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The leaf area index (LAI) is a crucial descriptive parameter of the dynamic

change of ground vegetation. The widely used MODIS LAI product, however,

does not satisfy the requirements of regional eco-environment modeling.

There is an urgent need to improve the product’s overall accuracy. Under

this circumstance, this study proposed an improvement scheme based on the

nonlinear autoregressive neural network with eXogenous input (NARXNN)

model and the high-quality time series LAI inversion result. Case studies

were implemented for two seasons a year croplands in Wuzhi, Xinzheng,

and Xiangcheng in Henan province. This research acquired 46 periods of the

NARXNN model-improved LAI, which went through rigid in situ LAI validation.

The in situ measured LAI by LAI-2000 was used to validate the accuracy of

NARXNN-enhanced LAI data. The R2 values of the improved LAI of the three

research areas are 0.54, 0.41, and 0.51, while the RMSE decreased by 0.07, 0.1,

and 0.03, and the bias also decreased to a certain extent. Direct validation using

the in situ measured LAI demonstrates that the NARXNN model-enhanced LAI

data were more accurate and had a lower bias than MCD15A2H. A comparison

of the time series change indicates that the NARXNN-enhanced LAI shows a

smoother bimodal change trend and is more conformed to the actual cropland

growth than the original MODIS product. The results indicated that theNARXNN

neural network further increased the accuracy of the MODIS product and has a

particular practical value in future research.
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1 Introduction

As an important part of the earth’s ecosystem, surficial vegetation plays an important

role in controlling terrestrial productivity, surface energy balance, and hydrological

cycling, which affects the natural environment and human settlements directly and

indirectly (Qi et al., 2022). The quantitative description of surface vegetation in remote
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sensing usually relies on the vegetation index (VI) and leaf area

index (LAI) (Xue and Su, 2017). The leaf area index is defined as

one-half of the total green leaf area per unit of the land area

(Chen and Black, 1992) and is a dimensionless and dynamic

parameter, which changes with the number of leaves (Jonckheere

et al., 2004). The LAI plays a crucial variable in vegetation

photosynthesis, respiration, carbon cycle, and rainfall

interception (Luo et al., 2013), and it has been widely used in

many meteorological, ecological, and agricultural studies. By

2011, the Global Climate Change Research Community listed

the LAI as a rudimentary global vegetation attribute (Fang et al.,

2019).

Remote sensing is the only way to access ground parameters on a

global and regional scale. The development of the Earth Observation

Plan has provided massive reference data for the production of global

LAI products. Over the last decades, a number of global LAI products

with different spatial and temporal characteristics have become

available, for example, the MODIS LAI, CYCLOPES LAI (Baret

et al., 2007), GEOV2, and PROBA-V (Fuster et al., 2020). However,

the current LAI products could not meet the systematic requirements

of accuracy for climate studies and other applications (Sprintsin et al.,

2009). Thus, it is highly needed to get more precise LAI data (Heinsch

et al., 2006). Currently, the improvement solutions of LAI products

have been composed of the development of new products with more

advanced algorithms and precise measurement and post-process of

the existing products (Wang and Liang, 2014). Obviously, the latter

category is more feasible and economical for regional studies. The

usual product post-processing scheme consisted of varying

approaches including thresholds, Fourier fitting, curve smoothing,

and othermodalities. For example, Viovy et al. (1992) proposed a best

index slope extraction (BISE) algorithm to reduce noise in time series

NDVI data. Chen et al. (2004) developed a simple but robust method

based on the Savitzky–Golay filter to smooth out noise in NDVI time

series, specifically that which is caused primarily by cloud

contamination and atmospheric variability. Hermance et al.

