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Economic development and large amounts of industrial production have led to

environmental deterioration. The assessment and prediction of water

environment capacity (WEC) are crucial supports for water quality target

management. Therefore, this study aims to improve WEC via changes in the

industrial structure and to analyze the economic changes. For this purpose, the

economic efficiency (EE), water use efficiency (WUE), and water treatment

efficiency (WTE) are estimated by the EE–SBM (slack-based measure)–DEA

(data envelopment analysis) model. Based on the proposed model, the industry

is divided into three types: green enterprises, yellow enterprises, and red

enterprises. Yellow enterprises and red enterprises are the major supervision

subjects, and the spatial distribution of different environmental risks is identified.

The WECs of the main canals are analyzed based on dynamic changes in the

industrial structure by integrating the 0-D and MIKE11 models. The results

showed that after adjusting the industrial structure, the maximum added values

of the WEC of chemical oxygen demand (COD), total nitrogen (TN), ammonia

nitrogen (NH3–N), and total phosphorus (TP) are 1,744.66 t/a, 536.14 t/a,

24.81 t/a, and 4.16 t/a, respectively. The results show that the canals (R40,

R41, R20, R19, and R17) are overloaded with pollutants and indicate that TN is

included as a water environment quality assessment target. Furthermore, after

the optimization of the industrial structure, the loss of industrial output value is

174.44 million yuan, and the added value of the environmental economy is

232.12 million yuan. The findings provide important technical support for

achieving industrial upgrading and sustainable development.
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1 Introduction

Since the 21st century, rapid population growth, economic

development, and urbanization have led to the deterioration of

the water environment of the Taihu Lake, which is associated

with a dense canal network (Zhang et al., 2018; Wang J. et al.,

2019; 2021b; Ni et al., 2019). Changzhou city is located in the

northwestern Taihu Lake, which is an important part of the

Taihu Basin. Meanwhile, Changzhou city has been experiencing

a poor-quality water environment crisis from non-point and

point pollution sources (Li et al., 2018),where point source

pollution presents significant challenges (Schmidt et al., 2020).

The water environmental capacity (WEC) has been widely

used to control water pollution (Kim et al., 2012; Fakhraei et al.,

2014; Yang et al., 2015; Wang Q. et al., 2019), and the key factors

that affect the WEC are the amount of pollutant discharge and

spatial emissions of pollutants (Guan et al., 2016; Huang and

Tong, 2019). Previous studies have shown that point sources

were the key influencing factor for the WEC in Changzhou city.

Therefore, the actual WEC was improved considering the

industrial pollutant problem. The issue of how to harmonize

the industrial economy, water use, and environment must be

resolved. To address this issue, many studies had focused on the

assessment of industrial water use efficiency and water treatment

efficiency (Frija et al., 2009; Carvalho et al., 2012; Asghar et al.,

2018; Rahman et al., 2019). For instance, Liu et al. (2020)

estimated industrial water use and wastewater efficiency to

adjust industrial structures by a data envelopment analysis

(DEA) model. Wang et al. (2015) presented an approach to

assess water use efficiency (WUE) and pollutant reduction

potential based on the DEA model. An et al. (2019)

investigated the environmental efficiency in the Xiangjiang

River Basin based on a slack-based measure (SBM) model.

Yang et al. (2020) calculated the environmental treatment,

sewage treatment, and water supply efficiency to improve the

water quality with the SBM–DEA model in the eastern area of

China.

Based on the aforementioned analysis, the DEA model

became popular in the water environment. Additionally, the

DEA and SBM models have been used to assess water use and

water treatment efficiency (WTE). As a type of black box model,

the DEA method had an advantage in that it ignored the

mechanism relationship between input and output parameters,

and its disadvantage was that the solving difficulty and

calculation time of the model increased sharply with the

expansion of the sample size (Wang et al., 2021c). Therefore,

the SBM–DEA model was adopted to simulate multiple inputs

and outputs of WUE andWTE stages to correct DEA deviations.

It should be noted that few studies had considered the

economic efficiency (EE), water use, and water treatment

efficiency with pollutants. As a result, EE, WUE, and WTE

were considered simultaneously to optimize the industrial

structure and improve the WEC in the article. Meanwhile, the

construction of the EE model (output value efficiency) was based

on the scale of medium-sized enterprises. The results of the

efficiency of all enterprises in the study area were applied to

improve the industrial structure, thereby increasing the

actual WEC.

In general, the calculation models of WEC were divided into

three types: 0-D, 1-D, and 2-D models (Liu et al., 2012; Yan et al.,

2019a). However, the threemodels were used as calculationmethods

of WEC rather than prediction methods. Therefore, the 0-D model

should be coupled with the water quality simulation model to

calculate and predict the WEC based on limited observed data in

the paper. The MIKE11 model was widely applied to river quality

simulation (Keupers and Willems, 2017; Bu et al., 2020). In this

article, MIKE11 was selected as the water quality simulation model.

