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Solar radiation drives many geophysical and biological processes in Antarctica,

such as sea ice melting, ice sheet mass balance, and photosynthetic processes

of phytoplankton in the polar marine environment. Although reanalysis and

satellite products can provide important insight into the global scale of solar

radiation in a seamless way, the ground-based radiation in the polar region

remains poorly understood due to the harsh Antarctic environment. The

present study attempted to evaluate the estimation performance of

empirical models and machine learning models, and use the optimal model

to establish a 35-year daily global solar radiation (DGSR) dataset at the Great

Wall Station, Antarctica using meteorological observation data during

1986–2020. In addition, it then compared against the DGSR derived from

ERA5, CRA40 reanalysis, and ICDR (AVHRR) satellite products. For the DGSR

historical estimation performance, the machine learning method outperforms

the empirical formula method overall. Among them, the Mutli2 model (hindcast

test R2, RMSE, and MAE are 0.911, 1.917 MJ/m2, and 1.237 MJ/m2, respectively)

for the empirical formula model and XGBoost model (hindcast test R2, RMSE,

and MAE are 0.938, 1.617 MJ/m2, and 1.030 MJ/m2, respectively) for the

machine learning model were found with the highest accuracy. For the

austral summer half-year, the estimated DGSR agrees very well with the

observed DGSR, with a mean bias of only −0.47 MJ/m2. However, other

monthly DGSR products differ significantly from observations, with mean

bias of 1.05 MJ/m2, 3.27 MJ/m2, and 6.90 MJ/m2 for ICDR (AVHRR) satellite,

ERA5, and CRA40 reanalysis products, respectively. In addition, the DGSR of the

Great Wall Station, Antarctica followed a statistically significant increasing trend

at a rate of 0.14 MJ/m2/decade over the past 35 years. To our best knowledge,
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this study presents the first reconstruction of the Antarctica Great Wall Station

DGSR spanning 1986–2020, which will contribute to the research of surface

radiation balance in Antarctic Peninsula.

KEYWORDS

DGSR, empirical formula, machine learning, CRA40 reanalysis product, ICDR (AVHRR)
satellite product

Highlights

• The high-precision and long time series DGSR dataset for

the Great Wall Station in Antarctica spanning

1986–2020 was first constructed.

• Among all models, the XGBoost model shows the highest

performance of hindcast estimated DGSR, with the results

of hindcast test R2, RMSE, and MAE are 0.938, 1.617 MJ/

m2, and 1.030 MJ/m2, respectively.

• The monthly DGSR of ICDR (AVHRR) satellite, ERA5,

and CRA40 reanalysis products differ significantly from

observations during the austral summer half-year, with a

mean bias of 1.05 MJ/m2, 3.27 MJ/m2, and 6.90 MJ/m2,

respectively.

• DGSR showed a significant increasing trend (0.14 MJ/m2/

decade) over the past 35 years at the Great Wall Station,

Antarctica.

1 Introduction

Solar radiation, as the basic driving force of various weather

phenomena and all physical processes in the Earth’s atmosphere,

has a very important impact on weather and climate (Che et al.,

2005; Wild, 2009). Accurate and reliable surface solar radiation

information and its spatial–temporal variation have a profound

influence on research fields such as solar energy, global warming,

hydrological cycle, and ecosystems (Thornton and Running,

1999; Yang et al., 2001; Tang et al., 2011; Ma and Pinker,

2012; Prăvălie et al., 2019; He et al., 2021). Antarctica, a key

area for examining climate change, is closely linked to other

components of the global climate system (Lachlan-Cope, 2005;

Brook and Buizert, 2018; Pattyn and Morlighem, 2020). To our

best knowledge, ground-based solar radiation at automatic

weather stations and yearly-round stations remain the

primary source for providing the most accurate data and

monitoring surface radiation balance in Antarctica (Stanhill

and Cohen, 1997; Braun and Hock, 2004). However, high-

quality ground-based surface solar radiation observations are

very sparsely distributed in Antarctica.

The problem of poor data coverage in time and space can be

partly remedied by the use of satellite measurements. But the

satellite-based surface solar radiation data need to be calibrated

and validated against local ground measurements (Pinker et al.,

2005; Sanchez-Lorenzo et al., 2017). This is even far more

relevant at high latitudes, where conditions make satellite

measurements difficult and less ground truth data are

available (Jaross and Warner, 2008; Zhang et al., 2019; Zeng

et al., 2021b). In particular, the Satellite Application Facility on

Climate Monitoring (CM SAF) developed high-quality satellite-

derived products from the Interim Climate Data Record (ICDR)

group (Urraca et al., 2017), namely, ICDR (AVHRR). This

product, based on CLARA-A2 methods, is a new satellite

(~40 years) global database of daily and monthly-averaged

solar irradiation on a 0.25° * 0.25° grid system (Karlsson et al.,

2017; Babar et al., 2018; Wang et al., 2018; Tzallas et al., 2019).

The surface solar radiation dataset from the ICDR (AVHRR) is

validated against surface measurements obtained from the global

Baseline Surface Radiation Network (BSRN) (Krähenmann et al.,

2013; Carrer et al., 2019). However, due to the scarcity of ground

observation sites, there is still a large uncertainty of ICDR

(AVHRR) product in polar regions.

A third source of “observed” radiation data are the reanalysis

products, such as the fifth generation ECMWF atmospheric

reanalysis of the global climate (ERA5) (Hersbach et al., 2020;

Muñoz-Sabater et al., 2021). It is worth to note that the National

Meteorological Information Center (NMIC) of the China

Meteorological Administration (CMA) recently developed a

40 years global reanalysis (CRA40) dataset (Li et al., 2021;

Zhang et al., 2021). The CRA40 dataset represents China’s

first generation of a global atmospheric reanalysis product.

Although some intercomparisons between instruments or

model data, such as satellite, BSRN, and ERA-interim

reanalysis, have been previously conducted and yielded good

consistency in seasonal and spatial variation (Che et al., 2007;

Scott et al., 2017; van den Broeke et al., 2004; Wild et al., 2005; Yu

et al., 2019). Whether ERA5 and CRA40 reanalysis products are

sufficient to quantify regional changes in surface solar radiation

in Antarctica remains unknown. Therefore, the assessment of

ERA5 and CRA40 reanalysis products is essential.

The Antarctic Peninsula has been subjected to intense

warming since the 1950s (Hock et al., 2009), but the warming

was reversed to cooling since the beginning of 2000 (Oliva et al.,

2017; Turner et al., 2020). Feedback factors such as sea ice retreat,

cloud water changes, and warming process, in particular, are

mainly influenced by radiation in this region. The Great Wall

Station is located on the King George Island near the Antarctic

Peninsula and has a typical sub-Antarctic maritime climate

(Ding et al., 2020; Sentian et al., 2020). The station’s

observation data have proven to be representative of the local
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environment. However, ground-based meteorological

observations on the King George Island are very sparse,

especially radiation observations (Soares et al., 2019). To sum

up, a comparative analysis of the basic climatic characteristics

(especially radiation) and its trends at the Great Wall Station can

improve the knowledge of the frequency and processes of

extreme weather and climate events in a warming context,

and provide a reference for interpreting the causes of

warming in the Antarctic Peninsula (Stanhill and Cohen, 1997).

Here, a reconstruction of the Antarctica Great Wall Station

daily surface solar radiation (also referred to as daily global solar

radiation, DGSR) spanning 1986–2020 is presented, and

comparisons among ERA5, CRA40 reanalysis, and ICDR

(AVHRR) satellite products have been conducted. The trend

of long-term DGSR at this station is also analyzed. The rest of the

study is organized as follows. The descriptions of site data,

reanalysis and satellite data, and the empirical formula and

machine learning method are given in Section 2. Section 3

presents the accuracy of historic estimated DGSR by various

models, comparison with other reanalysis and satellite products,

and the characteristics and trends of DGSR. A brief conclusion is

finally outlined in Section 4.

