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Fractures are increasingly employed in tectonic movement and earthquake risk

analyses. Because fracture connectivity influences fluid flow pathways and flow

rates, fractures are studied to evaluate sites for CO2 sequestration, radioactive

waste storage and disposal, petroleum production, and geothermal energy

applications. Discrete fracture networks are an effective method for imaging

fractures in three-dimensional geometric models and for analyzing the fluid

behavior that cause movements in fracture zones. Microseismic event

monitoring data can be used to analyze the event source mechanisms and

the geometry, distribution, and orientation of the fractures generated during the

event. This study proposes a method for simultaneously imaging multi-fracture

networks using microseismic monitoring data. The random sample consensus

and propose, expand, and re-estimate labels algorithms commonly used in

multi-model fitting were integrated to produce an upgraded method that

accommodates geophysical data for faster and more accurate simultaneous

multi-fracturemodel imaging within a point cloud. The accuracy of themethod

was improved using circular calculation and density-based spatial clustering of

applications with noise, such that the estimated fracture orientations

correspond well to those at the actual locations. The proposed algorithm

was applied to synthetic data to assess the impact of considering orientation

and outlier data on themodel results. The errors in the results when considering

orientation were 1.32% and 0.83% for the strike and dip angles, respectively, and

those without considering were 20.23% and 24.63% respectively. In addition,

the errors in the results obtained fromdata containingmany outliers were 1.89%

and 1.64% for the strike and dip angles, respectively. Field microseismic data

were also used to depict fractures representing the dominant orientation, and

the errors of the strike and dip angle estimates were 2.89% and 2.83%,

respectively. These results demonstrate the suitability of the algorithm for

fast and accurate field data modeling.
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1 Introduction

Fractures form when the stress exceeds the rock strength,

causing the rock to split into separate pieces. A fracture can be

classified as a fault if the relative rock displacement is parallel to

the fracture direction or as a joint if there is no relative

displacement (Mitcham, 1963; Gudmundsson, 2011). Fault

planes represent structurally vulnerable subsurface areas that

require earthquake risk analysis and the determination of large-

scale structure safety. Joints are useful for tectonic movement

analysis because they can be used to estimate changes caused by

stress after rock formation. Therefore, fracture analysis studies

have been widely conducted in many disciplines to identify

subsurface structures.

Understanding subsurface fracture connectivity is vital for

analyzing fluid flow pathways. Numerous studies have conducted

core analysis and numerical modeling of groundwater flow

through natural fractures (Raven and Gale, 1985; Kwicklis and

Healy, 1993; Mayer and Sharp, 1998). In the petroleum industry,

hydraulic fracturing is used to improve oil and gas recovery and

geothermal energy production, as well as to create artificial

fractures for improving subsurface connectivity (Valko and

Economides, 2001; Montgomery and Smith, 2010; Zhang

et al., 2010).

Microseismic events are very weak earthquakes with a

negative moment magnitude that occur on very small spatial

scales, and are generated by anthropogenic changes to the natural

stress-strain state of formations, such as by hydraulic fracturing,

or by natural forces, such as tectonic motions. Microseismic

events associated with hydraulic fracturing generally occur in

three areas: parent hydraulic fracture side-wall because of the

leakage of the pressurized fluid, critically stressed natural

fracture, and close to the hydraulic fracturing tip (Busetti

et al., 2014). Microseismic monitoring is an important tool for

identifying, positioning, and characterizing these events, which

can provide information on the growth patterns of fractures

induced by high-pressure fluid injection and overall dimensions

(Economides and Nolte, 2000; Warpinski et al., 2013). Thus,

uncertainties can be analyzed for individual events and leakage

events that are not associated with major fracture networks by

estimating the extent of microseismic event clouds.