described a data-adaptive weighted recursive least square (LS)

modeling procedure using high-order annual splines for

characterizing the detailed intra-annual and interannual behaviors

of representative members of vegetation classes for multiyear time

series (Cleveland and Devlin, 1988). Xu et al. (2017) came up with a

pixel-to-pixel correction (PPC) method to replace unreliable MODIS

LAI time series and successfully improved the accuracy of raw

MODIS LAI products. Wang and Liang (2014) proposed a

method based on optimal interpolation (OI) to integrate MODIS

true LAI and CYCLOPES effective LAI retrievals. The integrated

results agree better with the LAI referencemaps than theMODIS LAI

product. The aforementioned methods can improve the accuracy of

LAI products to a certain extent, and each has its own pros and cons

in applications. Nevertheless, the neural network has strong nonlinear

fitting abilities and is widely used in LAI retrieval, but to the

knowledge of the authors, the neural network has not been used

to improve the LAI products. In addition, scant attention has been

paid to the Central Chinese cropland in improving MODIS LAI

products.

Based on prior knowledge, this article proposed a method

of improving the MODIS LAI product based on the periodic

growth of the cropland and the connection between the LAI

and surface reflectance. The basic idea is to maximize the

high-quality product information in a certain area and replace

the backup algorithm’s retrieved pixels. With this approach, a

NARX neural network was designed and trained to utilize the

historical information on the croplands and get a more

reasonable LAI. The main contributions to this work are

two-fold. First, the applicability of recurrent neural

networks was tested in improving MODIS products.

Second, the experiment was conducted in cropland areas

that are highly influenced by human activities. The

remainder of this article is organized as follows. Section 2

demonstrates the geographic conditions of the study area,

MODIS reflectance product, MODIS land classification

product, MODIS LAI product, and the in situ measured

LAI. Section 3 introduces the architecture and structural

design of the NARX model and the model parameter

training and retrieval procedure. Section 4 describes the

NARX-improved MODIS product and accuracy validation

compared with the original LAI. Sections 5 and 6 discuss

the applicability and shortage of the NARXNN model in

improving MODIS LAI products.

2 Materials

2.1 Study area

In this research, as shown in Figure 1, three research areas

were selected, namely, Wuzhi, Xinzheng, and Xiangcheng, all

of which are located in the north and middle regions of Henan

province, China, between 110°21′–116°39′ E and 31°23′–36°22′
N. The main land cover types are cropland and construction

lands, and the main crop types are wheat and maize. When the

summer maize is sowed in mid-June and harvested in late

September, the growing season of winter wheat is from

October to June of the next year. The topography of the

study areas is characterized by a sizable alluvial plain with

elevations of 50–100 m above sea level. The territory’s north,

west, and south directions are encircled by the Taihang

Mountains, the Funiu Mountains, and the Dabie

Mountains. Most of the rainy season is concentrated in

summer, with a total rainfall of about 464.2–1193.2 mm

(Shi et al., 2016), and diminishes from south to north. The

abovementioned three places in Henan province pertain to a

warm temperate monsoon climate with a mean annual air

temperature of 12.9–16.5°C, and the highest temperature

occurs in July (Li et al., 2022).
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2.2 Data and preprocessing

Both satellite and in situ LAI data are used in this study.

Satellite data contain the MCD15A2H leaf area index product,

MOD09A1 surface reflectance product, and auxiliary

MCD12Q1 land cover classification data. The product path

and row numbers are 27 and 5, respectively. All the MODIS

data were downloaded from https://lpdaac.usgs.gov/. In situ

measured LAI data were deployed in Wuzhi, Xinzheng, and

Xiangcheng in Henan province. A brief description of the

datasets is presented as follows.

2.2.1 MCD15A2H leaf area index product
The MCD15A2H product consists of six datasets as

illustrated in Table 1. The LAI dataset of the MCD15A2H

product is a combination of the three-dimensional radiation

transfer model and NDVI-LAI empirical relationship model. The

input data on the abovementioned algorithms include

FIGURE 1
Locations of Wuzhi, Xinzheng, and Xiangcheng in Henan province, China. The left side was a 30-m spatial resolution Landsat-8 OLI standard
false-color composite image (band 5, band 4, and band 3 of the OLI instrument were used as R, G, and B bands, respectively). Locations of in situ
measurements are displayed as green points. The right side is part of the field scene photographs of the in situ LAI.