2 Data and method

2.1 Site data

The ground observation data used in this study are collected

from the Great Wall Station (62°13′S, 58°58′W, 10 m) in

Antarctica, and the ground meteorological observation

instruments and methods are constructed and operated in

accordance with the WMO and CMA ground meteorological

observation specifications (Ding et al., 2020). The site is

characterized by high humidity, high cloudiness, and low

sunshine (Yang et al., 2010, Yang et al., 2013). The Great

Wall Station was built in 1985 and began observing the

conventional meteorological elements (wind, temperature,

relative humidity, and barometric pressure) four times a day

on 13 January of that year, and in 2002 began continuous 24-h

automatic observations. Cloud cover, visibility, and precipitation

were observed four times a day starting in December 1985.

Among them, cloud cover and visibility are from manual

observation. Sunshine duration was observed continuously

24 h a day from January 1986.

Since the establishment of the Great Wall Station, only short-

term observation and research on solar radiation have been

carried out from May 1993 to December 1994. Operational

observations of surface solar radiation began in February

2008. As shown in Figure 1, the radiation observatory is also

within the Great Wall Station meteorological observatory, which

is largely snow-free with brown pebbles on the ground from

November to March each year, and maintains snow on the

ground from April to November. The instrument used for

radiation observation is the TBQ-2-B-I total radiation meter

produced by Beijing Huachuang Company. The instrument

measures wavelengths in the range of 0.3–3 μm, with a

sampling resolution of hours. The instrument is installed in

the meteorological field, and its sunrise and sunset orientation

without obstacles with an altitude angle of more than 5°.

Meanwhile, to ensure the accuracy of observation data, the

TBQ-2-B-I total radiation meter has passed the verification

and calibration of the China Meteorological Administration

before installation.

2.2 Reanalysis and satellite products

2.1.1 ERA5
The ERA5 dataset is the latest reanalysis from the European

Centre for Medium-Range Weather Forecasts (ECMWF) based

on its previous generation ERA-Interim dataset. Compared with

the previous ERA-Interim dataset, the ERA5 dataset has longer

time coverage, a more accurate data assimilation system, and

finer spatial resolution (Hersbach et al., 2020). ERA5 currently

provides the data from 1950 to the present. The dataset chosen

for the study is the monthly product (ERA5 monthly averaged

data on single levels from 1959 to present), which mainly uses its

downward shortwave radiation data.

2.1.2 CRA40
In May 2021, Chinese first generation of global atmospheric

and land surface reanalysis (CRA) products were officially

released, filling the gap in the field of global atmospheric

reanalysis in China and providing comprehensive applications

for various industries through the China Meteorological Data

Website (http://data.cma.cn/CRA). The product is a reprocessing

and analysis of historical meteorological observations using

mature numerical prediction models and assimilation analysis

to reproduce past atmospheric conditions, which has important

applications in the fields of weather, climate, environment, ocean,

and hydrology (Yu et al., 2021). This product reproduces the

global three-dimensional atmospheric status from the ground to

55 km altitude since 1979. The dataset selected for this study is

the daily surface radiation product with a spatial resolution of

34 km (Li et al., 2021).

2.1.3 ICDR (AVHRR)
The Climate Monitoring Satellite Application Facility (CM

SAF) centers of the EUMETSAT member countries, mainly

operated by the German Federal Meteorological Institute,

aimed to create long time series of Climate Date Record

(CDR) datasets that make CDRs applicable for climate change

analysis and prediction (Urraca et al., 2017). The CLARA-A2

dataset is one of the CDRs of CM SAF. It is mainly generated by

the data collected by different types of AVHRR sensors on board
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NOAA series satellites and MetOp polar series satellites. The

CLARA-A2 dataset mainly includes cloud products, surface

radiative flux products, and surface albedo products (Karlsson

et al., 2017). It provides data at both daily and monthly average

temporal resolutions, and the daily product is used for the surface

radiation products in this study, with a spatial resolution of

0.25°*0.25°. The product is currently updated to the latest,

namely, ICDR (AVHHR).

FIGURE 1
Location of the Great Wall Station in Antarctica (upper right), regional overview map (upper left), meteorological observation site (bottom left),
and radiation instruments (bottom right).

TABLE 1 Full list of predictor variables for estimating the global solar radiation

Model Empirical formula Reference

SSD1 DGSR � Q(a + bS) Prescott (1940)

SSD2 DGSR � Q(acos(φ) + bS) Glover and McCulloch, (1958)

SSD3 DGSR � Q(a + bS + cS2) Ögelman et al. (1984)

SSD4 DGSR � Q(a + bS + cS2 + dS3) Bahel et al. (1987)

SSD5 DGSR � aQebS Elagib and Mansell, (2000)

SSD6 DGSR � Q(a + beS) Bakirci, (2009)

T1 DGSR � aQ(ΔTb) Hargreaves and Samani, (1982)

T2 DGSR � Q(a + b
���
ΔT

√ ) Hargreaves et al. (1985)

T3 DGSR � aQ
���
ΔT

√ + b Hunt et al. (1998)

T4 DGSR � Q(aTmax + bTmin + c) Li et al. (2010)

T5 DGSR � aTmax + bTmin + cQ + d Almorox et al. (2013)

Multi1 DGSR = Q(a + b√ΔT + cTa + dPt) Wu et al. (2007)

Multi2 DGSR = Q(a + bS + cS2 + dS3 + e√ΔT + fln(P + 1) + gTa + hRH) Feng Y. et al. (2020)
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2.3 Methods

2.3.1 Empirical formula models
Meteorological elements are important factors that influence

and reflect the variation of surface solar radiation (Wang et al.,

2016; Zhang et al., 2017). Establishing the relationship between

one or more meteorological elements as a function of surface

solar radiation is the main idea of solar radiation estimation

(Zeng et al., 2020; Huang et al., 2021). Several meteorological

factors (such as sunshine duration, clouds, temperature, relative

humidity, precipitation, water vapor content, and atmospheric

turbidity) have been used in the estimation of global solar

radiation, among which sunshine duration, clouds, and

temperature are the most widely used meteorological factors

(Wang et al., 2016; Zou et al., 2019; Mohammadi and

Moazenzadeh, 2021; Mohammadi et al., 2022). However, since

the physical parameters of clouds are very complex and difficult

to measure, global solar radiation estimation methods based on

sunshine duration and temperature data are the two most

commonly used methods with high accuracy (He et al., 2018;

Feng andWang, 2021a, Feng andWang, 2021b). The daily global

solar radiation estimation models based on sunshine duration,

temperature-based, and multi-meteorological parameters used in

this study are shown in Table 1.

In the table, DGSR is daily global solar radiation (MJ/m2), Q

is daily extraterrestrial radiation (the radiation received by the

horizontal plane at the top of the atmosphere, unit: MJ/m2), S is

the sunshine percentage (%), φ is the geographical latitude (rad),

a, b, c, d, e, f, g, and h are empirical coefficients, Δ T is the daily

temperature difference (°C), p is daily precipitation, Pt is

converted precipitation data, p>0, Pt =1; p<0, Pt =0. Here, Q

can be calculated by the following formula:

Q � T
πd

2
mS0(w0 sinφ sin δ + cosφcosσδsinw0), (1)

where T=86,400 s, S0 =1367 W/m2, d2m is the solar-terrestrial

correction distance, w0 is the solar hour angle, and δ is the

declination.