Discrete fracture networks (DFNs) are widely used to analyze

fracture connectivity. DFNs can be used to image and model

individual three-dimensional (3D) fractures to evaluate the

changes in their geometry and behaviors of associated fluids

(Dershowitz and Fidelibus, 1999; Li and Lee, 2008; Hyman et al.,

2015). They can be constructed in many ways, such as by linking

fracture imaging to seismic activity based on microseismic

monitoring data (Fadakar Alghalandis et al., 2013) or the

source mechanism (Yu et al., 2016; Yu et al., 2020). They are

useful because they can identify and display fracture locations

solely based on microseismic data. However, fracture

orientations determined solely from microseismic event

locations often exhibit poor accuracy. Therefore, it is

necessary to enhance the reliability of fracture orientation data

by incorporating the strike and dip angles at the event location.

However, no method for extracting multiple fracture network

models has been developed so far.

A method for extracting points associated with each fracture

is required to image a DFN in a 3D point cloud, such as the

location of a microseismic event. Complementary computer

vision techniques have been developed for this purpose,

including the widely used Random Sample Consensus

(RANSAC) (Fischler and Bolles, 1981) and Hough transform

(Duda and Hart, 1972) algorithms. Although these techniques

are appropriate for locating a point within the cloud that easily

meets specific threshold conditions, the input variables,

computation time, and sequential model estimation remain

problematic. Isack and Boykov developed the Propose,

Expand, and Re-estimate Labels (PEARL) energy-based multi-

model optimization algorithm to resolve these issues (Isack and

Boykov, 2011). This algorithm iteratively estimates inliers and

model parameters based on a global regularization function. As

PEARL lowers the variable dependency, it effectively reduces the

computation time, and allows simultaneous multi-fracture

imaging; however, as only the distance energy between feature

points in the image is utilized, it is difficult to consider the

direction in three dimensions.

This study proposes a method for imaging fractures using

microseismic data based on the multi-fitting algorithm, and

represents an improvement over the existing PEARL

algorithm for geophysical data systems. This approach

integrates microseismic event locations and fracture

orientations to enhance the reliability and accuracy of fracture

imaging. To confirm the effectiveness of proposed method, a

synthetic model simulating microseismic event locations was

created and the resulting fracture images were compared, taking

into account the influence of orientation and outlier data. The

applicability of the proposed method was also tested using field

data provided by a geothermal data repository (http://gdr.openei.

org/submitssi-ons/1091) operated by the Department of Energy

(DOE) Geothermal Technology Office (Gritto et al., 2018).

2 Methodology

2.1 RANSAC algorithm

The RANSAC algorithm (Fischler and Bolles, 1981) was

developed to detect simple shapes such as lines, circles, and

planes within a point cloud through the iterative estimation of

model parameters by randomly sampling data points for

consensus. A simple RANSAC algorithm for a microseismic

event involves the following steps.

1) A plane model is generated by randomly selecting three

points from the event location data.
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2) The distances between the generated fracture planes and

all other points are calculated.

3) Inlier points are selected from among the threshold

distance (td) parameter values.

4) If the number of inlier points is greater than the number of

threshold points (tp), or the minimum number of points required

extracting the plane model, then only these points are used to

refit the generated plane.

5) The objective function is updated,

O � ∑np
p�1

(distance)/np (1)

where np is the number of inliers, and the record is the most

effective if Ok <Ok−1, where k is the iteration counter.

6) The process is then restarted from Step 2) until the desired

iteration is attained.

The number of iterations (nk) for optimal results in RANSAC

must be chosen sufficiently to ensure the probability that at least

one of the point datasets contains only inliers, and is generally

determined as follows

nk � log(1 − a)
log(1 − (1 − b)r) (2)

where, b is the probability of success, a represents the probability

that any selected data point is an outlier, and r is the number of

points used to generate the model (2 and 3 for a line and plane,

respectively).