Meanwhile, to calculate EE, researchers usually applied the

alternative engineering method of pollutants to estimate their

abatement costs. Consequently, an alternative engineering

method was used to analyze the impact of industrial structure

optimization on the economy in the study area.

By reason of the foregoing, the objectives of this study were to

evaluate the WUE, WTE, and EE of industries based on coupling

the EE and SBM–DEA models to optimize the industrial

structure and to analyze the impact on the water environment

and economy. In addition, (1) the efficiency evaluation approach

was introduced to the coupled EE and SBM–DEAmodels, (2) the

dynamic prediction model of the WEC was established by

integrating the 0-D and MIKE11 models, and (3) the

economic value was analyzed based on optimization of the

industrial structure in Changzhou city.

2 Methodology

In this article, we presented the EE–SBM–DEA model for

measuring the output value efficiency (OVE), WUE, andWTE of

regional industrial systems. Then, the industry was divided into

three types: red industry, yellow industry, and green industry.

Management measures were implemented based on different

types of industries. Furthermore, we integrated the MIKE11 and

0-Dmodels to create a dynamic assessment and predictionmodel

for theWEC. The calculation results of the EE–SBM–DEAmodel

were input into theMIKE11 and 0-Dmodels. Finally, theWEC of

the canal caused by the change in the industrial type was

evaluated and simulated in Changzhou city. Meanwhile, the

economic benefits after the optimization of the industrial

structure were evaluated. The flow is depicted in Figure 1.

2.1 Study area

This study area is Changzhou city (31.15°–32.07°N and

119.13°–120.20°E), which is located in the southern Jiangsu

Province of China (Figure 2). The city is situated in the
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Yangtze Delta region, with a total area of 4,375 km2, and it

contains Liyang and Jintan counties and urban districts,

including the Wujin, Xinbei, Tianning, and Zhonglou urban

districts. This study takes the urban area as the research area

(Figure 2). Changzhou city belongs to the northern subtropical

monsoon area and has a mild climate and an average annual

temperature of 17.4°C. The annual precipitation in wet years

reaches 1,243.8 mm. The rainy season is fromMay to September.

The precipitation in the flood season reaches 870.3 mm. The

spatial distribution of precipitation does not present considerable

variations. The terrain is slightly higher in the southwest and

lower in the northeast. The topography is a plain with many

rivers, most of which are plain river network areas, and these

rivers are canals in cities and are heavily influenced by humans.

2.2 Industrial classification method

The EE, SBM, and DEA methods were used to construct an

industrial classification model that identifies industries with a

greater impact on the economy and the environment through the

analysis of OVE, WUE, and WTE.

2.2.1 Industrial classification model
The DEA model was applied to evaluate the relative

effectiveness of different departments (Bian et al., 2014; Wang

M. et al., 2021). The traditional DEA model did not consider the

intermediate process from input to output, while the network

DEAmodel examined the impact of input to output on efficiency

(Gidion et al., 2019). Therefore, the network DEA model was

used to measure the efficiency of each link in the industry. The

utilization rate of water resources in the industrial production

stage was the basis for measuring pollutant emissions. Therefore,

the evaluation of industrial WUEwas a prerequisite for analyzing

the impact of the industry on the water environment (Hu et al.,

2018). In summary, the impact of industrial water and sewage

treatment on the water environment of the canal network was

taken into consideration, and the efficiency calculation of the

network DEA model was divided into two stages (Figure 3). The

first stage was the industrial water use, and the second stage was

FIGURE 1
Flow chart of water environmental capacity optimization and economic benefit. The EE–SBM–DEA model is used to classify firms into three
types, after different industrial types are treated with different methods, the water environmental capacity of the canal are calculated by the
MIKE11 and 0-D model, then the economic benefits are obtained by water environmental capacity and industrial types.
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the sewage treatment. Among them, the amount of industrial

wastewater discharge was the connecting variable of the two

stages because it was the output of the first stage and the input of

the second stage (Table 1).

In addition, the conventional network DEAmodel had radial

and slack problems, and the radial network DEA model would

overestimate the efficiency of each stage with redundant inputs or

insufficient output. Therefore, to overcome the shortcomings of

the traditional DEA model, the slack variable SBM was

introduced (Tone and Tsutsui, 2014).