2.3.2 Machine learning models
Random forest (RF) is an extended variant of bagging. Based

on the categorical regression tree as the base learner to build

bagging integration, random forest further introduces the

selection of random features in the training process of the

decision tree (Wei et al., 2019; Zeng et al., 2020). The gradient

boost regression tree (GBDT) is a boosting algorithm in which

the base learner in GBDT is a categorical regression tree and each

sub-model is trained based on the performance (residuals) of the

trained learner (Chen et al., 2019). And a new model is built in

the direction of the gradient where the residuals are reduced.

GBDT can be used for most linear and nonlinear regression

problems, can handle out-of-space anomalous data, and is

adaptable to various types of data without requiring complex

feature engineering (Chen et al., 2019). XGBoost (eXtreme

TABLE 2 Statistical information for multiple empirical formula models.

Variable Unit Selecteda Description

Geographical factors Q MJ/m2 Y Extraterrestrial radiation

S % Y Sunshine percentage

Time factor Month — N Month of year

DOY Day Y Day of year

Estimated factor DGSR MJ/m2 Y Global solar radiation

Meteorological factors PRS-mean hPa Y Daily average atmospheric pressure

RH % Y Daily average relative humidity

SSD H Y Daily sunshine duration

PRE-0820 Mm Y Precipitation from 8:00 a.m. to 20:00 p.m.

Ta °C Y Daily average air temperature

Tmax °C Y Daily maximal air temperature

ΔT °C Y Tmax minus Tmin

WS m/s Y Daily average wind speed

Tmin °C Y Daily minimal air temperature

TCC — N Daily total cloud cover

LCC — N Daily low cloud cover

VIS Km N Daily visibility

PRE-2020 Mm N Precipitation from 20:00 p.m. to 20:00 p.m.

aY: Included in the model after variable selection.
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Gradient Boosting) is a machine learning algorithm

implemented in the gradient boosting framework. It is

implemented by the gradient boosting machine and improved

on the original one, which greatly improves the model training

speed and prediction accuracy (Xiao et al., 2018; Xu et al., 2018;

Gui et al., 2020). In the modeling process, the model may need to

perform thousands of iterations for more complex data. This

problem is well solved by the XGBoost model, which enables

parallel operations on the regression tree. LightGBM is a decision

tree-based gradient boosting framework that models complex

non-linear functions. LightGBM offers distributed and high-

performance advantages in sorting, classification, and

regression (Zeng et al., 2021a). Other machine learning

models are shown in Supplementary Text S1.

The stacking model involves the process of training a high-

level learner to find the optimal combination of base learners,

rather than simply fusing the results of several primary learners.

Compared with bagging and boosting frameworks, which use the

same type of base learners for construction, the stacking model is

built by combining different types of base learners (Feng L. et al.,

2020), because different types of base learners differ significantly

in learning the data space and structure. Different types of base

learners can observe the data features from different perspectives

and learn the data more comprehensively to obtain a more

accurate result (Chen et al., 2019). The core idea was to train

the base learner with cross-validation, and then construct

secondary features for training the meta learner based on the

output of the base learner (Huang et al., 2021). Ridge regression,

in essence, is a biased regression method dedicated to handling

covariance data by improving the least squares method by

abandoning the unbiased nature of least squares to produce

biased estimates, allowing for more realistic and reliable

regression coefficients at the cost of losing some information

and reducing accuracy (McDonald, 2009).

In this study, the regression methods of random forest,

XGBoost, and LightGBM are used as one of the base learner

models for building the stacking model, and the results of the first

layer are retrained and predicted using ridge regression as the

second layer.

2.4 Steps of DGSR reconstruction and
comparison with other products

Step 1: Data pre-processing and time matching. The daily values

of the meteorological variables were obtained by averaging the

four daily observations at 0000, 0600, 1200, and 1800 UTC. Daily

sunshine duration and daily global solar radiation as a

cumulative value for 24 h per day are obtained. The final

available data include conventional meteorological observation

(see Table 2) for the period 1986–2020, with radiation

observations from February 2008 to December 2020.

Step 2: Model construction. Empirical formula models and

machine learning models are constructed based on matched

samples. These empirical models include sunshine-based

models (six in total), temperature-based models (five in total),

and multivariate models (two in total). As in the study by

Mohammadi et al. (2022), the empirical formula models were

calibrated (the matched samples from 2011 to 2020 were used in

this study) to obtain the empirical coefficients, and the remaining

samples are then used to test the accuracy of the model (matched

samples from February 2008 to December 2010 were used in this

study). Machine learning models include RF, LightGBM, MLP

neural networks, SVM, MLR, and stacking models. In this study,

TABLE 3 Coefficients and model accuracy of the empirical formula model.

Model Empirical formula Performance

R2 RMSE MAE

SSD1 a=0.2637, b=0.6072 0.896 2.073 1.327

SSD2 a=0.5658, b=0.6072 0.896 2.073 1.327

SSD3 a=0.2531, b=0.9249, c=−0.5541 0.900 2.028 1.298

SSD4 a=0.2474, b=1.3008, c=−2.1947, d=1.5923 0.900 2.028 1.296

SSD5 a=0.2782, b=1.3170 0.881 2.219 1.425

SSD6 a=−0.1607, b=0.4323 0.887 2.163 1.388

T1 a=0.2500, b=0.2233 0.739 3.283 2.034

T2 a=0.1860, b=0.0756 0.737 3.294 2.041

T3 a=−0.1827, b=−0.0012 0.746 3.238 2.043

T4 a=0.0144, b=-0.0158, c=0.2689 0.731 3.335 2.066

T5 a=0.4365, b=−0.4661, c=0.3675, d=−2.2335 0.713 3.439 2.346

Multi1 a=0.2834, b=0.0631, c=−0.0015, d=−0.1076 0.776 3.041 1.913

Multi2 a=0.0780, b=1.2497, c=−2.0761, d=1.4781,e=0.0173, f=−0.0329, g=−0.0049, h=0.0017 0.911 1.917 1.237
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data from 2011 to 2020 were used for training and tested using a

10-fold cross-validation method (Zeng et al., 2021b). The

performance of the machine learning model for historical

DGSR estimation was also evaluated using data from February

2008 to December 2010. The 10-fold cross-validation method is

given in Supplementary Text S2 in Supplementary Information.

Step 3: Historical dataset reconstruction. The meteorological

observations of the Great Wall Station in Antarctica were

used to estimate the DGSR from 1986 to 2020 in combination

with the optimal model obtained in Step 2.

Step 4: Comparison with other reanalysis and satellite products.

Because of the large sample size of the multi-year daily value data,

we averaged the DGSR data on a monthly basis in order to

visualize and explore more clearly the differences between the

different DGSR products. The monthly products of the reanalysis

and satellites were interpolated and time-matched to the Great

Wall Station site, and then compared with the estimated DGSR,

observed DGSR. Based on this reconstructed data, the annual,

monthly, and seasonal variation characteristics of the DGSR at

the Great Wall Station are analyzed, and the trends and their

possible influencing factors are further explored.

3 Results and discussion

3.1 Empirical formula model results

Meteorological parameters (e.g., sunshine duration,

temperature, and precipitation) during 2011–2020 were used as

model input elements to the selected models for calculating the

empirical constants. Table 3 shows that the empirical constants

estimated from the SSD4 model are a=0.2474, b=0.1.3008, c=-

2.1947, and d=1.5923. The empirical constants also estimated from

the T3 model are a=−0.1827 and b=−0.0012. Multi2 model’s

empirical constants are a=0.0780, b=1.2497, c=−2.0761,

d=1.4781, e=0.0173, f=−0.0329, g=−0.0049, and h=0.0017.

