was remelted.

5.2 Tectonic setting

Previous studies have shown that tectonic evolution of the

East Kunlun Orogen mainly involved four stages: 1) ocean

FIGURE 10
(Zr+Nb+Ce+Y) versus (K2O+Na2O)/CaO diagrams of Harizha (A—A-type granite; FG—Fractionated I, S, M-type granite; OGT—Non-
fractionated I, S, M-type granite; I—I-type granite). (A,B) S-S-type granite.
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basin opening and expansion (Neoarchean–Proterozoic), 2)

ocean basin subduction (Early Paleozoic), 3) continent-

continent collision (Late Paleozoic-Early Mesozoic), and 4)

post-collisional extension (Cenozoic-Mesozoic) (Liu et al.,

2013; Zhang et al., 2016). The Late Paleozoic-Early Mesozoic

was the Paleo-Tethys orogenic period and was the main granite

emplacement period in the East Kunlun (Xia et al., 2014; Feng

et al., 2017; Xu et al., 2021). Some workers proposed that the

Late Carboniferous-Late Permian (309–260 Ma) was the ocean-

ridge formation and expansion stage. The Late Permian-Middle

Triassic (260–230 Ma) was the ocean subduction stage. The

Middle Triassic-Early Jurassic (230–190 Ma) was the intraplate

orogenic stage (Guo and Deng, 1998; Li X. R. et al., 2020; Li

et al., 2021). It is widely accepted that the Paleotethys have

begun subduction in the East Kunlun in the Late Permian, and

have changed from a subduction to a collision setting in the

Middle Triassic (Guo et al., 2016; Wang K. et al., 2020; Xu et al.,

2020). During the tectonic evolution, regional mantle-derived

magma underplating, accompanied by partial melting of crustal

rocks, may have formed voluminous calc-alkaline magmas

FIGURE 12
Tectonic discrimination diagrams for the Harizha granitoids: (A) Nb versus Y (Pearce, Harris, and Tindle, 1984); (B) Rb versus (Y + Nb) (Pearce,
Harris, and Tindle, 1984). Abbreviations: Syn-COLG, syn-collisional granites; Post-COLG, post-collisional granites; WPG, within-plate granites. VAG,
volcanic arc granites; ORG, ocean ridge granites.

FIGURE 11
U–Pb age versus εHf(t) diagram of Lu-Hf isotopic evolution of zircon from the Harizha (Belousova et al., 2010)
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TABLE 3 Major and trace element data for the Harizha.

Sample
No.

HRZ-1 HRZ-3 HRZ-4 XN6-7 XN18 XN23-1 16LLMH1 16LLMH2 16LLMH3

Monzogranite Granodiorite
porphyry

Granodiorite Granite
porphyry

Syenogranite
porphyry

Mineralized Granite
porphyry

Granodiorite Granodiorite Granodiorite

SiO2 69.81 68.44 74.55 76.69 78.13 71.23 73.28 74.18 71.21

Al2O3 15.17 14.70 14.39 12.22 12.26 14.25 13.77 13.48 14.46

TiO2 0.40 0.39 0.18 0.08 0.11 0.28 0.16 0.14 0.29

Fe2O3 0.41 0.40 0.22 1.25 2.54 3.06 0.53 0.33 0.44

FeO 1.95 1.50 0.79 0.82 0.37 1.49 1.03 0.92 1.44

CaO 2.49 3.65 0.53 0.44 0.61 1.62 1.13 1.03 1.97

MgO 0.96 0.97 1.04 0.16 0.31 0.86 0.53 0.39 0.62

K2O 3.12 3.85 0.75 5.04 5.46 5.34 4.88 4.65 4.93

Na2O 3.96 0.18 6.39 3.29 0.17 1.76 3.33 3.51 3.20

MnO 0.07 0.04 0.01 0.02 0.01 0.06 0.03 0.03 0.04

P2O5 0.12 0.10 0.10 0.01 0.02 0.06 0.07 0.07 0.19

LOI 1.21 5.52 0.95 - - - 1.21 1.23 1.22

K2O+Na2O 7.08 4.03 7.14 8.33 5.63 7.10 8.21 8.16 8.13

Na2O/K2O 1.27 0.05 8.47 0.65 0.03 0.33 0.68 0.75 0.65

A/KNC 1.05 1.32 1.17 1.05 1.68 1.22 1.07 1.06 1.02

La 44.30 49.20 28.60 7.60 19.00 32.00 20.00 22.10 28.50

Ce 83.00 91.20 50.90 17.50 42.10 63.70 43.30 48.20 54.90

Pr 9.39 10.50 6.24 2.05 5.26 7.10 5.34 5.79 6.57

Nd 32.30 36.40 21.80 7.70 19.60 25.20 19.20 21.30 23.10

Sm 5.50 6.50 4.75 2.32 5.35 5.31 4.64 5.04 5.18

Eu 1.03 1.09 0.44 0.26 0.38 0.83 0.48 0.52 0.79

Gd 4.74 5.55 3.99 2.08 5.50 4.56 3.83 4.16 4.41

Tb 0.66 0.84 0.62 0.37 0.91 0.67 0.67 0.72 0.73

Dy 3.42 4.30 3.10 2.26 5.65 4.33 3.51 3.86 3.78

Ho 0.62 0.75 0.48 0.47 1.23 0.81 0.62 0.67 0.65

Er 1.88 2.18 1.26 1.41 3.16 2.38 1.75 1.87 1.93

Tm 0.28 0.32 0.17 0.23 0.51 0.34 0.26 0.29 0.30

Yb 1.81 2.04 1.04 1.63 3.51 2.56 1.75 1.85 2.06

Lu 0.28 0.31 0.15 0.25 0.52 0.40 0.26 0.27 0.32

Y 17.50 21.70 13.50 14.60 34.70 26.10 17.40 18.40 18.70

Rb 134.17 168.84 34.85 167.50 250.00 342.00 225.00 215.00 225.00

(Continued on following page)
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TABLE 3 (Continued) Major and trace element data for the Harizha.

Sample
No.

HRZ-1 HRZ-3 HRZ-4 XN6-7 XN18 XN23-1 16LLMH1 16LLMH2 16LLMH3

Monzogranite Granodiorite
porphyry

Granodiorite Granite
porphyry

Syenogranite
porphyry

Mineralized Granite
porphyry

Granodiorite Granodiorite Granodiorite

Ba 391.45 294.08 39.79 389.00 269.00 852.00 245.00 238.00 499.00

Th 21.46 21.12 16.17 24.60 36.20 22.50 18.00 18.30 14.40

U 4.09 4.46 11.33 3.52 10.20 7.66 3.81 3.26 3.13

Nb 11.89 14.01 18.43 9.40 12.10 11.80 19.50 17.20 20.00

Sr 306.50 98.92 56.15 282.00 93.00 132.00 118.00 106.00 193.00

Zr 199.78 153.68 81.50 640.00 94.00 118.00 78.80 81.40 110.00

∑REE 189.26 211.16 123.57 46.13 112.68 150.19 105.61 116.64 133.22

LREE/
HREE

12.82 11.96 10.43 4.30 4.37 8.36 7.35 7.52 8.39

(La/Yb)N 17.54 17.27 19.67 3.34 3.88 8.97 8.20 8.57 9.92

δEu 0.60 0.54 0.30 0.35 0.21 0.50 0.34 0.34 0.49

δCe 0.95 0.94 0.89 1.07 1.02 0.99 1.01 1.02 0.95

Rb/Sr 0.44 1.71 0.62 0.59 2.69 2.59 1.91 2.03 1.17

Nd/Th 1.51 1.72 1.35 0.31 0.54 1.12 1.07 1.16 1.60

Y+Nb 29.44 35.70 31.96 24.00 46.80 37.90 36.90 35.60 38.70

Note: XN6-7, XN18, XN23-1 are from Ma et al. (2016); 16LLMH1, 16LLMH2, 16LLMH3 are from Guo et al. (2019); Other samples are from this study.
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(Figures 8C,D), and also many mafic rock units (Xin et al.,

2019). In Yanshanian period, plate collision was close to the late

stage, and the magmatism was mainly driven by crustal

delamination in an extensional environment (Yang et al.,

2010). The ore-bearing rocks in the East Kunlun Orogen

were mainly formed in the Early-Middle Triassic

subduction-continental collision stage (235–248 Ma), but a

few of them were also formed in the Late Triassic post-

collisional stage (204–219 Ma). For example, the Jiangjunmu

ore-bearing granodiorite porphyry in the eastern East Kunlun

was dated at 218 Ma (Yu et al., 2020), whilst the Huanglonggou

granodiorite (also in eastern East Kunlun) was dated at 220 Ma

(Zhang et al., 2017). In this study, emplacement of the ore-

related Harizha granodiorite porphyry (217.3 ± 1.8 Ma) and

granite porphyry (217.0 ± 1.7 Ma) was coeval with the post-

collision stage in the East Kunlun Orogen (Gao et al., 2017). In

addition, the samples plot in the volcanic arc-collisional

granites field in the Nb-Y discrimination plot (Figure 12A)

and in the post-collisional granites field in the Y+Nb-Rb

discrimination plot (Figure 12B)), which also suggests that

the Harizha granites were formed in a post-collisional

extension environment (Han J. J. et al., 2020).
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