It should be noted that for enterprises, some indicators were

expected to be improved, and some indicators were needed to be

reduced. For these reduced indicators, Koopmans (1951) first

proposed the concept of undesired output. In data envelopment

analysis, pollutants (wastewater) were usually called undesired

outputs, while the outputs that can bring competitive advantages

to enterprises were called desired outputs (industrial output value,

profit, etc.). In addition, there were three kinds of methods to deal

with undesired output problems, which were data conversion

function, curve measure evaluation method, and distance

function method (Chung et al., 1997; Chen et al., 2021). In this

article, the directional distance function method was adopted in

the SBM–DEA model, and both radial and relaxation problems

were solved. The DEA model was selected using

MaxDEA8.0 software, and then input, desired output, and

undesired output parameters were set usingMaxDEA8.0 software.

In the SBM–DEA model, the water resource utilization

efficiency of n decision-making units DMUj (j=1...,n) and k

nodes (k=1...,k) was considered. If mk and rk are the number

of input and output variables at node k, respectively, then the

relationship between node k and the node h is (k, h) and the

number of connection variables is L. If the input variable, output

variable, and connection variable arexk
j , yk

j , and z(k,h)j ,

respectively, then the production possible set is defined as

follows:

xk ≥∑n

j�1x
k
jλ

k
j (k � 1, . . . , K), (1)

yk ≥∑n

j�1y
k
jλ

k
j (k � 1, . . . , K), (2)

Z(k,h) � ∑n

j�1z
(k,h)
j λkj, (3)

Z(k,h) � ∑n

j�1z
(k,h)
j λhj, (4)

λkj ≥ 0(∀j, k), (5)

where λkj is the weight vector of the k stage, stage k is the output,

and stage h is the input. In addition, the constraint condition is

that the sum of unauthorized weights is equal to 1, indicating that

the DEA model is constant in return to scale.

The SBM model is introduced, and DMUo (o=1... n) can be

written as follows:

xk
o � Xkλk + sk−, yk

o � Ykλk − sk+, λk ≥ 0, sk+ ≥ 0,∀k, (6)

FIGURE 2
Location of geographic space of canals in Changzhou city.
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FIGURE 3
Diagram of the SBM–DEA model process.

TABLE 1 Input and output indicators of the SBM–DEA model.

Stage Type Indicator Unit

Water use efficiency (stage 1) Inputs Number of employees Person

Water consumption Ton

Material consumption Pcs

Working hours h

Desired output Industrial added value 10 thousand yuan

Undesired output Industrial wastewater discharge Ton

Water treatment efficiency (stage 2) Inputs Industrial wastewater discharge Ton

Number of sewage treatment facilities Pcs

Operation cost of sewage treatment facilities 10 thousand yuan

Investment amount of sewage treatment 10 thousand yuan

Undesired output Chemical oxygen demand (COD) discharge Ton

Ammonia nitrogen (NH3–N) discharge Ton

Total nitrogen (TN) discharge Ton

Total phosphorus (TP) discharge Ton
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where Xk � (x1, . . . , xk), Yk � (y1, . . . , yk), sk− is the input

redundancy, and sk+ is the output shortage.

At the same time, a free link was chosen as the constraint

condition of the connection variable, and it was believed that link

activities were freely determined while maintaining the

continuity between input and output.

Z(k,h)λh � Z(k,h)λk,∀k, h, (7)

where Z(k,h) � Z(k,h)
1 , . . . , Z(k,h)

n .

2.2.2 Industrial classification
Based on the calculation of the EE–SBM–DEA model,

enterprises were divided into three types (as shown in Table 2).

Among them, HHH and LHH were green enterprises and did not

need to be improved;HLH,HHL, LLH, LHL, andHLLwere yellow

enterprises and needed to be rectified; and LLLwas a red enterprise

and it was recommended to shut down.

Note: When the evaluation efficiency is 1, then the index is H;

when the evaluation efficiency is less than 1, then the index is L.

2.3 Dynamic simulation of water
environment capacity

By classifying industries and implementing corresponding

measures for different types of enterprises (Table 2), the impact

of industrial adjustment on the WEC of the canal network in the

study area could be analyzed. The MIKE11 and EE–SBM–DEA

models were used to simulate changes in canal water quality and

hydrodynamics before and after industrial adjustment, and the

impact of enterprise classification on the water environment

capacity of the canal network was evaluated. The MIKE11 model

can be used to obtain the future variation values of flow and

pollutant concentration in different sections of the canal. The 0-

D model was one of the important methods to calculate WEC. In

this paper, the MIKE11 model was used to obtain the flow and

pollutant concentration of the main section of the canal in the

study area. Then, the flow and pollutant concentration were used

as input parameters of the 0-D model to obtain the WEC of the

canal. The specific description of MIKE11 and 0-Dmodels was as

follows:

2.3.1 MIKE11 model
The MIKE11 model was used to simulate changes in

hydrology and water environmental capacity. Therefore, in

this study, it was selected to simulate the environmental

quality of canals. Meanwhile, the MIKE11 model included

HD (Eq. 8) and AD modules (Eq. 9). The equation is as

follows:

zQ

zt
+ z

zx
(aQ2

A
) + gΛ

zh

zx
+ g

Q

X2AR
� 0, (8)

zAC

zt
+ zQC

zx
− z

zx
(AD zC

zx
) � −AKC + S, (9)

where x is the distance coordinate (m), t is the time coordinate (s),A

is the cross-sectional area (m2), Q is the flow along the canal (m3/s),

Λ is the momentum correction coefficient (dimensionless), g is the

TABLE 2 Industrial type and regulatory measures.