Details of the other model’s empirical constants are statistically

provided in Table 3. The empirical constant values from different

empirical formulas were used to estimate DGSR at the Great Wall

Station from February 2008 to December 2010, and then a

comparison between estimated DGSR and observed DGSR

was made.

The correlation (R), standard deviation (STD), and centered

root mean square difference (RMSD) between observed and

estimated DGSR are plotted in Taylor diagrams (Figure 2).

Figure 2 indicates temperature-based models gave relatively

larger model errors than sunshine-based models. Among

sunshine-based models, the SSD4 model has the highest

accuracy, with the corresponding R, RMSE, and MAE of

0.949, 2.028 MJ/m2, and 1.296 MJ/m2, respectively. The

SSD5 model had the lowest accuracy, with the values of R,

RMSE, and MAE of 0.939, 2.219 MJ/m2, and 1.425 MJ/m2,

respectively. For the temperature-based model, the T3 model

had the highest accuracy (R=0.864, RMSE=3.238 MJ/m2, and

MAE=2.043 MJ/m2), while the T5 model had the lowest accuracy

(R=0.844, RMSE=3.439 MJ/m2, and MAE=2.346 MJ/m2). Other

results of temperature-based models and sunshine-based models

are shown in Table 3.

The Multi1 model discussed solar radiation calculation with

precipitation (Pt = 1) and no precipitation (Pt = 0). The model

(parameters only include ΔT) was still a temperature-based

model, so the low accuracy of this model can be explained in

this study. The hybrid model based on multiple meteorological

parameters has the highest accuracy (e.g., Multi2 with R, RMSE,

andMAE are 0.955, 1.917 MJ/m2, and 1.237 MJ/m2, respectively),

followed by the sunshine-based model, and the temperature-

based model has the lowest accuracy. In general, the results

showed that all empirical models were able to estimate the daily

global solar radiation with high coefficients of determination and

the smallest values of RMSE, MAE, and MB.

3.2 Machine learning models results

3.2.1 Variables selection and model tuning
results

The RF model can select the optimal variables according to

the importance of variables, thus simplifying the model. Based on

“feature_importances_” parameter of the RF model in scikit-

learn, the importance values of all variables can be calculated

(Pedregosa et al., 2011). First, the 10-fold cross-validation results

(CV R2, CV RMSE, and CVMAE), hindcast test results (hindcast

test R2, hindcast test RMSE, and hindcast test MAE), and the

importance of all variables are obtained by training the RFmodel.

FIGURE 2
Taylor diagram of historical estimation performance for
multiple empirical formula models.
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Second, the variables were sorted according to the variable’s

importance from small to large, and the variable with the least

importance was removed. Then, the RF model was trained again

and the training results were recorded. Repeat these steps until

only two input variables were left in the model.

The estimation performance of the model was evaluated

according to the recorded results of each model training.

When the model CV accuracy and historical prediction

accuracy are both high, the corresponding training variable is

determined as the final variable of the model, that is, the variable

selection result. Figure 3 shows the results of model performance

(CV R2, CV RMSE, and CVMAE) and hindcast ability (hindcast

test R2, hindcast test RMSE, and hindcast test MAE) of the RF

model during the variable selection process. It should be noted

that steps 13 and 15, where RMSE and MAE increase

dramatically, are not shown in the figure. After the sixth

variable was removed (at step 6), Figure 3 indicates that the

R2 (CV R2=0.949, hindcast test R2=0.929) was the highest, the

RMSE (CV RMSE=1.500 MJ/m2, hindcast test RMSE= 1.752 MJ/

m2) and MAE (CV MAE=0.930 MJ/m2, hindcast test

MAE=1.079 MJ/m2) were the lowest. Therefore, the remaining

11 variables were used as the final predictors, namely, Tmax, WS,

PRS-mean, ΔT, S, Tmin, PRE-0820, RH, DOY, SSD, and Q. In

addition, according to the results of meteorological variables

correlations with DGSR (Supplementary Figure S1) and variable

selection by machine learning (Figure 3), we find that the

observation quality of the input variables affects the accuracy

of the machine learning models because the LCC, TCC, VIS, and

PRE-2020 are manually observed (which leads to human errors)

at the Great Wall Station. Therefore, these variables are excluded

in the variable selection process by the random forest model. This

variable selection results (see Table 2) is also consistent with our

previous studies (Zeng et al., 2020; Zeng et al. 2021b).

Grid-search is a basic hyperparameter tuning technique,

which is similar to the method of manual tuning (Siji George

and Sumathi, 2020). It permutates and combines all the

hyperparameter values in the model, and then builds the

model according to the number of combinations. The optimal

model was evaluated and selected according to the cross-

validation score, and the corresponding hyperparameter

combination value of the optimal model was given. The grid-

search method is time-consuming and inefficient because it tries

every combination of hyperparameters. The random-search

method is to randomly select the hyperparameter combination

from the hyperparameter space, which cannot guarantee the best

parameter combination (Bergstra and Bengio, 2012). Since the

machine learning model contains multiple hyperparameters, we

first used the random-search method to find the potential

FIGURE 3
Model performance (CV R2, CV RMSE, and CV MAE) and hindcast ability (hindcast test R2, hindcast test RMSE, and hindcast test MAE) of the RF
model during the variable selection process. The predictor variables are removed one at a time in the following order: 1)month, 2) TCC, 3) LCC, 4) VIS,
5) PRE-2020, 6) Ta, 7) Tmax, 8) WS, 9) PRS-mean, 10) ΔT, 11) S, and 12) Tmin. It should be noted that steps 13 and 15, where RMSE increases
dramatically, are not shown in the figure.
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TABLE 4 Final selection value of the main parameters in each model.

Model Parameter Hyperparameter range Final value

RF 1. n_estimators [50–3,000 within an interval of 60] 1,450

2. max_features [’auto’, ’sqrt’] sqrt

3. max_depth [10–500 within an interval of 50] 60

LightGBM 1. n_estimators [50–3,000 within an interval of 40] 130

2. num_leaves [50–100 within an interval of 5] 65

3. learning_rate [0.01, 0.05, 0.08, 0.1, 0.15, 0.25] 0.1

4. susample [0.6, 0.7, 0.8, 1.0] 0.7

5. max_depth [3–8 within an interval of 1] 3

XGBoost 1. max_depth [2–30 within an interval of 5] 4

2. learning_rate [0.01, 0.05, 0.07, 0.1, 0.2] 0.01

3. susample [0.6, 0.7, 0.8, 0.9] 0.8

4. n_estimators [50–2,000 within an interval of 40] 550

GBDT 1. n_estimators [50–1,000 within an interval of 40] 970

2. Loss [’ls’, ’lad’, ’huber’, ’quantile’] lad

3. susample [0.5, 0.6, 0.7, 0.8, 0.9] 0.7

4. Learning_rate [0.01, 0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 0.8] 0.01

5. max_depth [3–14 within an interval of 2] 7

MLP 1. solver [’adam’, ’sgd’, ’lbfgs’] adam

2. alpha [0.001, 0.0001, 0.00001] 0.0001

3. hidden_layer_sizes [(100), (100, 30), (1,000, 500, 100)] (1,000, 500, 100)

SVM 1. tol [0.01, 0.001, 0.0001, 0.00001] 0.01

2. c [1, 10, 100, 1,000] 10

MLR -- --

--: Indicates the model parameter value set as the default.

TABLE 5 Fitted, CV, and estimated results of different machine learning models.