Although RANSAC has mainly been applied in image

processing and computer vision, its capability to extract a

model from a point cloud can be exploited to image fractures

based on seismic event location data. Thus, RANSAC can

robustly estimate the model parameters with good accuracy,

even if there are many outliers. However, the algorithm

involves a high computational load because it utilizes random

models, which can require a large number of iterations, and the

values of several input parameters are set by the user, which

significantly influences the results. RANSAC selects only one

optimal model from the iterative random sampling models in a

sequential estimation process. Therefore, the dataset used to

estimate a model is disregarded before a new model is

obtained in the next iteration. Therefore, simultaneous

estimation of multiple models using RANSAC remains

challenging.

2.2 PEARL and energy minimization

PEARL (Isack and Boykov, 2011) involves an iterative

method similar to RANSAC to extract models from a point

cloud. However, unlike the RANSAC model extraction, which of

the PEARL algorithm does not rely solely on the threshold

distance or number of points within the point cloud. PEARL

method aims to minimize the function of energy and is generally

possible through fewer iterations. PEARL is suitable for obtaining

multiple models without disregarding the previously used data in

subsequent iterations.

Geometric multi-model fitting using PEARL can be

formalized through an optimal labeling problem, where each

data point p belongs to a separate label, Lp. The PEARL

algorithm was designed for multi-model extraction that

minimizes the energy function E(L) by labeling L as

{Lp |p ∈ P}, as follows (Isack and Boykov, 2011; Delong et al.,

2012).

E(L) � ∑
p

����p − Lp

���� + λ ·∑(p,q)∈Nωpq · δ(Lp≠ Lq) (3)

The first term on the right side of Eq. 3 represents a geometric

measurement of the data, which is calculated using the distance

errors between points assigned to the label and the associated

model; p is a point belonging to dataset P, Lp is the label

associated with point p, including the model parameter, and

‖p − Lp‖ represents the Euclidean distance between a point and

its associated label. As this distance decreases, the probability of

extracting the model by using Lp to which point pis assigned,

increases. By contrast, as the distance increases, the probability

decreases, and the label associated with point pmay also change.

The second term of Eq. 3 is used for smoothing, where N
represents a set of neighboring points, (p, q) ∈ N indicates that

points p and qare neighboring points, and Lp and Lqare the labels

associated with p and q, respectively. The value of δ(Lp≠ Lq) is
0 when Lp and Lqare assigned to the same label, and 1 when they

are assigned to different labels. Thus, a discontinuity penalty is

applied when neighboring points are assigned to different labels,

and assigning neighboring points to the same label is encouraged.

FIGURE 1
Schematic diagram of the original Propose, Expand, and Re-
estimate Labels (PEARL) algorithm.
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The weight of the discontinuity penalty, ωpqis expressed as

follows.

ωpq � exp −
����p − q

����2
ξ2

(4)

where ξ and λ are empirical constants and ‖p − q‖represents the
Euclidean distance between points p and q.

The original PEARL algorithm comprises three steps:

propose, expand, and re-estimate. A simplified flowchart of

the algorithm is shown in Figure 1. The operations in each

step can be summarized as follows.

1) In the propose step, the data are randomly sampled as in

RANSAC to generate the initial label set (Lo) for a predefined

number of models.

2) In the expand step, α-expansion (Boykov et al., 2001) is

performed using an arbitrary label, α, assigned to a generated Li
for energy minimization using Eq. 3. In this step, the spatially

consistent label containing the largest number of inliers is

obtained through expansion between labels.

3) During the operation of the iterative algorithm, if energy

minimization is not achieved during the expand step, then the

output of the final label is required, followed by the termination

of the algorithm.

4) In contrast, if energy minimization is achieved, the points

assigned to each label are used for re-estimation. The existing

label set and model parameters are then replaced by a new label

set that satisfied the following equation.

L̂i � argmin
l

∑
p∈P(Li)

����p − l
���� (5)

where P(Li) � {p |L(p) � Li}represents the set of points

passigned to label Li,followed by a return to the expand step

using the re-estimated labels in the next iterative step: i � (i + 1).
Although the conventional PEARL algorithm is suitable for

extracting multi-models from a point cloud, extraction in a full

3D domain using image processing has received limited attention

to date. Considering that event location data acquired from the

surface include complex and sporadically generated point clouds

with many outliers, optimal model extraction is challenging,

particularly in terms of increased computation time.