Type OVE WUE WTE Code Measure

Green industry H H H HHH Constant

L H H LHH Constant

Yellow industry H L H HLH Access the sewage pipe network or improve the effluent quality

H H L HHL Access the sewage pipe network or improve the effluent quality

L L H LLH Access the sewage pipe network or improve the effluent quality

L H L LHL Access the sewage pipe network or improve the effluent quality

H L L HLL Access the sewage pipe network or improve the effluent quality

Red industry L L L LLL Close down

TABLE 3 Unit treatment cost of different pollutants in Changzhou city.

Type COD (CNY/T) TN (CNY/T) NH3–N (CNY/T) TP (CNY/T)

Treatment cost 4,923.29 63,558.38 87,356.49 1,057,846.11
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acceleration of gravity (m/s2), h is the water level (m), and x is the

Chezy coefficient. C is the pollutant concentration (mg/L), D is the

longitudinal diffusion coefficient (m/s), K is the degradation

coefficient (1/d), and S is the source concentration (mg/L).

A total of 44 canals (Supplementary Appendix SA) were

constructed in the MIKE11 model of the urban districts of

Changzhou city (Figure 2).

The attenuation coefficient reflected the effect of

hydrological changes on pollutants. A reasonable attenuation

coefficient was vital to guarantee the accuracy of the model.

COD, NH3–N, TP, and TN were selected as the simulated

pollutants in this study, and the attenuation coefficients, K,

were 0.18, 0.16, 0.02, and 0.16/d without floodgate scenarios,

respectively.

2.3.2 Water environmental capacity model (0-D
model)

The 0-D model was selected as the WEC calculation model.

The dilution capacity Ed and self-purification capacity Es were

included in two parts.

The dilution capacity formula is as follows:

Ed � 86.4 × (S − Cb) × Qr, (10)

where Ed is the dilution capacity, kg/d; S is the water quality

standard, mg/L; Cb is the canal background concentration, mg/L;

and Qr is the canal discharge, m3/s.

The self-purification capacity formula is as follows:

Es � 86.4 × SQt(1 − e−
kL

86400v), (11)

where Es is the self-purification capacity, kg/d; S is the water

quality standard, mg/L; Qt is the sum of river and wastewater

flows, m3/s; L is the length of the river, m; k is the

comprehensive attenuation coefficient, 1/d; and v is the river

velocity, m/s.

The water environment comprehensive capacity formula is

as follows:

E � Ed + Es. (12)

2.4 Economic valuation

An alternative engineering method was used to calculate

economic value, and the calculation formula is as follows:

Vr � Pr × Er, (13)
where Vr is the total cost of water purification for the r pollutant,

Pr is the unit treatment cost of the r pollutant, and Er is the water

environmental capacity of the r pollutant.

Furthermore, the unit treatment costs of different pollutant types

were obtained from sewage treatment plant in Changzhou city

(Table 3).

2.5 Data

Industrial data were collected from the Changzhou Statistical

Yearbook and Changzhou Research Academy of Environmental

Sciences (2016). Historical discharge and canal level data were

acquired through the Changzhou Hydrological Bureau. Water

quality data were obtained from the water quality monitoring

stations (2016).

3 Results

3.1 Model calibration and verification

To ensure the unity of industrial wastewater and canal flow

units in the MIKE11 model, the unit of industrial wastewater

discharge was switched from m3/d to m3/s. The calculation time

duration was set as 366 days (2016) to reduce the model error, the

calibration time was from May to July, and the remaining time

was the verification time in 2016.

In this study, the relative error (RE) was used to evaluate the

accuracy of the model (Eq. 14). According to the simulation

results of the MIKE11 model, the RE was obtained. The results of

the RE indicated that the model was reliable (Feng et al., 2016).

RE �
∣∣∣∣yo − ys

∣∣∣∣
yo

× 100%, (14)

where yo is the observed value, and ys the is simulated value.

3.1.1 Hydrology verification
The hydrological simulation sites were Buyiqiao, Caoqiao,

Jiuli, Henglin, and Wujingang stations. The average discharge

and error of each site in 2016 are shown in Figure 4. In the

hydrologic simulation, the relative error was smaller than 0.16.

3.1.2 Water quality verification
The water quality concentrations of major canals were simulated

(COD, NH3–N, TN, and TP). The average value and error of the

canalwater quality concentration in 2016 are shown in Figure 5. In the

COD, NH3–N, TN, and TP simulations, the maximum average

relative errors were 0.08, 0.06, 0.11, and 0.03, respectively.

The aforementioned analysis showed the relative error between

the observed and simulated values of hydrology and pollutant

concentrations (COD, NH3–N, TN, and TP), and the results

indicated that the model was acceptable for further modeling work.

3.2 Classification of the industrial
structure

This study takes the urban area of Changzhou as the research

object. The area is divided into four administrative districts,
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namely, Tianning, Wujin, Xinbei, and Zhonglou districts. Then,

the EE–SBM–DEA model was used to classify the industries in

each district to obtain the type of each enterprise. Based on the

SBM–DEA model, the relevant efficiency statistics results were

obtained (Supplementary Appendix SA). In this study,

preliminary data had been analyzed and outliers had been

removed. Furthermore, the input and output variables were

analyzed by Pearson correlation. As shown in Supplementary

Table SA3 (Supplementary Appendix SA), EM (the number of

employees) and MC (material consumption) in the input

indicators were poorly correlated with other input and output

indicators, and the output index was strongly correlated with

other indexes. Overall, input and output indicators can be used in

DEA models, and the sample size included a total of

627 enterprises in the four districts (Tianning, Xinbei,

Zhonglou, and Wujin districts); moreover, each enterprise

represented a DMU, and the input and output indicators are

shown in Table 1. At the same time, the enterprises were divided

into six major departments, namely, paint manufacturing, other

manufacturing, chemicals, textiles, metal processing, and other

industries. Therefore, the DMUs were consistent with the

department of the enterprise.

3.2.1 Tianning District
Figure 6A shows that the economic scale of most of the

enterprises in Tianning District exceeded 20 million RMB, which

was medium-sized and accounts for 60.69%. The average output

value efficiency was 0.76, indicating that the enterprises below the

medium scale had the potential to reach the medium scale.

The WUE results of various enterprises in Tianning District

showed that most enterprises had low WUE, resulting in more

wastewater. The average water efficiency (0.51) also proved that

the water efficiency of enterprises was low. Among the

144 enterprises, only 25.82% met the water efficiency. Among

them, enterprise serial numbers 11, 33, 37, 39, 42, 59, 61, 70, 105,

106, 109, and 118 had the lowest water efficiency and should be

considered. The WTE of various enterprises in Tianning District

showed that the high concentration of pollutants in wastewater

had increased the pressure on the water environment. The WTE

was only 0.44, and the proportion of enterprises meeting the

water treatment efficiency was only 7.64%. The companies with

the lowest water treatment efficiency accounted for 18.05%, and

the enterprise serial numbers were 2, 54, 65, 70, 72, 73, 74, 75, 76,

77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 90, 94, 96, 98, 101, 103, and

104. The environmental protection department should focus on

inspection of the sewage treatment of these enterprises.

Meanwhile, the low WTE indicated that Tianning District had

great potential for environmental improvement.

The aforementioned results showed that most enterprises in

Tianning District had adopted an extensive economic

development mode with environmental destruction. In the

future, industrial development should be pursued with equal

emphasis on the economy and environment. Figure 7A shows

that the proportion of green enterprises was 18.06%, the

FIGURE 4
Canal discharge simulation and error analysis.
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proportion of red enterprises was 15.97%, and the proportion of

yellow enterprises was 65.97%, which also verified that Tianning

District had a high water environment improvement potential.

3.2.2 Wujin District
Figure 6B shows that the proportion of medium-sized and

above-scale output value enterprises in Wujin District was

59.54% and the average OVE was 0.78, indicating that Wujin

District enterprises have better economic benefits. The average

WUE of all enterprises inWujin District was 0.54, indicating that

enterprises have low water efficiency. Among them, 22.13% of

enterprises met the WUE and 18.32% of enterprises had

extremely low water use efficiency, indicating that enterprises

in Wujin District waste more water resources, and the

government should focus on enterprises with extremely low

WUE. The average WTE of the enterprises was 0.58, but only

6.11% of the enterprises met the WTE, whereas 0.76% of the

enterprises were extremely lowWTE, indicating that the WTE of

enterprises in Wujin District was concentrated in the medium

level. The shape of the WUE in Figure 6B was more divergent

than that of the WTE, which also proved that Wujin District had

better control of the pollutant concentration in the wastewater

discharge of enterprises. Figure 7B shows that green companies

accounted for 16.41%, red companies accounted for 17.18%, and

yellow companies accounted for 66.41%. In the process of

industrial regulation, the government should focus on red

enterprises and improve the efficiency of yellow enterprises to

ease the pressure on the water environment in Wujin District.

3.2.3 Xinbei District
Figure 6C shows that the proportion of output value

enterprises above the medium scale was 61.06%, and the

average OVE was 0.78, indicating that the economic effects

of enterprises in Xinbei District were better. The average water

use efficiency of all enterprises was 0.42, of which the

proportion of enterprises meeting the water efficiency was

20.35%. The proportion of enterprises with extremely low

water efficiency was 16.81, indicating that the water

efficiency level of enterprises in Xinbei District was low. The

enterprise serial numbers were 18, 20, 23, 29, 33, 39, 42, 43, 44,

45, 47, 81, 90, 91, 93, 94, 99, 104, and 107. The WUE of most

enterprises was below the average value (0.42), which also

proved that the enterprises in Xinbei District waste serious

water resources and should increase the water-saving

investments. The average WTE of all enterprises in Xinbei

District was 0.47, and the proportion of enterprises meeting

the WTE was only 8.85%. Companies with extremely low WTE

accounted for 8.85%. The specific enterprise serial numbers

FIGURE 5
Water quality concentration simulation and error analysis of canal.
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were 1, 7, 12, 15, 28, 56, 59, 71, 83, and 104, indicating that most

companies in Xinbei District had medium WTE. The WTE

showed that the water treatment efficiency of enterprises was

concentrated between 0 and 1, but relatively scattered,

indicating that the WTE of enterprises was quite varied.

Figure 7C shows that green companies accounted for

17.70%, red companies accounted for 14.16%, and yellow

companies accounted for 68.14%. These findings show that

industrial adjustments will help ease the pressure on the water

environment of Xinbei District.

3.2.4 Zhonglou District
Figure 6D shows that the proportion of enterprises with

medium-sized and above-scale output value in Zhonglou

District was 62.04%, and the average OVE was 0.78,

indicating that enterprises in Zhonglou District had better

economic benefits. The average water use efficiency of

enterprises in Zhonglou District was 0.39, the proportion of

enterprises meeting WUE was 18.52%, and the proportion of

enterprises with extremely low water use efficiency was 26.85%,

indicating that enterprises in Zhonglou District had extremely

low water efficiency. In Figure 6D, the WUE of most companies

was below the average, indicating that companies waste water

more seriously. The average WTE in Zhonglou District was

0.71, and the proportion of enterprises meeting the WTE was

9.26%. Companies with extremely low water treatment

efficiency accounted for 0.93%, and the specific company

serial number was 82. These findings showed that the WTE

of enterprises in Zhonglou District was higher, which

effectively reduces the concentration of pollutants in

discharged wastewater. Figure 6D verifies that the WTE of

most companies was above average. The enterprise

classification results of Figure 7D show that green

companies account for 25%, red companies account for

20.37%, and yellow companies account for 54.63%. The

aforementioned results showed that the lower WUE of

enterprises in Zhonglou District was the main factor for

more pollutant emissions. Therefore, the government should

guide enterprises to enhance the efficiency of water circulation,

pay attention to the pollution discharge of red enterprises, and

ease the pressure on the water environment in Zhonglou

District.

FIGURE 6
Analysis of the industrial output value efficiency, water use efficiency, and water treatment efficiency in Tianning (A), Wujin (B), Xinbei (C), and
Zhonglou districts (D). It is important to note that each line represents an enterprise. ESN = enterprise serial number, OVE = output value efficiency,
WUE = water use efficiency, and WTE = water treatment efficiency. The enterprise codes are shown in Supplementary Appendix SA. The ordinate of
ESN is the serial numbers of all enterprises, and detailed information about the enterprise serial numbers is displayed in the Supplementary
Appendix SA. The ordinate of OVE, WUE, and WTE are the display of the efficiency statistical results calculated by the EE–SBM–DEA model.
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In summary, this article analyzed the OVE, WUE, and WTE

of the four districts of Tianning, Wujin, Xinbei, and Zhonglou in

Changzhou city, and enterprises in each district were divided into

three types. The results showed that the OVE of these four study

areas was high and the proportion of medium-sized enterprises

was more than 60%. The WUE of enterprises in Zhonglou

District was significantly lower than that of the other three

research areas, although the WTE in Zhonglou District was

higher, indicating that enterprises in Zhonglou District paid

more attention to sewage treatment. The WUE and WTE of

Tianning District and Xinbei District were relatively divergent,

indicating that the administrative department may not impose

strict restrictions on the enterprise’s water use and pollutant

concentration. The classification of enterprises showed that

industrial regulation had great potential for improving the

WEC of canal networks.

3.3 Water environmental capacity

This paper classified the enterprises in the study area based

on the EE–SBM–DEA model. Then, MIKE11 and the 0-D

models were used to calculate the WEC of the canal (COD,

NH3–N, TP, and TN). Figure 8A shows that the COD of canals

R40 and R20 exceeded the carrying capacity before the

regulation, while R40 could have a COD load of 397.25 t/y

after regulation, which indicated that industrial regulation

increased the COD capacity of R40 by 1,110.04 t/y. The COD

FIGURE 7
Results of enterprise classification in Tianning (A), Wujin (B), Xinbei (C), and Zhonglou districts (D). Colors in the squares represent the type of
enterprise calculated by the EE–SBM–DEA model, the numbers in the squares are the serial numbers of all enterprises (Supplementary Appendix SA
for the meaning of numerical serial number). Additionally, green indicates green enterprises, yellow indicates yellow enterprises, and red indicates
red enterprises.
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capacity of canal R17 was the largest at 14,839.97 t/y before

regulation and 15,444.49 t/y after regulation. Industrial

regulation presented the largest increase in the COD capacity

of R39 reaching 1,744.66 t/y. However, the COD capacity of

R16 only increased slightly by 4.26 t/y.

Figure 8B shows that the NH3–N of R40, R20, and

R19 exceeded the carrying capacity before regulation,

while only R19 met the NH3–N load of 6 t/y after

industrial regulation. Therefore, the focus should be on

R40 and R20. Among the canal network water systems,

the capacity of NH3–N in R17 was the largest, with

302.74 t/y before regulation and an increase of 24.81 t/y

after regulation. Industrial regulation had led to the

smallest improvement in the NH3–N capacity of R13,

which was only 0.27 t/y.

Figure 8C shows that only canal R41 exceeded the TP-

carrying capacity, and the TP load of this canal still exceeded

0.49 t/y after regulation. R17 had the largest TP-carrying load at

80.07 t/y before industrial regulation and 84.14 t/y after

regulation. The canal with the largest increase in TP

environmental capacity after industrial regulation was R39,

with an added value of 4.16 t/y.

Figure 8D shows that the TN load of the canal network in the

study area was overloaded. Meanwhile, the overload capacity of

R17 had reached 1,942.21 t/y, and it was increased by 0.9 t/y after

industrial regulation. Thus, the TN emissions in the canal

network must be addressed. After industrial regulation, the

maximum increased in TN-carrying capacity of R40 was

536.14 t/y, with a growth rate of 54.73%; and the canal with

the smallest increase was R17 at only 0.15 t/y.

In summary, the water environment capacity of the canal

network had been improved through the classification and

regulation of industries in the study area. Among them, the

improvement effect of COD and TN was more evident. However,

the improvement effect of NH3–N and TPwas not notable, which

showed that the concentrations of COD and TN in the

wastewater of the enterprise were relatively high. In addition,

the carrying capacity of COD, NH3–N, and TP of canal R17 was

the largest. The main reason may be that R17 was the canal with

the largest flow and length in the study area, which increased the

FIGURE 8
Water environmental capacity of COD (A), NH3–N (B), TP (C), and TN (D) in the canal network of the study area. B = WEC before industry
adjustment, A =WEC after industry adjustment, andG=WECgrowth value. The ordinate of this figure is the canal in the study area, and the horizontal
axis represents the total amount of pollutants the canal can carry.
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water environment capacity of the canal. The carrying capacity of

the water environment of canal R40 was weak, and the carrying

capacity had increased greatly after industrial regulation. The

main reason may be that there were more yellow and red

companies around the canal, which caused greater pollution,

and the improvement effect after regulation was more evident.

The TN overload in the study area was more serious, the main

reason may be that the TN in the study area was not set as a goal

by the bureaucracy, which led to a high TN concentration in the

canal network. Therefore, industrial regulation can effectively

increase the water environmental capacity of canals. In addition,

to improve the TN-carrying load of the canal network, TN should

be included in performance assessments by the government.

3.4 Economic value added

Figure 9 shows the added economic value of different canals

in the study area after the optimization of the industrial structure.

According to the formula of economic value, the added economic

value was positively correlated with the added value of water

environmental capacity. Therefore, the growth of water

environmental capacity of COD/NH3–N/TP/TN was

consistent with the growth of economic value of canals.

Table 4 shows that the improvement in water environment

quality increased the economic value of 232.12 million yuan.

Due to the optimization of the industrial structure, red

enterprises were shut down. Therefore, a certain economic

loss was caused. After calculation, the economic loss value

was 174.44 million yuan. Although the optimization of the

industrial structure caused a certain economic loss, the

improvement in environmental quality brought by it not only

made up for the economic loss, but also created a certain surplus,

reaching 57.68 million yuan.

4 Discussion

The spatial distribution of industrials showed that Tianning

and Zhonglou districts had higher industrial density (Figure 10),

and canals in areas with higher industrial density were more

likely to be polluted (Dsikowitzky et al., 2017; Rodgers et al.,

FIGURE 9
Economic value added of different canals in the study area.

Frontiers in Earth Science frontiersin.org13

Bu et al. 10.3389/feart.2022.961299

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.961299


2020). Meanwhile, among the all industrial types, yellow and red

industries were the center of attention. We also found that canals

with large fluctuations in WEC were consistent with the

industrial spatial distribution (yellow and red industries)

(Figures 10, 11), and the pollutant discharge types of

enterprises could be identified through the analysis of canal

pollution. For example, enterprises around R39 had

contributed more to the concentration of COD and TP,

followed by TN. The enterprises surrounding R5 had a greater

contribution to the concentration of COD, NH3–N, and TP. The

type of enterprise that had the greatest impact on R6 was the

yellow enterprise, and the NH3–N emissions of the enterprise

were higher. The enterprise around R33 had relatively high TN

emissions, while COD, TP, and NH3–N emissions were relatively

low. Therefore, the EE–SBM–DEA model could be used to

identify areas at risk of pollution. These areas could be

monitored, and the water environmental capacity of each

canal was analyzed to identify the major pollution types of

TABLE 4 Economic value of optimization of the industrial structure.

Type Economic value added Loss value of industry Surplus value

Value (10 thousand yuan) 23,212 17,444 5,768

FIGURE 10
Spatial distribution of different industrial types.
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different enterprises. Pollution monitoring could be carried out

in the process of monitoring the pollution of enterprises, saving a

lot of manpower and financial costs. In short, the model

identified different risk levels of enterprises and regions,

which was beneficial to improve management efficiency.

In addition, Wang et al. (2018) found that the water quality

policies forced many small, heavily polluting firms to shut down,

but it was non-effective in reducing the COD concentration. We

also found the same problem: although the density of red

enterprises around R4 was relatively high, it did not contribute

much to improve canal pollution when they were closed. It may be

that the contribution of point sources to the canal network was far

less than that of non-point sources or internal sources.

Correlational research studies showed that non-point and

endogenous pollution sources had contributed more to canal

network pollution in the Taihu Lake (Wang M. et al., 2019;

Yan et al., 2019b; Luo et al., 2019; Xu et al., 2020). Therefore,

non-point source and endogenous pollution management

measures were considered to improve the canal water

environment. For instance, the sediment dredging was

conducted for decreasing the pollution load (Chen et al., 2020).

Constructed wetland technology and low-impact development

FIGURE 11
Water environmental capacity fluctuation of different canals.
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technology were also widely applied for the malodorous canal

(Pereira Souza et al., 2019; Bu et al., 2020; Lu et al., 2020;

Tuttolomondo et al., 2020). Moreover, the identified high-risk

areas were also key areas where non-point source and internal

source control measures were considered.

5 Conclusion

The development of enterprises had brought greater pressure

to the urban water environment, and enterprises were classified

as green enterprises, yellow enterprises, and red enterprises by

constructing the EE–SBM–DEA model in this study.

Furthermore, the temporal and spatial dynamic simulation

model of the WEC was constructed, changes in the WEC of

canals were analyzed based on enterprise regulation, and the

economic valuation model was used to evaluate the economic

benefits of water environment improvement. The related

conclusion was drawn as follows:

(1) The calculation results of enterprise efficiency were used to

classify the enterprises in the study area and took

corresponding control measures. The results of the

enterprise efficiency calculation in Tianning, Wujin,

Xinbei, and Zhonglou districts showed that red companies

accounted for 65.97%, 66.41%, 68.14%, and 54.63%,

respectively.

(2) The results showed that the loads of COD and TN increased

by industrial regulation and reached their highest values of

1744.66 t/y and 536.14 t/y, respectively. However, the

improvement in NH3–N and TP loads was not evident,

and the highest values reached 24.81 t/y and 4.16 t/y,

respectively. In addition, canals R40, R41, R20, R19, and

R17 were partially overloaded with pollutants and should be

considered.

(3) The result of research showed that industrial structure

optimization could effectively improve water environment

quality and generate economic value. After the optimization

of the industrial structure, the economic loss value was

174.44 million yuan. However, environmental

improvements had brought economic benefits up to

57.68 million yuan.

In conclusion, this research provided technical support for

industrial management policies and water environment

improvement. It was recommended that TN should be included

as a water environment quality assessment target to improve the

concentration of TN in the canal network. Changzhou city must

make full use of the advantages of technology, manpower, and

capital to accelerate the optimization and upgrading of the industrial

structure. Among them, technological progress and innovation will

be an important support to reduce the emission of pollutants for

economic development.
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