Model
name

Model fitted Model CV Model historic estimated

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

RF 0.981 0.933 0.562 0.949 1.502 0.931 0.930 1.744 1.051

LightGBM 0.965 1.249 0.789 0.951 1.473 0.925 0.929 1.735 1.083

XGBoost 0.965 1.247 0.782 0.952 1.464 0.909 0.938 1.617 1.030

GBDT 0.955 1.413 0.852 0.949 1.492 0.928 0.927 1.768 1.112

BPMLP 0.961 1.341 0.837 0.952 1.473 0.916 0.931 1.829 1.129

SVM 0.927 1.805 1.180 0.926 1.810 1.185 0.912 2.023 1.289

MLR 0.929 1.777 1.208 0.928 1.783 1.213 0.913 1.938 1.289

Stacking — — — — — — 0.932 1.715 1.058

Bold values indicates that the model is optimal.
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combination of hyperparameters, and then used the grid-search

method to select the optimal hyperparameters from the potential

combination of hyperparameters. The range of hyperparameter

tuning and the final hyperparameter combination of each

machine learning model are shown in Table 4.

3.2.2 Comparative results of machine learning
models

For the performance of machine learning models, the CV R2,

CV RMSE, and CV MAE of seven machine learning models are

between 0.926–0.952, 1.464–1.810 MJ/m2, and 0.909–1.185 MJ/

m2, respectively (Table 5). It shows that all models have good

estimation performance. The XGBoost model had the highest

overall accuracy, the CV R2 value was 0.952, and the estimation

uncertainty was the least. The MLP model has the same CV R2

value as XGBoost, but the estimated uncertainty is relatively large

(CV RMSE=1.473 MJ/m2, CVMAE=0.916 MJ/m2), so the overall

accuracy is lower than XGBoost. The overall accuracy of SVM

was the lowest (CV R2=0.926, CV RMSE=1.810 MJ/m2, and CV

MAE=1.185 MJ/m2). On the fact of model performance, the

model overall accuracy from high to low is as follows:

XGBoost, MLP, LightGBM, GBDT, RF, MLR, and SVM.

For the historical estimation performance of machine

learning, hindcast test R2, hindcast test RMSE, and hindcast

Test MAE are between 0.912–0.938, 1.617–2.023 MJ/m2, and

1.030–1.289 MJ/m2, respectively. All models show good

historical estimation capability. Similarly, the XGBoost model

outperforms the other six models and stacking models in

historical estimation performance. The RF model and

LightGBM model are second only to the stacking model,

while SVM has the worst historical estimation performance. It

is worth noting that compared with the RF model and LightGBM

model, the MLP model and GBDT model have larger historical

estimated uncertainty values. Compared with its own CV RMSE

and CV MAE, hindcast test RMSE and hindcast test MAE are

significantly larger, indicating the stability bias of the MLPmodel

and GBDT model. Therefore, in the stacking model, we chose

XGBoost, RF and LightGBM models as the first layer and ridge

regression as the second layer. The results show that the stacking

model has a high historical estimation capability (hindcast test

R2=0.932, hindcast test RMSE=1.715 MJ/m2, and hindcast test

MAE=1.058 MJ/m2), but not the highest, second only to the

XGBoost model.

Furthermore, we present XGBoost model fitting results, 10-

fold CV results, and historical estimation ability results in

Figure 4. Figures 4A,B shows that the XGBoost had higher R2

values of 0.965 (0.952) and lower RMSE and MAE values of

1.247 MJ/m2 and 0.782 MJ/m2 (1.464 MJ/m2 and 0.909 MJ/m2)

in the model fitted (model 10-fold CV) process. The results show

that the XGBoost model has high estimation accuracy and stable

performance. The matched samples from February 2008 to

December 2010 were used (not used in the model training

and cross-validation process) to evaluate the historical

estimation performance of the machine learning models, and

the result of the hindcast estimated is also shown in Figure 4C.

We found that the model hindcast estimated that DGSR presents

a good consistency with observed DGSR (R2 = 0.938, RMSE =

1.617 MJ/m2, and MAE=1.030 MJ/m2). In addition, the slope

(0.95, 0.94, and 0.96) and intercept (0.32, 0.38, and 0.51)

corresponding to the fitted, 10-fold CV, and historical

estimation ability result (R2, RMSE, and MAE) have few

changes, indicating that the model has good stability and

generalization. Also, the XGBoost is sufficient to reconstruct

the DGSR of the Great Wall Station, Antarctica.

At the same time, the time series, frequency distribution, and

difference distribution of DGSR of the Great Wall Station from

February 2008 to December are also presented in Figure 5.

Figure 5A shows that the time series of observed DGSR and

the estimated DGSR are very consistent. Meanwhile, Figure 5B

shows that the difference between the two values mainly occurs

FIGURE 4
Scatterplots density of the (A) fitted model, (B) 10-fold CV model, and (C) hindcast estimation results of the XGBoost model at the Great Wall
Station, Antarctica.
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in the range of ±2 MJ/m2, accounting for 83.7% of the total.

Figure 5C shows that the larger the DGSR value is, the greater the

difference is. Also, the samples with obvious differences are all

distributed in the austral summer, which may be related to the

sunshine duration, solar altitude angle, and precipitation in

summer. As shown in Figure 5D, when DGSR values range

from 0 to 3 MJ/m2, the historical estimation performance of the

model is good. With the increase of DGSR value, the historical

estimation capability of the model first overestimates and then

turns to underestimates. Overall, the mean difference of DGSR is

0.28 MJ/m2 (very small), which also indicates that the model has

extremely high historical estimation performance.

By comparing with the previous empirical formula models

(Tables 4, 5), we found that the SVM (hindcast test R2=0.912,

hindcast test RMSE=2.023 MJ/m2, and hindcast test

MAE=1.289 MJ/m2) and MLR (hindcast test R2=0.913,

hindcast test RMSE=1.938 MJ/m2, and hindcast test

MAE=1.289 MJ/m2) models have comparable historical

estimation performance to the Multi2 model (hindcast test

R2=0.911, hindcast test RMSE=1.917 MJ/m2, and hindcast test

MAE=1.237 MJ/m2). Other machine learning models (especially

the XGBoost model) have much higher historical estimation

capacity than empirical formula models. Other studies results

also show that the accuracy of estimated DGSR by machine

learning models is generally higher than that of empirical

formula models (Mohammadi et al., 2022).

In conclusion, the XGBoost model has stronger historical

estimation ability and can be used to reconstruct the historical

long time series DGSR dataset of the Great Wall Station, which is

of great significance for studying the characteristics and long-

term variation of surface solar radiation of the Antarctica, and

exploring and understanding the reasons for its trend evolution.

3.3 Comparison with other products

To better understand the differences between the estimated

DGSR and other reanalysis and satellite information, the

FIGURE 5
(A) Observed versus estimated DGSR, (B) probability distribution and (C) time series of the difference, and (D) DGSR bias in 2008–2010 at the
Great Wall Station, Antarctica.

FIGURE 6
Monthly time series variation of DGSR for the Great Wall Station from February 2008 to December 2020 from multiple data sources.

Frontiers in Earth Science frontiersin.org11

Zeng et al. 10.3389/feart.2022.961799

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.961799


monthly values of DGSR for each product are given in Figure 6. It

can be seen that the various DGSR follow a relatively consistent

trend in the time series of monthly values with the observed

DGSR, both being larger in austral spring and summer and

smaller in austral winter and autumn. The correlation

coefficients between the estimated, ERA5, CRA40, and ICDR

(AVHRR) DGSRs and the observed DGSR are 0.994, 0.982,

0.977, and 0.936, respectively. For the austral summer half-

year, the estimated DGSR was agreed very well with the

observed DGSR, with a mean bias of only −0.47 MJ/m2. The

other DGSR monthly products differ significantly from

observations, with a mean bias of 3.27 MJ/m2, 1.05 MJ/m2,

and 6.90 MJ/m2 for ICDR satellite products, ERA5, and

CRA40, respectively. The findings indicate that there is a high

degree of uncertainty in the region for these products. The

differences between them should be noted and appropriately

corrected when using this information.

The inter-year and differences (Figure 7) analysis of the

DGSR for different products from 2009 to 2020 shows that the

different products reflect inter-year variations in DGSR with a

small range of fluctuations. From 2009 to 2020, the observed,

estimated, ERA5, and CRA40 DGSRs range from 6.09 to

7.48 MJ/m2, 6.30–7.15 MJ/m2, 8.24–9.44 MJ/m2, and

10.41–10.95 MJ/m2, respectively. Figure 7B shows that the

estimated DGSR differs very little from the observed values,

with a negative bias (except for 2010) and a multi-year mean

bias of –0.27 MJ/m2. Both ERA5 and CRA40 show positive

bias and large multi-year mean bias values of 1.80 MJ/m2, and

3.76 MJ/m2, respectively. Correspondingly, the annual relative

errors of DGSR [the calculation formula of relative errors is

given in Section 3.3 from Zeng et al. (2021a)] from estimated,

ERA5, and CRA40 are 5.4%, 26.5% and 54.3%, respectively. It

is notable that the ICDR satellite products have not been

included in the DGSR annual mean comparison as the satellite

has more missing measurements during the austral winter

half-year.

The aforementioned results show that the annual and

monthly products of all the data can better reflect the

characteristics of the DGSR variation at the Great Wall

Station, Antarctica. Among them, the estimated DGSR in this

study has a very small bias and the highest accuracy, which is

sufficient to replace the observed values when the station is out of

measurement. However, the DGSR of the austral summer half-

year for other products [ERA5, CRA40, and ICDR (AVHRR)]

deviate significantly from the observed values, and the annual

averages of the DGSR deviate equally significantly. These DGSR

products should be considered with caution and corrected in

studies such as long-term trend evolution.

3.4 The characteristics and trends of DGSR

Annual and seasonal mean changes and trends of DGSR and

multi-year monthly mean changes for the Great Wall Station,

Antarctica, from 1986 to 2020 are given in Figure 8. As shown in

Figure 8F, DGSR showed a decreasing and then increasing trend

from January to December, with monthly average DGSR values

of 13.06, 9.44, 5.47, 2.38, 0.84, 0.41, 0.59, 2.18, 5.85, 10.29, 13.57,

and 15.23, respectively (Units: MJ/m2). The monthly average

DGSR value (12.58 MJ/m2) was highest in austral summer

(December, January, and February) and lowest (1.06 MJ/m2)

in austral winter (June, July, and August). The monthly

average DGSR value in austral spring (September, October,

and November) was 9.90 MJ/m2 and in austral autumn

(March, April, and May) it was 2.90 MJ/m2.

Figure 8E shows an increasing trend in the annual mean

DGSR at the Great Wall Station over the period 1986–2020, with

a trend value of 0.14 MJ/m2/decade. During the period

FIGURE 7
Yearly time series variation (A) and differences (B) of DGSR for the Great Wall Station during 2009–2020 from multiple data sources.
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1990–2004, the annual mean DGSR showed an increasing trend

of 0.46 MJ/m2/decade, while after 2005 the DGSR started to

show a decreasing trend, which is more consistent with the

trend of the Zhongshan Station, Antarctica (Zeng et al., 2021a).

The annual mean DGSR value decreases slightly with a value of

-0.2 MJ/m2/decade for the period 2005–2020. the reason for this

phenomenon may be related to the increase in the number of

precipitation days and clouds at the Great Wall station. To

reveal the characteristics of the seasonal mean DGSR at Great

Wall Station, we calculated the mean DGSR in spring, summer,

autumn, and winter each year, and established a time series

(Figures 8A–D). It can be seen that the inter-annual

fluctuations in the seasonal average DGSR are large and the

trend is toward an increasing trend in all four seasons. The

trends in summer and winter are 0.29 MJ/m2/decade and

0.03 MJ/m2/decade, respectively, and both are statistically

significant (p<0.05).

4 Conclusion

A reconstruction of the Antarctica Great Wall Station

daily global solar radiation spanning 1986–2020 was

presented, and is available upon request. The long-term

DGSR data have the highest accuracy that agrees with the

observed DGSR, and can describe the radiation

characteristics and trend changes at the Great Wall

Station, Antarctica. In addition, direct comparisons among

ERA5, CRA40 reanalysis, and ICDR (AVHRR) satellite

products were also performed in this study. The main

conclusions are as follows.

Among the empirical equation models, the multi-

meteorological variable model (hindcast test R2, RMSE, and

MAE of Multi2 are 0.911, 1.917 MJ/m2, and 1.237 MJ/m2,

respectively) has the highest accuracy in estimating the

historic DGSR at the Antarctica Great Wall Station,

followed by the sunshine-based model, and the

temperature-based model has the lowest accuracy (hindcast

test R2, RMSE, and MAE of T5 are 0.713, 3.439 MJ/m2, and

2.346 MJ/m2, respectively).

In the variable selection of the machine learning model,

the manually observed meteorological variables have a certain

impact on the model accuracy. This is mainly due to the fact

that different observation crews can cause human observation

errors, which in turn lead to a reduction in model accuracy.

This suggests that it is important to do quality control and

FIGURE 8
Trends in (A) spring, (B) summer, (C) autumn, (D) winter, (E) annual mean DGSR, and (F) DGSR monthly changes during 1986–2020. Star
superscripts represent that the trend values of DGSR are statistically significant (p<0.05).
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remove variables with poor data quality before constructing

the model. All machine learning models show good historical

estimation capability. The XGBoost model (hindcast test R2,

RMSE, and MAE are 0.938, 1.617 MJ/m2, and 1.030 MJ/m2,

respectively) outperforms the other six models and stacking

models in historical estimation performance. The RF model

and LightGBM model are second only to the stacking model,

while SVM has the worst historical estimation performance.

In conclusion, the estimation performance of empirical

formula models is generally lower than that of machine

learning models. In addition, the empirical coefficients of

the empirical formula model vary over time and space,

require calibration using long-term radiation observations

in certain regions, and cannot be generalized to other

uncalibrated regions. In contrast, the machine learning

model has a simple computational process, short time

consumption, high simulation accuracy, and also has

migration capability.

The most important result is that we found ERA5,

CRA40 reanalysis, and ICDR (AVHRR) satellite products

generally overestimate the DGSR, with a mean bias of

3.27 MJ/m2, 6.90 MJ/m2, and 1.05 MJ/m2 during the austral

summer half-year. The estimated DGSR, which agrees very

well with the observed DGSR, has a mean bias of

only −0.47 MJ/m2.

In addition, the annual mean DGSR at the Great Wall

Station, Antarctica over the period 1986–2020 followed a

statistically significant increasing trend at a rate of 0.14 MJ/

m2/decade. During the period 1990–2004, the annual mean

DGSR showed an increasing trend at a rate of 0.46 MJ/m2/

decade, while after 2005 the DGSR started to show a

decreasing trend, which is more consistent with the trend of

the Zhongshan Station, Antarctica.
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estimating solar radiation from bright sunshine data. Sol. Energy 33, 619–625.
doi:10.1016/0038-092X(84)90018-5

Oliva, M., Navarro, F., Hrbáček, F., Hernández, A., Nývlt, D., Pereira, P., et al. (2017).
Recent regional climate cooling on theAntarctic Peninsula and associated impacts on the
cryosphere. Sci. Total Environ. 580, 210–223. doi:10.1016/j.scitotenv.2016.12.030

Pattyn, F., and Morlighem, M. (2020). The uncertain future of the antarctic ice
sheet. Science 367, 1331–1335. doi:10.1126/science.aaz5487

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12,
2825–2830. doi:10.48550/arXiv.1201.0490

Prescott, J. A. (1940). Evaporation from a water surface in relation to solar
radiation. Trans. Roy. Soc. Austr. 641, 114–125.

Pinker, R. T., Zhang, B., and Dutton, E. G. (2005). Do satellites detect trends in
surface solar radiation? Science 308, 850–854. doi:10.1126/science.1103159

Prăvălie, R., Patriche, C., and Bandoc, G. (2019). Spatial assessment of solar
energy potential at global scale. A geographical approach. J. Clean. Prod. 209,
692–721. doi:10.1016/j.jclepro.2018.10.239

Sanchez-Lorenzo, A., Enriquez-Alonso, A., Wild, M., Trentmann, J., Vicente-
Serrano, S. M., Sanchez-Romero, A., et al. (2017). Trends in downward surface solar
radiation from satellites and ground observations over Europe during 1983–2010.
Remote Sens. Environ. 189, 108–117. doi:10.1016/j.rse.2016.11.018

Scott, R. C., Lubin, D., Vogelmann, A. M., and Kato, S. (2017). West Antarctic ice
sheet cloud cover and surface radiation budget from NASA A-Train satellites.
J. Clim. 30, 6151–6170. doi:10.1175/JCLI-D-16-0644.1

Sentian, J., Herman, F., Mohd Nadzir, M. S., and Wan Yee, V. K. (2020). Surface
ozone variations at the great wall station, Antarctica during austral summer. Adv.
Polar Sci. 31 (2), 11. doi:10.13679/j.advps.2020.0007

Siji George, C. G., and Sumathi, B. (2020). Grid search tuning of hyperparameters
in random forest classifier for customer feedback sentiment prediction. Int. J. Adv.
Comput. Sci. Appl. 11. doi:10.14569/IJACSA.2020.0110920

Soares, J., Alves, M., Dutra Ribeiro, F. N., and Codato, G. (2019). Meteorological
and surface radiation data observed at the Brazilian Antarctic station on King
George Island. Data Brief. 25, 104245. doi:10.1016/j.dib.2019.104245

Stanhill, G., and Cohen, S. (1997). Recent changes in solar irradiance in
Antarctica. J. Clim. 10, 2078–2086. doi:10.1175/1520-0442(1997)010<2078:
RCISII>2.0.CO;2
Tang, W. J., Yang, K., Qin, J., Cheng, C. C. K., and He, J. (2011). Solar radiation

trend across China in recent decades: A revisit with quality-controlled data. Atmos.
Chem. Phys. 11, 393–406. doi:10.5194/acp-11-393-2011

Thornton, P. E., and Running, S. W. (1999). An improved algorithm for
estimating incident daily solar radiation from measurements of temperature,
humidity, and precipitation. Agric. For. Meteorol. 93, 211–228. doi:10.1016/
S0168-1923(98)00126-9

Turner, J., Marshall, G. J., Clem, K., Colwell, S., Phillips, T., and Lu, H. (2020).
Antarctic temperature variability and change from station data. Int. J. Climatol. 40,
2986–3007. doi:10.1002/joc.6378

Frontiers in Earth Science frontiersin.org15

Zeng et al. 10.3389/feart.2022.961799

https://doi.org/10.1029/2004GL022322
https://doi.org/10.1016/j.scitotenv.2019.134021
https://doi.org/10.1016/j.scitotenv.2019.134021
https://doi.org/10.1007/s00376-019-9196-5
https://doi.org/10.1007/s00376-019-9196-5
https://doi.org/10.1016/S0196-8904(99)00123-5
https://doi.org/10.1016/S0196-8904(99)00123-5
https://doi.org/10.5194/essd-13-907-2021
https://doi.org/10.3390/rs13040602
https://doi.org/10.1016/j.atmosenv.2019.117242
https://doi.org/10.1016/j.atmosenv.2019.117242
https://doi.org/10.1016/j.enconman.2019.112236
https://doi.org/10.1016/j.enconman.2019.112236
https://doi.org/10.1002/qj.49708436011
https://doi.org/10.1002/qj.49708436011
https://doi.org/10.1016/j.envint.2020.105801
https://doi.org/10.1061/taceat.0008673
https://doi.org/10.1061/taceat.0008673
https://doi.org/10.1061/(asce)0733-9437(1985)111:3(265)(asce)0733-9437
https://doi.org/10.1061/(asce)0733-9437(1985)111:3(265)(asce)0733-9437
https://doi.org/10.1175/JCLI-D-20-0300.1
https://doi.org/10.1029/2018GL077424
https://doi.org/10.1002/qj.3803
https://doi.org/10.1029/2008GL037020
https://doi.org/10.3389/feart.2021.596860
https://doi.org/10.3389/feart.2021.596860
https://doi.org/10.1016/S0168-1923(98)00055-0
https://doi.org/10.1016/S0168-1923(98)00055-0
https://doi.org/10.1029/2007JD008835
https://doi.org/10.1029/2007JD008835
https://doi.org/10.5194/acp-17-5809-2017
https://doi.org/10.3390/rs5094693
https://doi.org/10.3390/rs5094693
https://doi.org/10.1029/2004JD004935
https://doi.org/10.1029/2004JD004935
https://doi.org/10.1002/joc.7127
https://doi.org/10.1016/j.enconman.2010.05.021
https://doi.org/10.1029/2012JD018332
https://doi.org/10.1002/wics.14
https://doi.org/10.1016/j.asej.2021.05.012
https://doi.org/10.3390/atmos12030389
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.1016/0038-092X(84)90018-5
https://doi.org/10.1016/j.scitotenv.2016.12.030
https://doi.org/10.1126/science.aaz5487
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1126/science.1103159
https://doi.org/10.1016/j.jclepro.2018.10.239
https://doi.org/10.1016/j.rse.2016.11.018
https://doi.org/10.1175/JCLI-D-16-0644.1
https://doi.org/10.13679/j.advps.2020.0007
https://doi.org/10.14569/IJACSA.2020.0110920
https://doi.org/10.1016/j.dib.2019.104245
https://doi.org/10.1175/1520-0442(1997)010<2078:RCISII>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<2078:RCISII>2.0.CO;2
https://doi.org/10.5194/acp-11-393-2011
https://doi.org/10.1016/S0168-1923(98)00126-9
https://doi.org/10.1016/S0168-1923(98)00126-9
https://doi.org/10.1002/joc.6378
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.961799


Tzallas, V., Hatzianastassiou, N., Benas, N., Meirink, J. F., Matsoukas, C.,
Stackhouse, P., et al. (2019). Evaluation of CLARA-A2 and ISCCP-H cloud
cover climate data records over Europe with ECA&D ground-based
measurements. Remote Sens. (Basel). 11, 212. doi:10.3390/rs11020212

Urraca, R., Gracia-Amillo, A. M., Koubli, E., Huld, T., Trentmann, J., Riihelä, A.,
et al. (2017). Extensive validation of CM SAF surface radiation products over
Europe. Remote Sens. Environ. 199, 171–186. doi:10.1016/j.rse.2017.07.013

van den Broeke, M., Reijemer, C., and van de Wal, R. (2004). Surface radiation
balance in Antarctica as measured with automatic weather stations. J. Geophys. Res.
109, D09103. doi:10.1029/2003JD004394

Wang, L., Kisi, O., Zounemat-Kermani, M., Salazar, G. A., Zhu, Z., and Gong, W.
(2016). Solar radiation prediction using different techniques: Model evaluation and
comparison. Renew. Sustain. Energy Rev. 61, 384–397. doi:10.1016/j.rser.2016.04.024