TABLE 1 Datasets of the MCD15A2H product.

No. Dataset Scale factor Valid range Fill value Description

1 Fpar_500 m 0.01 0–100 255 Fraction of PAR

2 Lai_500 m 0.01 0–100 255 Leaf area index

3 FparLai_QC — 0–254 255 QC of Fpar and LAI

4 FparExtra_QC — 0–254 255 Pass-through of Fpar

5 FparStdDev_500 m 0.01 0–100 255 Standard deviation of Fpar

6 LaiStdDev_500 m 0.1 0–100 255 Standard deviation of LAI
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MOD09GA surface reflectance data and land classification data.

The MCD15A2H product has a 500-m spatial resolution and a

temporal resolution of 8 days. The quality control (QC) band

demonstrated the data quality of the MODIS product (Yang

et al., 2006). When converting the QC tags into binary, the last

three bits represent the status of the retrieval result and can be

divided into five categories: 1) when the “SCF_QC” equals “000,”

the LAI pixel value was reversed by the main algorithm and

without saturation, which has the best quality. 2) The “001” label

represents that the main algorithm produced the corresponding

pixel, but saturation occurred, which is also acceptable in

practical applications, 3) the “010” label means that the LAI-

NDVI empirical relationship algorithm was used due to bad

geometry, 4) the “011” label means the backup algorithm was

used due to other problems, and 5) the “100” label means not

produced.

2.2.2 MOD09A1 land reflectance product
The MOD09A1 C6 land surface reflectance product offered

seven MODIS spectral bands carried by the Terra satellite,

including visible, near-infrared, and shortwave infrared bands

(Table 2). The reflectance data went through various conditions

of atmospheric correction, including gas, aerosol, and Rayleigh

scattering (Xiao et al., 2015). The MOD09A1 product was

synthesized by the best reflectance data over 8 days and had a

500-m spatial resolution, which means the spatiotemporal

resolution is the same as the MCD15A2H product. Apart

from reflectance bands, this product also provided two quality

control bands and three observation angle bands (sun zenith,

view zenith, and relative azimuth).

2.2.3 MCD12Q1 land classification product
The MCD12Q1 land classification product was produced

from Terra and Aqua satellite observation data in 1 year. The

classification method used is a supervised decision tree, and the

spatial resolution is 500 m (Friedl et al., 2002). The

MCD12Q1 classification product organizes five land cover

classification datasets, such as the IGBP, UMP, and LAI/FPAR

scheme. The IGBP scheme classified land use into 17 classes

(Friedl et al., 2010). The primary vegetation types were croplands,

deciduous broadleaf forest, grasslands, and mixed forest.

2.2.4 In situ LAI
In March, April, July, and August of 2018, we deployed

LAI in situ measurement work to get the LAI of wheat and

maize in Wuzhi, Xinzheng, and Xiangcheng. The measuring

instrument is the plant canopy analyzer LAI-2200 invented

by LI-COR (Fang et al., 2014). During the overcast sky or

around sunset moment, the measurement task selected

unobscured areas with a single vegetation cover. The

distribution of stroke points thoroughly considered the

uniformity in spatial distribution. The area of the sample

is 30 m × 30 m. Moreover, each sample was measured five

times and the average of the five measurements was

considered as in situ LAI.

3 Methods

Figure 2 presents a flowchart of implementation using the

NARX model to improve the MODIS LAI product. First, we

used quality control tags in the MCD15A2H and

MOD09A1 products to select the main algorithm-

retrieved LAI, time series continuous LAI, and ideal

quality reflectance data pairs. Second, cropland land cover

pixels will be selected according to the MCD12Q1 IGBP

dataset. Then, the selected training data will be used to train

the NARXNN model. Immediately, the NARXNN model will

be applied to MODIS reflectance data. Furthermore, the

NARX model-retrieved LAI will compromise the main

algorithm-retrieved LAI in the MCD15A2H product to

make the maximum use of the 3D radiative transfer

model and the strength of the NARXNN model and

overcome errors brought by the backup algorithm; to

verify the accuracy of the improved LAI, in situ measured

LAIs were used to validate the accuracy and time continuity

of NARX model-improved MODIS LAI data and compare it

with the original product.

TABLE 2 MOD09A1 seven bands and their main application fields.

Band Wavelength range Center wavelength Band name Application field

B3 459–479 470 Blue Soil/vegetation differences

B4 545–565 555 Green Green vegetation

B1 620–670 648 Red Vegetation chlorophyll

B2 841–876 858 Nir1 Cloud amount

B5 1230–1250 1240 Nir2 Leaf/canopy differences

B6 1628–1652 1640 Swir1 Snow/cloud differences

B7 2105–2155 2130 Swir2 Cloud/land properties
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FIGURE 2
Flow chart of the NARXNN method to generate the NARX-enhanced LAI product using the MODIS datasets.

FIGURE 3
Architecture of the NARXNN model configured with the m exogenous input variable, n time-delayed output variable, and S hidden layer.
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3.1 NARXNN model implementation

3.1.1 NARXNN model
Structurally, the NARXNN model was composed of an input

layer, a hidden layer, an output layer, and a time delay from

output to input. The NARXNN model used the exogenous input

parameter and delayed time series data to train the neural

network. Therefore, the NARXNN model has the memorial

function, which can keep the status information in the

structure and thus can approach complex nonlinear relations.

The mathematical expression of the NARXNN model is as

follows:

yt � f[x1, x2,/, xM, yt−1, yt−2,/yt−N] (1).

In Figure 3, the NARXNN model contains M exogenous

input Ik and N feedback time-delayed output Oj, so the input of

this neural network It is {I1, I2,. . ., IM} at the time t, while the

corresponding feedback Ct equals {Ot-1, Ot-2,. . ., Ot-N}. When

there is no exogenous input X, the NARXNN model will become

a pure nonlinear autoregressive neural network. Nevertheless, no

time delay will transform the NARXNN model into a back-

propagation neural network. The hidden layer consists of j neural

nodes. The output of jth neuron Hj will be as follows:

Hj � f⎛⎝∑M
i�1
WjiIi +∑D

I�1
WjlOt−1 + bj⎞⎠, (2)

where fmeans the activation function of the hidden layer. Ii is the

ith input index, and wji is the connection weight matrix from i to

j. bj is the threshold of jth hidden neurons. The output of this

network is

O � ∑S
j�1
WojHj + bo (3)

,

where S is the number of hidden neurons; Woj is the connection

weight matrix from neuron j to the output neuron; and bo is the

threshold of the output neuron.

3.1.2 Model configuration
In the first place, the LAI has a substantial correlation with

the red and near-infrared bands. Many LAI products used the

abovementioned spectral bands in the retrieval program. The

MODIS sensor is also provided with two shortwave bands that

are more sensitive to vegetation water content and can depict the

inner leaf structure and dry matter content.

Moreover, the LAI is closely related to the satellite

measurement angle (Feret et al., 2008). As a geometry

parameter, the satellite angle is tightly connected with the

relative position and will not be affected by the measurement

system error. Even though the cloud and aerosol contaminated

the surface reflectance, the angle information can still be used for

model retrieval unaffected.

Consequently, the exogenous input parameter of the

NARXNN model includes the red band, near-infrared band,

two shortwave infrared bands, sun zenith, view zenith, and

relative azimuth. The model output is the LAI. When the

NARXNN model parameters are fixed, Eq. 1 will become the

following:

LAI(t) � f(RRed(t),RNir(t),RSwir1(t),RSwir2(t),ASZA(t),AVZA(t),
ARAA(t), LAI(t − 1))

(4).

3.1.3 Training sample selection
Using a neural network to establish a vegetation LAI dynamic

change model, the quality of training data is equally as important

as the capability of the neural network. To begin with, arrange the

MCD15A2H LAI product and MOD09A1 reflectance product

according to the time sequence. Then, select the main algorithm

inversed time series continuous, high-quality LAI reflectance

pairs as training data via the quality control tags in the QC

band. Furthermore, divide the training data into different classes

according to the IGBP dataset of the MCD12Q1 land use

product. In this way, sufficient numbers of high-quality

reflectance and LAI pairs were chosen to be ready for

training. The organization format of training data is as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
RRed
11 RNir

12 RSwir1
13 RSwir2

14 ASZA
15 AVZA

16 ARAZ
17

RRed
21 RNir

22 RSwir1
23 RSwir2

24 ASZA
25 AVZA

26 ARAZ
27

RRed
i1 RNir

i2 RSwir1
i3 RSwir2

i4 ASZA
i5 AVZA

i6 ARAZ
i7

..

. ..
. ..

. ..
. ..

. ..
. ..

.

RRed
n1 RNir

n2 RSwir1
n3 RSwir2

n4 ASZA
n5 AVZA

n6 ARAZ
n7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

, [ LAI1 LAI2 LAIi / LAIn−3 LAIn−2 LAIn−1 LAIn ]T. (6)

3.1.4 Model training and inversion
In practical application, the training of the NARXNN model

involves the configuration of network structure and parameters.

The neurons of the input layer must match the exogenous

parameter, and the output layer is the LAI. In addition, the

hidden layer has three layers, the number of which is 10, 20, and

10, respectively. The sigmoid function [1/(1+e-x)] was selected as

the activation function of the NARXNN model, for it has a

relatively fast convergence rate. Training samples will be divided

into training, validation, and test data. The training part will be

used to update the weight matrix and the bias vector.

Furthermore, the validation data are going to test the model

error and assess the model performance. In advance of the

training, the training data will be standardized to [0, 1] to

prevent the effect of scale differences brought by different

physical meanings while increasing the convergence

performance at the same time. In the training process, the

epochs of training are adjustable. A longer period implies

better accuracy and a longer calculation time.

Frontiers in Earth Science frontiersin.org06

Li and Zhang 10.3389/feart.2022.962498

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.962498


FIGURE 4
NARXNN improved the time series LAI in (A) Wuzhi, (B) Xinzheng, and (C) Xiangcheng in 2018. The color bar beside each sub-image indicates
the corresponding LAI values for different colors. All three LAI maps are marked with the corresponding day of the year (DOY) from 49 to 297.
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3.2 Performance validation

The coefficient of determination (R2), root mean square error

(RMSE), and bias were used as the criteria to quantitatively

evaluate the accuracy of experimental results. In general, larger R2

and lower RMSE represent higher inversion accuracy, while bias

can depict the average value prediction conditions. These three

statistical variables are defined as follows:

R2 � ∑n
i�1(xi − �x)2 −∑n

i�1(yi − �y)2∑n
i�1(xi − �x)2∑n

i�1(yi − �y)2 (7)
,

RMSE �
������������∑n

i�1
(yi − xi)2

n

√
, (8)

BIAS � ∑n
i�1(yi − xi)

n
, (9)

where xi represents the ith ground-measured LAI, yi represents

the corresponding model-retrieved LAI; x� and y� represent the

mean values of x and y, respectively; n is the number of

assessment pairs.

4 Results

4.1 Improved MODIS LAI product

Based on the reflectance data and land classification data, the

NARXNN models were used to retrieve 46 periods of the LAI

within 1 year and replace backup algorithm pixels. Given the re-

projection transformation will change the number and numerical

value of pixels, the image projection remains the initial sinusoidal

projection. Only after the LAI was retrieved and ready to be

validated by the in situ LAI did the inversion results transform to

UTM projection. The NARX-enhanced LAI is shown in Figure 4,

and the coverage of each area in Figure 4 is about 1,369 km2. The

color bar beside each retrieved LAI scene indicates the

corresponding LAI values for the different colors. The shallow

yellow-colored areas stand for low vegetation or unvegetated

areas. In the time series, the value of LAI changes with time, and

the LAI reaches the climax in summer and became lower in the

winter and early spring. The LAI value changes from 0 to 7. The

LAI spatial distribution of the three research areas, namely,

Wuzhi, Xinzheng, and Xiangcheng in Henan Province,

showed similar increase and decrease trends. The Wuzhi site

shows that at the beginning of 2018, the LAI of some vegetated

areas was 0; these areas are represented in shallow yellow.

However, as the day of the year (DOY) increased (from

26 February 2018 to 25 May 2018), the vegetation grew and

became denser. After the winter wheat was harvested, the LAI

standard dropped dramatically. Then, the summer maize was

seeded and started to grow during the summer season, and until

the 249 DOY, the LAI of the rest of 2018 was kept low. The same

phenomenon could also be observed in the Xinzheng and

Xiangcheng research areas.

4.2 NARX enhanced LAI validation

The accuracy validation is a vital process of quantum

remote sensing. This article used multiple groups of the in

situ LAI to compare the NARXNN model-improved LAI and

the original LAI product. Figure 5 shows the comparison

result between ground measurement and the LAI acquired

by the NARXNN model or the LAI product. In the figure, the

improved LAI showed a better agreement with the in situ

measured LAI. The R2 values of the improved LAI of the three

research areas are 0.54, 0.41, and 0.51, while the RMSE

decreased by 0.07, 0.1, and 0.03, and the bias also

decreased to a certain extent. In the three scatter plots, the

data points cover the range between [0, 4], and most of the

points are distributed around the 1:1 line with a part of the

points deviating from the 1:1 line.

4.3 Time series variation comparison

Under the influence of ground heterogeneity, crop

variations, irrigation, and fertilization, farmland is one of

the most complex ecosystems on the Earth’s surface. At the

same time, the wheat–maize double cropping a year field is

easy to be influenced by cloud contamination and human

activity. However, precision agriculture and yield estimation

imposed additional requests on the accuracy of the

moderate-resolution LAI products. In Figure 6, temporal

trends of the original main algorithm MODIS LAI, backup

algorithm MODIS LAI, and MODIS LAI improved using the

NARXNNmodel were compared. We can find that the LAI of

two seasons a year cropland showed a bimodal change trend.

Results indicate that the NARXNN model smoothed the

abnormalities in MODIS LAI and enhanced the continuity

of the trends over time. Compared with the original MODIS

LAI, the MODIS LAI improved by the NARXNN model was

more closely correlated with the in situ measured LAI. At the

same time, the NARX-enhanced LAI was smoother in all four

seasons and more conformed to specific vegetation growth

and seasonal change withered feature. Numerically, the in

situ LAI has a better consistency with the NARX LAI while

being more different from original MODIS products. This

implies that, after the NARXNN model was applied, the

quality and reliability of the original MODIS LAI product

were improved. The possible cause for this improvement is

that the NARXNN model adopted historical status

information and overcame the adverse effects of the

backup algorithm.
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FIGURE 5
Comparison of the relationship between the in situ cropland LAI and NARXNN-improved LAI and the original MODIS backup algorithm-
retrieved LAI (the red point represents a pair of in situ LAI and MODIS backup algorithm LAI, while the blue point represents a pair of in situ LAI and
NARX LAI).

FIGURE 6
Comparison of the MODIS LAI product with NARX neural network-improved LAI data within the three study areas: (A)Wuzhi, (B) Xinzheng, and
(C) Xiangcheng.
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5 Discussion

5.1 Necessity of the improvement of the
MODIS LAI product

By now, the MODIS global LAI product has evolved into the

latest C6 version (Yan et al., 2016) and is widely used in various

research fields. Nevertheless, the MODIS LAI product is subject

to errors or uncertainties because of 1) uncertainties in the input

data, such as errors in remote sensing reflectance caused by

atmospheric effects and cloud contamination, 2) model

uncertainties and inevitably affected by the “ill-posed

inversion problem” (Verstraete et al., 1996), and 3) errors in

the ancillary information (e.g., land use misclassification) (Fang

et al., 2013). During the manufacturing process, the MODIS LAI

product (C6) consists of two retrieval algorithms: the three-

dimensional radiative transfer model and the backup NDVI-LAI

empirical relationship algorithm. Figure 7 shows the statistics of

the pixel quality distribution of MCD15A2H products. We can

find that the proportion of pixels retrieved by the backup

algorithm is between 25% and 40%. For the aforementioned

LAI pixels, the results of the 3D radiative transfer model stand for

excellent accuracy and are proven to be reliable. There are plenty

of failed inversion pixels through the radiative transfer model,

and the backup algorithm was not as reliable as the physical

model (Wang et al., 2005). Moreover, the fluctuating

phenomenon in time series was frequently detected in the

MODIS LAI product and thus cannot reasonably describe the

vegetation growth status (Verrelst et al., 2015). In this context,

improvingMODIS backup pixels will contribute valuable higher-

accuracy LAI data for a variety of applications including crop

growth monitoring, crop yield estimation, and ecological

environment assessment.

5.2 Advances of the NARXNN model

Traditional LAI inversion methods, such as the support

vector machine (SVM) (Wang et al., 2018), random forest

(RF) (Srinet et al., 2019), and static neural network

represented by a back-propagation neural network (BPNN)

(Wang et al., 2017), neglected the historical status information

between previous output and latter output and cannot

immensely draw on the dynamic system. In other words,

traditional LAI inversion methods must contain the nonlinear

relationships between the LAI and reflectance and the LAI

variations in time dimensions, so the model performance was

greatly restricted. Physically, the growth of ground vegetation is

periodic, which means the previous growth status determines the

following. Also, this phenomenon opened up a new direction in

improving MODIS LAI products. Therefore, the recurrent neural

network model involves additional information, regardless of the

relationship between the LAI and remote sensing measured data

and historical LAI change patterns.

The NARXNN model is a typical dynamic recurrent neural

network (Cadenas et al., 2016) and has been extensively

employed in nonlinear system modeling. The NARXNN

model accepts exogenous input data in the retrieval

procedure. Meanwhile, the model output will be appended to

the input parameters to aid the inversion work (Boussaada et al.,

2018). Some theories also proved that as long as the right

activation function was selected and the number of neurons is

enough, the NARX model can be used to draw on any dynamic

system (Funahashi and Nakamura, 1993). Thus, the NARXNN

model is more feasible for the inversion of ground LAI products.

The overall accuracy of the NARXNN-enhanced LAI is −55%

compared to the original, that is, −30%. The NDVI-LAI

relationship model was intrinsically easy to be affected by

FIGURE 7
Temporal variation of MODIS LAI quality control flags (QC) over h27v05. DOY: day of the year; RT: main radiative transfer (RT) method used;
RTsat:main radiative transfermethodwith saturation; VIgeo and VIoth: empirical vegetation index (VI) algorithm used due to bad geometry and other
problems, respectively.
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environmental conditions. Also, this part of pixels is the focus of

this improvement. In contrast, using Chen’s implementation of

the Savitzky–Golay filter method will smooth the LAI curves

indiscriminately (Chen et al., 2004) and lead to the loss of pixel’s

theoretical basis. Afterward, any improvement in the accuracy of

the leaf area index and vegetation coverage will significantly

improve the development of the earth systems modeling.