2.3 GARNET algorithm

In this study, the efficiency and accuracy of the original

PEARL algorithm were improved for fracture imaging using only

the seismic event location and fracture orientation data. The

developed algorithm is named as geometric model-fitting

algorithm for fracture network (GARNET). In contrast to the

original PEARL estimation model, which relies solely on the

distances between points and labels, the fracture estimation

approach is expected to enhance the model accuracy and

reduce the computation time by incorporating fracture

orientation data, which can be obtained by analyzing the

moment tensor of seismic data recorded by a receiver. This

tensor is a mathematical expression of the seismic source, where

the displacement at an arbitrary point x at time t, uj(x, t) is

represented as the convolution of the second-order moment

tensor Mnk and the Green’s function Gjn,k(Aki and Richards,

2009), which is expressed as follows.

uj(x, t) � Mnk *Gjn,k (6)

The moment tensor is symmetrical and comprises six

elements characteristic of its source. It is a valuable tool for

monitoring earthquakes and microseismic activity because the

source mechanism and fault orientations (strike, dip, and rake)

can be obtained through its inversion.

Fracture models are created using orientation data acquired

from the moment tensor as additional input, employing an

algorithm capable of processing such data. Therefore, the

orientations associated with a microseismic event and those

estimated using the fracture model can be compared to

evaluate the accuracy and reliability of the orientation data.

The use of orientations that are representative of the event

associated with the fracture model represents a faster and

more reliable method for comparing the orientations

estimated using a model and those of a seismic event.

Therefore, methods for calculating the statistical parameters

(e.g., mean and variance) of the orientations of multiple

events are required. However, circular measurements, such as

strike and dip, exhibit fundamentally different characteristics

from those of linear measurements. The angles of 0° and 360°

represent the same strike orientation, although at opposite

locations on a linear scale; therefore, circular measurements

require specific analytical methods. In this study, statistical

methods (Fisher, 2005; Mardia and Jupp, 2009) were applied

to calculate orientations using the following equations.

C � ∑m
p�1

cos θp, S � ∑m
p�1

sin θp, R
2 � C2 + S2 (R≥ 0) (7)

where m is the number of orientations in a group and θ is the

strike/dip angle associated with the event. The mean orientation
�θ is the average of all orientations, and is calculated as follows.

cos �θ � C

R
, sin �θ � S

R
(8)

�θ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan−1(S
C
) S> 0, C> 0

tan−1(S
C
) + π C> 0

tan−1(S
C
) + 2π S< 0, C< 0

(9)

The quantity R is the length of the resultant vector, and the

mean resultant length associated with the mean direction is

expressed as follows.
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�R � R

m
(10)

These equations can be used to compare the strike/dip angles

of multiple events with the estimated fracture orientations.

2.3.1 Initial model and label
In RANSAC, a model satisfying the given constraints is

ultimately selected from among randomly extracted models,

whereas in GARNET, all randomly generated fracture models

are utilized as initial model and associated points are assigned as

initial labels. Generally, a higher number of initial random

models produce better results. However, rather than

increasing the number of models infinitely, predetermining

which models involve similar fracture orientations can

enhance the accuracy of the results and reduce computation

time. Accordingly, the initial label sets were randomly generated

within the point cloud by applying a loose distance threshold to

the original RANSAC method. The angular difference between

the normal vector of the generated plane and mean angle of the

events belonging to the plane is calculated as follows.

θt � cos−1( vm · vf
‖vm‖

����vf����) (11)

where vf is the normal vector of the plane, vm is the normal

vector of the points in the plane, and θt is the angle between the

normal vectors.

The minimum angle between the normal vectors was

calculated as follows.

θm � min{θt, π − θt} (12)

Planes exceeding the threshold were eliminated before

reconstructing an initial label set with enhanced reliability to

determine fracture orientations.

2.3.2 Moment tensor clustering and model
elimination

Using the original PEARL algorithm, the energy calculated

using Eq. 3 following α-expansion was based on the distance

between each label and the microseismic event locations assigned

to each label; thus, the fracture orientations at event locations

were neglected. Many event points were associated with a label

based on distance, but exhibited significantly different strike or

dip angles relative to the other points. To resolve this issue, a

clustering method is applied to the point orientations assigned to

each label.

Clustering is a widely used unsupervised learning method

that produces data clusters by considering the characteristics of

the data, yielding specific points or variables that are

representative of the data. Thus, a cluster contains data with

similar characteristics, whereas data with different characteristics

are classified as different clusters or noise. In this study, the

density-based spatial clustering of applications with noise

(DBSCAN) method (Ester et al., 1996) was applied to

orientation clustering. Unlike other clustering methods that

rely on the K-means or similar distance algorithms, DBSCAN

is advantageous because it does not require the user to designate

the number of clusters. Because of these advantages, it is a

clustering algorithm used in various fields such as radar data

(Guo et al., 2020), fault diagnosis (Liu et al., 2020), and visual

analysis (Chebi et al., 2016).

The DBSCAN algorithm expands the cluster by finding close

data that meet the conditions in the initial data, where the input

parameters are the number of neighbors needed to define the

dense region (MinPts) and the distance representing the

neighborhood (ε). Using these parameters, the data were

classified into three types: if the number of points within a

neighborhood with distance εexceeded the minimum, then

such a point was designated as a core point. After a core

point was located, data within its neighborhood were defined

as connected points or other core points. If a data point was not

connected to a neighbor, it was designated as a border point.

Finally, the data in clusters that were neither core nor border

points were designated as noise.

The DBSCAN method was applied to the strike and dip

angles of points assigned to labels before the re-estimation

step. While extracting the cluster with the most points, the

consistency of the direction was improved by excluding other

clusters or outliers that deviated from trends, such as noise.

However, clustering cannot determine whether the orientation

value at a location is consistent with that estimated using the

model. Therefore, the method of selecting the initial model by

comparing the orientation of the points belonging to labels and

those of the plane models described above was applied to

exclude models with large orientation errors. This process

significantly improves the accuracy of the orientations of the

fracture model.

Labels with a number of location points higher than the

threshold number were retained, and those with lower

points were excluded. Although such a constraint is not

mandatory, it lowers the computation time during the

iterative algorithm operation, thereby promoting faster

energy convergence.

2.3.3 Model merging
After the re-estimation step, the usability of the algorithm

was enhanced via appropriate post-treatment. If two plane

models are separated from other labels owing to the

inadequate spatial distribution of location points despite high

connectivity, these planes cannot be merged using Eq. 3.

Therefore, a process for connecting models with similar

parameters is required. The algorithm was set to merge planes

if the distance between the two plane models and the differences

between the normal vector angles of each plane satisfied these

conditions. Thus, fracture plane models with enhanced

connectivity between the points were extracted.
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2.3.4 Outlier labels
It is generally difficult to utilize all the data from seismic

monitoring during fracture model generation. The acquired data

can contain insignificant signals such as noise caused by

mechanical problems and uncertainties during data

processing. In addition, not all accurately recorded seismic

activities are associated with fractures. These points were

defined as outliers during the fracture imaging process and

were assigned to a specific label, ϕ. Accordingly, the energy

function E(L) in equation (3) is redefined as follows

E(L) � ∑
p

����p − Lp

���� + λ ·∑(p,q)∈Nωpq · δ(Lp≠ Lq) + φ
�����pϕ − Lϕ

�����
(13)

where φ is an empirical constant reflecting the weight of the

outlier energy, whereas for ‖pϕ − