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Landslide prediction is very important and challenging for reducing geological

hazards. In the Three Gorges Reservoir area, landslides show stepped

deformation due to seasonal rainfall and periodic fluctuation of reservoir

water level. The purpose of this study is to use complete ensemble

empirical mode decomposition with adaptive noise and grey wolf

optimization to support the vector regression method for displacement

prediction. Firstly, the cumulative displacement is decomposed by

CEEMDAN to obtain both trend term and fluctuation term displacement.

Secondly, according to the cumulative displacement, rainfall, and reservoir

water level data, the influencing factors related to the displacement of the trend

term and the fluctuation term are determined. Then, the GWO-SVR model is

used to predict the trend and fluctuation displacement. The final prediction

result is obtained by adding the calculated predicted displacement values of

each component. The Shuizhuyuan landslide in the Three Gorges Reservoir

area, China, was taken as an example, and the long-term displacement data of

monitoring point SZY-03 were selected for analysis. The results show that the

root mean square error (RMSE) and coefficient of determination (R2) between

the measured displacement values and the prediction values were 0.9845 and

0.9964, respectively. The trained model has high computational accuracy,

which proves that the GWO-SVR model can be used for displacement

prediction of this type of landslide in the Three Gorges Reservoir area.
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1 Introduction

As one of the common geological hazards, a landslide has the

characteristics of widespread distribution, frequent occurrence,

great harm, and difficult management. An improper response

can cause a huge loss of life and property and have a major social

impact (Zhang, 2000; Xu et al., 2008). Therefore, the landslide

displacement prediction has become a research hotspot in order

to achieve hazard prevention and reduction. (Du et al., 2009; Gao

et al., 2019).

The systematic landslide research began in 1920 in Sweden

(Chen, 2016). Up to now, the landslide prediction model has

mainly gone through five stages: the empirical model, the

statistical analysis model, the nonlinear model, the physical

and mechanical model, and the comprehensive model (Chen,

2013). For the special step-like displacement observed under

special geological conditions and the periodic fluctuation of the

reservoir water level in the Three Gorges Reservoir area, its

landslide deformation is caused by the superposition of internal

and external factors like other landslide deformation (Li, 2010).

The deformation process is complex and it is difficult to

distinguish the deformation stage accurately (Zhou et al.,

2022a; Luo et al., 2022). Therefore, the landslide displacement

prediction model is no longer applicable, which relies on the

division of landslide deformation stages to predict the landslide

deformation time (Tang et al., 2012). The nonlinear models and

the related combined models are applied to the landslide

displacement prediction (Guo et al., 2018).

The nonlinear models have become the mainstream models

nowadays. The multi-algorithm coupling model in the nonlinear

model has been widely studied because the single algorithm

model can no longer meet the needs of the landslide

displacement prediction (Han et al., 2019). In these studies, in

order to obtain better prediction results, most studies decompose

the cumulative displacement of the landslide into the

displacement components with different characteristics to

predict the landslide displacements, respectively, by analyzing

the deformation evolution mechanism of the landslide and

considering the internal and external factors that induce the

landslide deformation (Zhou et al., 2016; Zhou et al., 2022b).

When decomposing the displacement, most scholars usually

separate the displacement of the trend term first. The

commonly used decomposition methods include: (Ayodele

et al., 2019) the fitting method based on historical

displacement, which is suitable for simple curves, such as the

grey model (Deng, 2002; Wu et al., 2007), polynomial trend

fitting, etc.; (Balogun et al., 2021) the filtering method based on

the original displacement data, which is easy to use and difficult

to determine the displacement type and periodic value of the

trend term, such as sliding average method (Pei and Guo, 2001;

Xu et al., 2011); (Chen, 2013) the wavelet analysis method, which

can extract the multi-time scale information of the landslide

displacement and needs to determine its basis function and

wavelet order manually (Yang et al., 2014; Li et al., 2015,

2017, 2019); (Chen et al., 2018) the smoothness priors

approach, which has a simple implementation process and

need the multiple decompositions and comparisons to

determine the decomposition parameters. Moreover, the

displacement of the trend term obtained by this method will

still have step property (Huang et al., 2014). In addition, in order

to avoid the shortcomings of the above methods, the series of

empirical mode decomposition (EMD) (Huang et al., 1998) and

the ensemble empirical mode decomposition (EEMD) (Wu and

Huang, 2009) appeared. These methods can completely

decompose the cumulative displacement of the landslide and

significantly improve the prediction accuracy, but they have the

defects such as modal aliasing, low decomposition efficiency, and

difficulty in completely eliminating noise. Therefore, Torres et al.

proposed complete ensemble empirical mode decomposition

with adaptive noise (CEEMDAN) (Torres et al., 2011). This

method effectively solves the problems in the decomposition

method mentioned above by adding the white noise at each stage

and shows a very good decomposition effect in terms of the

nonlinear time series (Tan et al., 2019; Wang et al., 2021).