5.3 Extensibility of the NARXNN model

In this research, the NARXNN model was used to improve

the MODIS LAI product, and the accuracy of the replaced

backup algorithm pixels was satisfactory. The capability of the

NARXNN model was tested in product improvement. The

NARXNN model can be extended to improve other global

products, such as EPS and PROBA-V, and get a higher overall

accuracy. In addition, the model can be used for time series

modeling or reconstruction work and better serve global change

research programs.

Based on the structure of the NARX neural network, two

main points deserve to be considered in future research. First,

land surface reflectance is the basis of LAI retrieval, which greatly

affects the accuracy of the LAI product and regional retrieval

result. The NARX neural network is no exception. If the

reflectance data with higher atmospheric correction accuracy

were provided, the improvement effect will be further enhanced.

Second, only the MODIS LAI product was engaged in model

training as the true value. If multiple LAI products were

integrated together, a greater improvement effect could have

also been achieved.

5.4 Shortages of the model use

Constrained by the calculation ability and time cost, this

experiment sets the time delay as one step ahead. Nevertheless,

multiple time delays consider more historical LAI information

and may increase the model accuracy. As of now, there are no

standard criteria to determine the number of hidden layers and

neurons, and the configuration of a neural network is a possible

influence factor in practical applications. Even though the

NARXNN model has more generalization ability than the

NDVI-LAI relationship model and is more suitable to time

series vegetation modeling, but it is more complex and still

needs quantitative, high-quality training data. Moreover, the

relevant parameters need to be adjusted and tested to ensure

the model’s accuracy, which limited its usage and promotion.

The cropland vegetation pixels are chosen according to the

IGBP dataset in the MODIS land use product because the 500-m

resolution is not perfect in land cover classification, which means

pixels may be contaminated by roads or construction land and

ultimately influence the training performance of the NARXNN

model. If the pure pixel filter method was added to control the

percentage of 30-m resolution cropland pixels within one

MODIS pixel (Zhou et al., 2018), the estimation precision of

the NARXNN will rise by a degree.

Even though this work gets a decent performance in

improving the MODIS LAI product, the experiment and

validation work were carried out in the Wuzhi, Xinzheng,

and Xiangcheng areas; the in situ measured cropland type

includes only wheat and maize. But the cropland ecosystem

area is broad in coverage, and the cropland types are also

plentiful. So, validation works still need to be carried out in

future research.

6 Conclusion

More accurate LAI products with higher temporal and spatial

resolutions are greatly needed to support more advanced

climatological and ecological research efforts. The existing

MODIS LAI dataset designed for global coverage can rarely

satisfy these requirements. Further improvements based on

the current product may be one solution for this issue.

Nevertheless, utilization of single-phase measurement data,

without incorporating historical vegetation growth

information, can hardly realize this goal. However, the

improvement of the backup algorithm-retrieved LAI data has

not been well established. This article proposed a product

improvement scheme to enhance the accuracy of the

MCD15A2H product with the help of MOD09A1 reflectance

data and MCD12Q1 classification data.

Comparison with the in situ LAI validation data

demonstrated the NARXNN LAI improves over the

original MODIS backup algorithm LAI data, resulting in a

smaller bias and RMSE and higher R2. After enhancement,

the data points in the time series get smoothed. The

improvement process removes the low-quality LAI data

from the original data. It is to be noted that the accuracy

of the improvement performance relies on the quality of the

original high-quality LAI and the land classification data. The

product improvement scheme based on the NARX neural

network has a solid theoretical basis. It generates statistically

optimal results by incorporating both the radiative transfer

model and recurrent neural network. However, the

computational cost of applying NARXNN is still an

obstacle for handling large-scale datasets.
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