Wang, Y., Trentmann, J., Yuan, W., and Wild, M. (2018). Validation of CM SAF
CLARA-A2 and SARAH-E surface solar radiation datasets over China. Remote
Sens. (Basel). 10, 1977. doi:10.3390/rs10121977

Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., et al. (2019). Estimating 1-
km-resolution PM2.5 concentrations across China using the space-time random
forest approach. Remote Sens. Environ. 231, 111221. doi:10.1016/j.rse.2019.111221

Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., et al.
(2005). From dimming to brightening: Decadal changes in solar radiation at earth’s
surface. Science 308, 847–850. doi:10.1126/science.1103215

Wild, M. (2009). Global dimming and brightening: A review. J. Geophys. Res. 114,
D00D16. doi:10.1029/2008JD011470

Wu, G., Liu, Y., and Wang, T. (2007). Methods and strategy for modeling daily
global solar radiation with measuredmeteorological data - a case study in Nanchang
station, China. Energy Convers. Manag. 48, 2447–2452. doi:10.1016/j.enconman.
2007.04.011

Xiao, Q., Chang, H. H., Geng, G., and Liu, Y. (2018). An ensemble machine-
learning model to predict historical PM2.5 concentrations in China from satellite
data. Environ. Sci. Technol. 52, 13260–13269. doi:10.1021/acs.est.8b02917

Xu, Y., Ho, H. C., Wong, M. S., Deng, C., Shi, Y., Chan, T. C., et al. (2018).
Evaluation of machine learning techniques with multiple remote sensing datasets in
estimating monthly concentrations of ground-level PM2.5. Environ. Pollut. 242,
1417–1426. doi:10.1016/j.envpol.2018.08.029

Yang, K., Huang, G. W., and Tamai, N. (2001). A hybrid model for estimating
global solar radiation. Sol. Energy 70, 13–22. doi:10.1016/S0038-092X(00)00121-3

Yang, Q., Yin, Z., Zhang, L., Xing, J., and Su, B. (2010). A case study on snow
storm at great wall station, Antarctica. Chin. J. POLAR Res. 22, 141–149. doi:10.
3724/sp.j.1084.2010.00141

Yang, Q., Yu, L., Wei, L., Zhang, B., and Meng, S. (2013). Features of visibility
variation at great wall station, Antarctica. Adv. Polar Sci. 24, 188. doi:10.3724/sp.j.
1085.2013.00188

Yu, L., Yang, Q., Zhou, M., Lenschow, D. H., Wang, X., Zhao, J., et al. (2019). The
variability of surface radiation fluxes over landfast sea ice near Zhongshan station,
east Antarctica during austral spring. Int. J. Digit. Earth 12, 860–877. doi:10.1080/
17538947.2017.1304458

Yu, X., Zhang, L., Zhou, T., and Liu, J. (2021). The asian subtropical westerly jet
stream in CRA-40, ERA5, and CFSR reanalysis data: Comparative assessment.
J. Meteorol. Res. 35, 46–63. doi:10.1007/s13351-021-0107-1

Zeng, Z., Gui, K., Wang, Z., Luo, M., Geng, H., Ge, E., et al. (2021a). Estimating
hourly surface PM2.5 concentrations across China from high-density
meteorological observations by machine learning. Atmos. Res. 254, 105516.
doi:10.1016/j.atmosres.2021.105516

Zeng, Z., Wang, Z., Ding, M., Zheng, X., Sun, X., Zhu, W., et al. (2021b).
Estimation and long-term trend analysis of surface solar radiation in Antarctica: A
case study of zhongshan station. Adv. Atmos. Sci. 38, 1497–1509. doi:10.1007/
s00376-021-0386-6

Zeng, Z., Wang, Z., Gui, K., Yan, X., Gao, M., Luo, M., et al. (2020). Daily global
solar radiation in China estimated from high-density meteorological observations:
A random forest model framework. Earth Space Sci. 7. doi:10.1029/2019EA001058

Zhang, J., Zhao, L., Deng, S., Xu, W., and Zhang, Y. (2017). A critical review of the
models used to estimate solar radiation. Renew. Sustain. Energy Rev. 70, 314–329.
doi:10.1016/j.rser.2016.11.124

Zhang, S. Q., Ren, G. Y., Ren, Y. Y., Zhang, Y. X., and Xue, X. Y. (2021).
Comprehensive evaluation of surface air temperature reanalysis over China against
urbanization-bias-adjusted observations. Adv. Clim. Change Res. 12, 783–794.
doi:10.1016/j.accre.2021.09.010

Zhang, T., Zhou, C., and Zheng, L. (2019). Analysis of the temporal–spatial
changes in surface radiation budget over the Antarctic sea ice region. Sci. Total
Environ. 666, 1134–1150. doi:10.1016/j.scitotenv.2019.02.264

Zou, L., Wang, L., Li, J., Lu, Y., Gong, W., and Niu, Y. (2019). Global surface solar
radiation and photovoltaic power from Coupled Model Intercomparison Project
Phase 5 climate models. J. Clean. Prod. 224, 304–324. doi:10.1016/j.jclepro.2019.
03.268

Frontiers in Earth Science frontiersin.org16

Zeng et al. 10.3389/feart.2022.961799

https://doi.org/10.3390/rs11020212
https://doi.org/10.1016/j.rse.2017.07.013
https://doi.org/10.1029/2003JD004394
https://doi.org/10.1016/j.rser.2016.04.024
https://doi.org/10.3390/rs10121977
https://doi.org/10.1016/j.rse.2019.111221
https://doi.org/10.1126/science.1103215
https://doi.org/10.1029/2008JD011470
https://doi.org/10.1016/j.enconman.2007.04.011
https://doi.org/10.1016/j.enconman.2007.04.011
https://doi.org/10.1021/acs.est.8b02917
https://doi.org/10.1016/j.envpol.2018.08.029
https://doi.org/10.1016/S0038-092X(00)00121-3
https://doi.org/10.3724/sp.j.1084.2010.00141
https://doi.org/10.3724/sp.j.1084.2010.00141
https://doi.org/10.3724/sp.j.1085.2013.00188
https://doi.org/10.3724/sp.j.1085.2013.00188
https://doi.org/10.1080/17538947.2017.1304458
https://doi.org/10.1080/17538947.2017.1304458
https://doi.org/10.1007/s13351-021-0107-1
https://doi.org/10.1016/j.atmosres.2021.105516
https://doi.org/10.1007/s00376-021-0386-6
https://doi.org/10.1007/s00376-021-0386-6
https://doi.org/10.1029/2019EA001058
https://doi.org/10.1016/j.rser.2016.11.124
https://doi.org/10.1016/j.accre.2021.09.010
https://doi.org/10.1016/j.scitotenv.2019.02.264
https://doi.org/10.1016/j.jclepro.2019.03.268
https://doi.org/10.1016/j.jclepro.2019.03.268
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.961799

	A 35-year daily global solar radiation dataset reconstruction at the Great Wall Station, Antarctica: First results and comp ...
	Highlights
	1 Introduction
	2 Data and method
	2.1 Site data
	2.2 Reanalysis and satellite products
	2.1.1 ERA5
	2.1.2 CRA40
	2.1.3 ICDR (AVHRR)

	2.3 Methods
	2.3.1 Empirical formula models
	2.3.2 Machine learning models

	2.4 Steps of DGSR reconstruction and comparison with other products

	3 Results and discussion
	3.1 Empirical formula model results
	3.2 Machine learning models results
	3.2.1 Variables selection and model tuning results
	3.2.2 Comparative results of machine learning models

	3.3 Comparison with other products
	3.4 The characteristics and trends of DGSR

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