In recent years, with the development of artificial intelligence

and machine learning theories, more and more artificial

intelligence algorithms have been widely applied to landslide

displacement prediction, including the back propagation neural

network (BPNN) model, the support vector regression (SVR)

model, the extreme learning machine (ELM) model, and so on.

BPNN is easy to fall into local optimization and is difficult to

construct the appropriate network structure. So it is often

difficult to obtain an ideal prediction effect (Hu et al., 2016;

Zuan and Huang, 2018); ELM has simple parameter settings and

good generalization in practical applications (Zhou et al., 2015;

Zhao et al., 2018), but the input layer weights and hidden layer

deviations are random, which reduces the model prediction

accuracy. SVR has a strong generalization ability, a good

prediction effect for small samples, and nonlinear and high-

dimensional problems. Therefore, its popularization is strong

(Ayodele et al., 2019; Liu et al., 2019), and it is widely used in

landslide displacement prediction (Liu et al., 2013; Zhou et al.,

2016; Miao et al., 2017). However, SVR has the problems such as

difficulty in parameter selection. Adopting appropriate

parameter optimization methods can effectively solve the

problems of the above-mentioned algorithms and improve the

accuracy of landslide displacement prediction. In the previous

studies, parameter optimization was mainly realized by grid

search method, gradient descent method, and meta-heuristic

search algorithms, such as genetic algorithm (GA), particle

swarm optimization (PSO), artificial bee colony (ABC), ant

colony optimization (ACO) (Miao et al., 2016), whale

optimization algorithm (WOA) (Mirjalili and Lewis, 2016),

and so on. These traditional optimization algorithms take a

long time to optimize and are relatively inefficient. As a new

meta-heuristic algorithm, the grey wolf optimizer (GWO)
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(Mirjaliliet al., 2014) has the advantages of simple principle, less

parameter adjustment, strong global search ability, etc. It has

been proved to have significant advantages in the study of

combinatorial optimization problems. It can effectively solve

the joint optimization problems of multiple parameters and is

widely used in various fields (Zhao, 2017; Liao et al., 2020; Guo

et al., 2022).

In summary, in this study, the Shuizhuyuan landslide in

Wushan County of the Three Gorges Reservoir area is taken as an

example and the CEEMDAN-GWO-SVR model is proposed.

Firstly, the cumulative displacement is decomposed by

CEEMDAN to obtain trend term and fluctuation term

displacement. Secondly, according to the cumulative

displacement, rainfall, and reservoir water level data, the

influencing factors related to the displacement of the trend

term and the fluctuation term are determined. Then, the

GWO-SVR model is used to predict the trend and fluctuation

displacement. The final prediction result is obtained by adding

the calculated predicted displacement values of each component.

In order to prove the superiority and applicability of the

CEEMDAN-GWO-SVR model, the prediction accuracy of the

model is compared with that of the SVR, GWO-SVR,

CEEMDAN-SVR, EEMD-GWO-SVR, CEEMDAN-WOA-SVR

models, root mean square error (RMSE), mean absolute error

(MAE), and mean absolute percentage error (MAPE) and

coefficient of determination (R2) are used as evaluation

indexes to compare and analyze the prediction results.

2 Methodology

2.1 Complete ensemble empirical mode
decomposition with adaptive noise

The EMD is a signal decomposition method that can

decompose the original signal into the different intrinsic mode

functions (IMF) according to the fluctuation scale. The EEMD is

obtained by adding the Gaussian white noise that obeys the

normal distribution into the EMD, which solves the modal

aliasing problem of the EMD and realizes the effective modal

component separation. In order to further solve the problems in

the decomposition of the original signal, the CEEMDAN

algorithm is proposed based on the development of the

EEMD. The adaptive Gaussian white noise is added to each

stage of the decomposition, which effectively reduces the

reconstruction error problem in the EEMD and improves the

decomposition efficiency (Mousavi et al., 2020; Li et al., 2021;

Song et al., 2021).

In CEEMDAN, X (t) represents the original signal, which is

to be decomposed, Ek represents the k-th modal component

generated by the decomposition of the original signal by the

EMD, ωi(t) is Gaussian white noise that obeys the normal

distribution, and εk represents the signal-to-noise ratio

coefficient of the k-th modal component. The specific

decomposition steps of CEEMDAN are as follows:

Perform EMD decomposition on the original signal with

Gaussian white noise, and get the first modal component:

IMF1(t) � 1
n
∑n
i�1
IMFi

1(t) � IMF1(t) (1)

When k � 1, calculate the first residual signal, which is:

R1(t) � X(t) − IMF1(t) (2)

Perform the i-th experiment, add Gaussian white noise to the

residual signal, and decompose it by EMD until the first modal

component of EMD is obtained, and then calculate the first

modal component based on this:

IMF2(t) � 1
n
∑n
i�1
E1(R1(t) + ε1E1(ωi(t))) (3)

Similarly, when k � 2,/, K, calculating the k-th residual

signal and the k+1-th modal component according to the

above process:

Rk(t) � Rk−1(t) − IMFk(t) (4)

IMFk+1(t) � 1
n
∑n
i�1
E1(Rk(t) + εkEk(ωi(t))) (5)

When the residual signal does not meet the conditions, that

is, the number of extreme points does not exceed two, the

decomposition is terminated, the algorithm is completed, and

k modal components are obtained. The final residual

component is:

R(t) � X(t) −∑K
i�1
IMFk(t) (6)

The final decomposition result of the original signal is:

X(t) � ∑K
i�1
IMFk(t) + R(t) (7)

2.2 Support vector regression machine
optimized by grey wolf algorithm

Vapnik et al. (Vladimir, 2000) proposed the support vector

machine (SVM) model for nonlinear problems based on

statistical theory in 1995, and the SVR model is an important

application branch of it. The main idea of SVR is to map the low-

dimensional input vector to the high-dimensional feature space

through the selected mapping function and find the regression

function in the high-dimensional feature space. So the low-

dimensional nonlinear regression problem is transformed into

the high-dimensional linear regression problem. SVR effectively

solves the problems of small samples, nonlinearity, and high
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dimensionality. It has strong robustness and has been widely

used in prediction and other aspects. In this study, the radial basis

function is taken as the kernel function of the SVR, which is used

by many scholars. However, in the application process, the values

of penalty factor C, kernel function parameter g, and insensitive

parameter ε have a great influence on the predictive ability of the

model. They directly determine the generalization ability of the

model.

The GWO is a new heuristic algorithm proposed in 2014,

which imitates the hunting behavior of wolves (Mirjaliliet al.,

2014). The main content of this algorithm includes five parts:

social level, surrounding prey, hunting, attacking prey, and

looking for prey. The wolves are initialized to search for prey,

each time the three wolves with the best adaptability in the

population are retained, and the positions of other grey wolves

are updated accordingly, then the optimal solution is finally

found through the continuous iteration (Wang and Li, 2018;

Balogun et al., 2021). Compared with traditional algorithms such

as the PSO, GA, and ABC, the GWOhas the advantages of simple

parameter setting, strong convergence performance, and high

optimization accuracy. At the same time, the wolves search

randomly during the optimization process to avoid falling into

the local optimum. Therefore, using the GWO to optimize the

parameters of SVR can greatly improve the prediction accuracy

of the SVR model and then achieve an accurate prediction of the

landslide displacement.

The optimization process of GWO is as follows: a group of

grey wolves is randomly generated in the search space. According

to the fitness level, the wolves numbered α, β, and δ in the grey

wolf group evaluate and locate the position of the prey. The rest

of the individuals take this as the standard, calculate the distance

between themselves and the prey to complete the prey capture,

and realize the optimization process (Mirjalili et al., 2014).

(1) Social Hierarchy. The GWO model has a strict social class,

which can be divided into α, β, δ, and ωwolves on the basis of

the social class. The social class in the algorithm is reflected

in the fitness level.

(2) Encircling Prey. In the process of wolf hunting, they need to s

encircle the prey and determine the location of the prey. The

mathematical equations of encirclement behavior are as follows:

D � ∣∣∣∣C × Xp(ω) −X(ω)∣∣∣∣ (8)
X(ω + 1) � Xp(ω) − μ × D (9)

C � 2 × r1 (10)
μ � 2α × r2 − α (11)

where ω is the current iteration number; D is the distance

between prey and grey wolf; C is a coefficient vector; Xp(ω)
is the position vector of the prey in a generation ω; X(ω) is the
position vector of the individual grey wolf in a generation ω;

X(ω + 1) is the position vector of the individual grey wolf in a

generation ω + 1; r1 and r2 belong to random vector, with the

value range of [0,1]; μ is a vector of convergence; the value of α

declines linearly from 2 to 0 during the iteration.

(3) Update the location and hunting. The hunting process of wolves

on prey is represented by the constant replacement of hunting

location information. The α wolf, β wolf, and δ wolf are closest

to the prey. The distance between the other grey wolves and

these three wolves in the ω th generation is as follows:

Dk � |Ci × Xk(ω) −X(ω)| (12)
Xi � Xk − μi × Dk (13)

The predation direction is determined according to the

following formula:

Xp(ω + 1) � X1 +X2 +X3

3
(14)

where k � α, β, δ; i= 1, 2, 3; Xp(ω + 1) is the position vector of

the prey in ω + 1 a generation.

The optimized SVR parameters C, g, and ε are obtained by

outputting the position of the grey wolf α with the best fitness.

The SVR prediction model is established by using the obtained

optimal parameters.

2.3 Prediction method and process

In order to realize the above algorithm, the following

prediction process is designed. The specific steps are shown in

Ayodele et al. (2019andChen (2016), which mainly include three

major blocks: CEEMDAN decomposition, GWO-SVR model,

and model validation. The specific process is shown in Figure 1.

(1) Preprocess the original displacement data, and use

CEEMDAN to decompose the cumulative displacement of

the landslide to obtain the displacement of the fluctuation

term and the displacement of the trend term.

(2) Divide the decomposed displacement components into the

training set and test set according to the characteristics of

displacement deformation.

(3) Analyze the displacement component of the fluctuation term

and the displacement component of the trend term,

respectively, determine the respective input variables and

output variables and judge the correlation between the input

variables and the output variables.

(4) Initialize the wolves, set the initial parameters of GWO,

optimize the parameters C, g, and ε of SVR, construct the

GWO-SVR model, and use the model to predict the

displacement of the fluctuation term and the displacement

of the trend term, respectively.

(5) Superimpose the displacement of the fluctuation term and

the displacement of the trend term to obtain the total

landslide displacement data, and perform model

verification.
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2.4 Model performance evaluation index

In order to evaluate the predictive ability of the model more

specifically, root mean square error (RMSE), mean absolute error

(MAE), mean absolute percentage error (MAPE), and coefficient

of determination (R2) are selected as the evaluation indexes of the

model performance in this study. The specific calculation

formula is as follows:

RMSE �
������������
1
m
∑m
i�1
(ŷi − yi)2√

(15)

MAE � 1
m
∑m
i�1

∣∣∣∣ŷi − yi

∣∣∣∣ (16)

MAPE � 100%
m

∑m
i�1

∣∣∣∣∣∣∣∣ŷi − yi

yi

∣∣∣∣∣∣∣∣ (17)

R2 � 1 −
∑m
i�1
(ŷi − yi)2

∑m
i�1
(�yi − yi)2 (18)

whereyi is the actual value, ŷi is the predicted value, �yi is the average

value, and m is the number of samples. The above four evaluation

indexes integrate a variety of perspectives and can make a more

comprehensive judgment on the prediction ability of the model.

3 Case study: Shuizhuyuan landslide

3.1 Geological conditions

The Shuizhuyuan landslide is located in Group 1 of Ganju

Village, Quchi Township, Wushan County, on the left bank of

FIGURE 1
Flow chart of displacement prediction.
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the Yangtze River (31°00′ 59.37″ E, 109°43 ’27.33″ N). It is

14.82 km away from the new urban area of Wushan (Figure 2).

The Shuizhuyuan landslide has a length of about 800m, a width

of 360 ~ 1200 m, an average thickness of 30 m, an area of 620,

000 m2, and a volume of 18.5 million m3. The Yangtze River

passes from west to east from the front edge of the landslide. The

landslide area is characterized by an evolving steep slope-gentle

slope. Especially, the slope of the front edge of the landslide below

the elevation of 180 ~ 250 m is relatively large, generally 30 ~ 45◦,

and it is mostly in the reservoir water drawdown zone and its

influence area; the middle and rear edge area of the landslide with

an elevation of 250 ~ 300 m is dominated by gentle slopes, the

terrain slope is generally 10 ~ 15◦, and there are 3 platforms with

different scales, which are the main farmland areas and villagers’

residential areas; the slopes with an elevation of more than 300 m

are mainly steep slopes, which are the trailing edge of the

landslide.

3.2 Monitoring situation

Through investigation and analysis, it is found that the

Shuizhuyuan landslide is a large-scale retrogressive soil

landslide. The rainfall and reservoir water level are the

main inducing factors. The monitoring level of the

landslide is level 2. The main monitoring contents are

surface displacement, precipitation, and reservoir water

level changes. The landslide is monitored by using the

GNSS monitoring equipment to derive deformation, which

distributes over the landslide area. The seven monitoring

points and one datum point are arranged to form the three

longitudinal monitoring profiles. A rainfall monitoring point

is arranged. The data of reservoir water level change are

measured by the measuring equipment arranged on-site at

the monitoring point. The layout plan of the landslide

monitoring network is shown in Figure 3.

The monitoring curves of accumulated displacement,

rainfall, and reservoir water level of SZY-03 of the

Shuizhuyuan landslide are shown in Figure 4. For the

displacement monitoring point studied in this study, it

can be observed from Figure 4 that a combination of the

successive rain pulses inducing landslide movement and the

cumulative displacement increases in varying degrees

FIGURE 2
Location of the Shuizhuyuan landslide.

FIGURE 3
Monitoring arrangement in the Shuizhuyuan landslide.
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according to the rainfall. During the 4 years studied in this

study, the rainfall in 2017 was extremely rich, so the

cumulative displacement increased sharply during the

latter half of the rainy season in 2017. At the same time,

the cumulative displacement increases obviously in the rainy

season. After that, the cumulative displacement will still

increase to a certain extent, which indicates that the

impact of rainfall on landslide deformation has a certain

hysteresis.

In addition, the reservoir water level of this monitoring

point has an obvious periodicity and the time span is about

1 year. Within the time frame of this study, the reservoir water

level has not undergone a significant change except the

periodic fluctuation. In the first half of each year, the

reservoir water level will decrease slightly. This means that

the water pressure on the slope surface decreases and the

supporting capacity on the slope is weakened. So the landslide

deformation accelerates and the cumulative displacement

increase rapidly. In the latter half of each year, the

reservoir water level area rises and the water pressure on

the slope surface is greater than the outward sliding force of

the slope body, which inhibits landslide deformation. So the

increase of the cumulative displacement becomes slow. The

influence of the rainfall and reservoir water level on slope body

is slow and continuous. So their influence of them on landslide

displacement has hysteresis.

Analyzing the deformation rate of the landslides for many

years, it is found that the deformation rate is higher in the

rainy season or the reservoir water level adjustment period

and the deformation rate is relatively lower in the non-rainy

season or the reservoir water level is relatively flat period.

These indicate that the precipitation and the wide adjustment

of the reservoir water level are the main factors affecting

landslide deformation.

4 Calculations and results

In this study, taking the SZY-03 surface displacement

monitoring point of the Shuizhuyuan landslide in Wushan

County of the Three Gorges Reservoir Area as an example,

1616 displacement, rainfall, and reservoir water level data of

the SZY-03 monitoring point from July 2016 to November

2020 were selected for landslide displacement prediction. All

of them were continuously monitoring data on a daily basis.

In order to make the data more representative and make a

further study on the correlation between rainfall, reservoir water

level, and landslide displacement, it is necessary to process the

original data and obtain the new data with weeks as the number

of monitoring periods. Specifically, the cumulative displacement

took the average of the cumulative displacement in 1 week, the

reservoir water level took the change of the reservoir water level

in 1 week, and the rainfall took the sum of the rainfall in 1 week.

Finally, the 230 sets of data for landslide displacement prediction

were obtained. According to the periodic characteristics of the

landslide deformation, the 190 sets of data from July 2016 to

February 2020 were selected as the training sample set of the

model, and the 40 sets of data from February 2020 to November

2020 were selected as the test sample set of the model.

4.1 Complete ensemble empirical mode
decomposition with adaptive noise
decomposition of landslide displacement

The factors affecting landslide displacement deformation

mainly include internal factors caused by its own geological

conditions and external factors caused by the external

environment (Zhang et al., 2015a). In this section,

CEEMDAN model was used to decompose the cumulative

FIGURE 4
Monitoring curve of cumulative displacement, rainfall, and water level of the reservoir area of the landslide.
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displacement of landslides into fluctuation term displacement

and trend term displacement. The former is mainly determined

by external factors (such as rainfall and reservoir water level

changes) and the latter is mainly determined by internal factors

(such as its own geological conditions) According to the above,

the CEEMDAN decomposition program was written in Python

language, the 230 sets of displacement data at the SZY-03

monitoring point of the Shuizhuyuan landslide was

decomposed by using this program, the four IMF

characteristic components with the significant differences and

one residual component R were obtained, as shown in Figure 5.

The component IMF4 and the residual component R change

gently. So they can be considered as the actual displacement

under the internal dynamic action of the landslide. Therefore,

IMF4 and R are taken as the trend term of displacement, that is,

the deformation displacement caused by the landslide itself, as

shown in the lower part of Figure 6. The fluctuation term

displacement is also obtained through the total displacement

FIGURE 5
CEEMDAN decomposition results of displacement of the Shuizhuyuan landslide.

FIGURE 6
The fluctuant and trend displacement of the Shuizhuyuan landslide.
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time series subtracted from the trend term displacement. This is

the deformation displacement caused by the external factors, as

shown in the upper part of Figure 6.

It can be seen from Figure 6 that the displacement of the

trend term accounts for a relatively large proportion, and the

peak is close to all the landslide displacements at the

corresponding time. Thus, the accuracy of the trend term

prediction is particularly important. Although the

displacement of the fluctuation term occupies a relatively

small part of the cumulative displacement, the accuracy of its

predicted value will also affect the accuracy of the predicted result

to a certain extent. Therefore, in order to obtain better prediction

results, it is necessary to select the appropriate method based on

the characteristics of the displacement deformation of the

landslide to make the correct prediction.

4.2 Prediction of fluctuation term
displacement

4.2.1 Determination of influence factors of the
fluctuation item

The reservoir water level and rainfall are the main external

factors inducing landslide deformation (Chen et al., 2018). The

infiltration of rainfall will destroy the structure of the landslide,

reduce the stability of the landslide, change the gravity field of the

landslide, soften the soil and cause the deformation of the

landslide surface, and affect the stability of the landslide

(Jeonget al., 2017; Kuradusenge et al., 2020); the fluctuation of

reservoir water level will reduce the shear strength of the

landslide and also lead the deformation of the landslide (Liao

et al., 2019). The influence of rainfall and reservoir water level on

slope body is slow and continuous. So their influence of them on

landslide displacement has hysteresis.

In addition, not only rainfall and reservoir water level will

affect the fluctuation term displacement, but also the fluctuation

term displacement itself. Therefore, referring to previous studies

(Zhang et al., 2015b; Chen et al., 2018; Liao et al., 2019),

combined with the monitoring period selected in this study,

and considering the hysteresis, eight impact factors were

determined. The data of the past week was regarded as the

monitoring data of this period. The current period was set as

the t-th period. Correspondingly, last week was set as the t-1-th

period and the week before last week was set as the t-2-th period.

The displacement of the fluctuation term, rainfall, and the change

of the reservoir water level were, respectively, set to W, J, and K.

Then Wt−1 represented last week’s fluctuation term

displacement, and the rest could be done by analogy.

Therefore, the eight influencing factors were Wt−1, Wt−2,

Wt−3, Jt, Jt−1, Kt, Kt−1, and Kt−2, as shown in Table 1.

In the prediction model, the input variables were the above-

mentioned eight influencing factors, and the output variables

were the displacement of the current period’s fluctuation term. In

order to further determine the rationality of the selection of the

input variables, the grey relational degree was used to evaluate the

correlation between the influence factors and the displacement of

the fluctuation term. The grey correlation coefficient was 0.5 and

the grey relational degree was calculated (Qian et al., 2008). The

results are shown in Table 2.

Comparing the data in Table 2, it is found that the correlation

between the impact factor and the displacement of the

fluctuation item gradually decreases as the lag time increases.

But the grey relational degree between each influencing factor

and the displacement of the fluctuation term is greater than 0.6,

so it is reasonable to select the lag time as 1~3 weeks. At the same

time, it is proved that the eight influence factors selected by the

preliminary analysis have a strong correlation with the

displacement of the fluctuation term. It is reasonable that the

input variables were selected to predict the displacement of the

landslide fluctuation term (Zhang et al., 2015b).

4.2.2 Modeling and prediction of fluctuation
term displacement

The GWO-SVR model based on Python language was

established to predict the displacement of the fluctuation

term. Through analyzing the principle of GWO and

comparative analysis of multiple experiments, the parameters

of the GWO were finally determined. In this study, the

population size N, the maximum number of iterations Max

iter, and the dimension dim were set to 40, 100, and 3,

respectively. The search intervals of optimizing the penalty

factor C, the kernel function parameter g and the insensitive

parameter ε of the SVRmodel were C = [10–6, 106], g = [10–6, 106],

and ε = [10–6, 106]. The fitness function was set to the MAPE

value of the test set. After the optimization calculation of GWO,

the best fitness was obtained. Finally, the optimized parameter

values are C = 802,455.4068, g = 1.4072 × 10–5, ε= 1.2246 × 10–6.

The optimized SVR model was used to predict the

displacement of the fluctuation term, and the prediction result

is shown in Figure 7. The RMSE of the prediction result of the

fluctuation term displacement is 0.9900, the MAE is 0.6856, the

MAPE is 16.5153% and the R2 is 0.9835. Compared with the

existing relevant literature, the prediction result is better and

more accurate.

4.3 Prediction of trend item displacement

The trend item is determined by the landslide’s own

geological conditions and reflects the overall development

trend of the landslide (Wang et al., 2014). The trend item

displacement has the characteristics of gentle change, strong

regularity, and relatively simple influence factors, which are

obtained by decomposing the cumulative displacement data of

the SZY-03 monitoring point of the Shuizhuyuan landslide

selected in this study.
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Referring to the previous research results (Zhou et al., 2018),

the t-1-th, t-2-th, and t-3-th period trend item displacements

were used as the input variables, and the current trend item

displacements were used as the output variables and the GWO-

SVR model is still used for prediction. The grey wolf algorithm

was used to find the optimal SVR parameters for this prediction,

which were C = 94,093.2659, g = 2.0655 × 10–5, and ε= 1.9312 ×

10–6. The first 190 sets of data were used to train the optimized

model and the trained model was used to predict the last 40 sets

of data. The final prediction results are shown in Figure 8.

The RMSE of the model is 0.0209, the MAE is 0.0176, the

MAPE is 0.0069% and the R2 is 0.999996. By observing Figure 8,

it can be found that the actual displacement curve and the

predicted displacement curve of the trend term displacement

overlap to a great extent. The prediction results show that the

prediction effect of the trend term is good and the CEEMDAN-

GWO-SVR model established in this study also has good

applicability for the trend item displacement prediction.

4.4 Prediction of cumulative displacement
of landslide

The prediction result of the cumulative displacement of the

landslide was obtained by superimposing the predicted value of

the landslide fluctuation item and the predicted value of the

landslide trend item, as shown in Figure 9.

The RMSE of the total landslide displacement prediction

result is 0.9846, the MAE is 0.6818, the MAPE is 0.2719% and the

R2 is 0.9964. From the final prediction results of the total

TABLE 1 Inputs for the modeling of the fluctuation displacement.

Impact factors Symbol Input 1–8

Fluctuation displacement Wt−1 Input 1, the displacement over the past 1 week

Wt−2 Input 2, the displacement over the past 2 weeks

Wt−3 Input 3, the displacement over the past 3 weeks

Precipitation Jt Input 4, the 1-week antecedent rainfall

Jt−1 Input 5, the 2-week antecedent rainfall

Reservoir water level Kt Input 6, the average elevation of the reservoir level in the current week

Kt−1 Input 7, reservoir level change in the 1-week period

Kt−2 Input 8, reservoir level change in the 2-week period

TABLE 2 Grey relational degree (GRG) between each impact factor and fluctuation displacement.

Impact factors Fluctuation displacement Precipitation Reservoir water level

Symbol Wt−1 Wt−2 Wt−3 Jt Jt−1 Kt Kt−1 Kt−2

GRG 0.772 0.843 0.915 0.774 0.773 0.775 0.775 0.775

FIGURE 7
Prediction and comparison of the fluctuation displacement.

FIGURE 8
Prediction and comparison of the trend displacement.
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landslide displacement, the overall fitting and prediction results

are good and ideal, which meets the expectations of the model

design.

5 Discussion

In general, the mechanism and the deformation

characteristics of landslides in the Three Gorges Reservoir

area are related to the comprehensive action of many

influencing factors, including many geological and hydraulic

factors. Through the analysis of monitoring data and macro

deformation characteristics, it is proved that reservoir water level

fluctuation and precipitation are the main influencing factors of

Shuizhuyuan landslide deformation. In particular, the

acceleration behavior of landslides is attributed to many heavy

rainfall events and the rapid decline of water levels. In order to

further test the superiority and accuracy of the model prediction,

it is compared with the approximate prediction model. The

prediction and comparison image is shown in Figure 10, and

the comparison of evaluation indexes of each model is shown in

Table 3.

Combining the comparative analysis of each model in

Figure 11 and the predictive index data in Table 3, the

following results can be obtained:

(1) Comparing the GWO-SVR, CEEMDAN- SVR and SVR

models, as shown in Figure 11A. The prediction accuracy

of GWO-SVR and CEEMDAN-SVR has been significantly

improved. The RMSE, MAE, and R2 of GWO-SVR are

1.3054, 0.8358, and 0.9936, respectively, and the

prediction effect is the best. This proves that the accuracy

of the SVR model optimized by GWO has been greatly

improved. In addition, the data analyzed by CEEMDAN

significantly improves the prediction accuracy compared

with the traditional SVR model.

(2) Compared with the prediction results of the EEMD-GWO-

SVR model and the GWO-SVR model, as shown in

Figure 11B, the prediction accuracy has not been

improved, which reflects the limited decomposition effect

of EEMD and the existence of reconstruction errors during

decomposition. And for this monitoring point, the EEMD

decomposition of the cumulative displacement of the

landslide cannot improve the prediction accuracy of the

model.

(3) Comparing the CEEMDAN-GWO-SVR model and GWO-

SVRmodel, as shown in Figure 11C, it is found that the trend

term displacement and fluctuation term displacement

obtained by CEEMDAN decomposition are more regular

than the original displacement data, which reduce the

interference of random factors and noise on the

prediction process and improve the prediction accuracy.

Comparing the CEEMDA-GWO-SVR and EEMD-GWO-

SVR models, it is found that RMSE and MAE are reduced by

0.3397 and 0.1957, respectively, MAPE is increased to

0.2719% and R2 is increased to 0.9964. This shows that

CEEMDAN has a better decomposition effect than EEMD

and effectively reduces the problems of mode aliasing, low

decomposition efficiency, and difficulty in completely

eliminating noise.

(4) In order to further prove the superiority of GWO algorithm,

GWO and WOA algorithms are compared. The data show

that CEEMDAN-GWO-SVR has better prediction accuracy

than the CEEMDAN-WOA-SVR model, as shown in

Figure 11D. The RMSE, MAE, MAPE, and R2 of the

GWO algorithm are 0.9845, 0.6818, 0.2719%, and 0.9964,

respectively, which is further improved than the WOA

algorithm. The results show that the GWO algorithm has

a stronger parameter optimization ability than the WOA

algorithm when optimizing the three parameters C, g, ε of

SVR, and the optimization effect is more in line with

expectations. The model can significantly improve the

prediction effect.

FIGURE 9
Prediction and comparison of the total displacement.

FIGURE 10
Prediction and comparison of various models.
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In summary, for the prediction of the Shuizhuyuan landslide

in the Three Gorges area, the CEEMDAN-GWO-SVR model

proposed in this study has higher prediction accuracy and better

results than other methods.

6 Conclusion

A new landslide displacement prediction method is proposed by

combining CEEMDAN, GWO, and SVR models. Taking the

Shuizhuyuan landslide in the Three Gorges Reservoir area as an

example, themodelwas used to establish the cumulative displacement

prediction model of the landslide. In addition, CEEMDAN-GWO-

SVR is compared with other prediction models. The RMSE, MAE,

MAPE, and R2 of the predicted result are calculated as 0.9845, 0.6818,

0.2719%, and 0.9964, respectively. It demonstrates the applicability

and superiority of the proposed model.

(1) CEEMDAN is used to replace the traditional EEMD, which

solves the problems of modal aliasing, low decomposition

efficiency, and difficulty in completely eliminating noise. The

results obtained by CEEMDAN are more regular, and the

prediction model can make more accurate predictions of the

decomposed components. GWO algorithm is used to

TABLE 3 Comparison of prediction accuracy of different prediction models.

Model number Models RMSE MAE MAPE (%) R2

Model 1 SVR 1.8819 1.3200 0.5234 0.9868

Model 2 GWO-SVR 1.3054 0.8358 0.3364 0.9936

Model 3 CEEMDAN-SVR 1.5020 1.1214 0.4424 0.9916

Model 4 EEMD-GWO-SVR 1.3242 0.8775 0.3497 0.9936

Model 4 CEEMDAN-WOA-SVR 1.0391 0.7010 0.2791 0.9960

Model 6 CEEMDAN-GWO-SVR 0.9845 0.6818 0.2719 0.9964

FIGURE 11
Prediction and comparison between different models. (A) Comparison of GWO-SVR, CEEMDAN-SVR and SVR models; (B) Comparison of
GWO-SVR and EEMD-GWO-SVR models; (C) Comparison of GWO-SVR, EEMD-GWO-SVR and CEEMDAN-GWO-SVR models; (D) Comparison of
CEEMDAN-WOA-SVR and CEEMDAN-GWO-SVR models.
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optimize the three model parameters of SVR, which

effectively solves the problem of reducing the performance

of the predictionmodel due to the randomness of parameters

and significantly improves the prediction accuracy.

(2) The internal and external factors (rainfall factor, reservoir

water level factor, and past cumulative displacement factor)

affecting the displacement and deformation of the landslide

are fully considered. Combined with previous research

results, the changes in monitoring data were analyzed in

detail and eight influencing factors were finally determined.

The grey correlation degree between the eight influencing

factors and the displacement of the fluctuation term is all

greater than 0.6, indicating that the selection of the

influencing factors of the fluctuation term is effective.

(3) The results show that the model has higher accuracy and better

displacement prediction ability under the premise of effectively

obtaining long-term landslide monitoring data. It can effectively

solve the displacement prediction problem of step-like landslides

similar to the Shuizhuyuan landslide and provide a new solution

and research idea for studying the displacement prediction in the

Three Gorges Reservoir area and other landslide-prone regions.
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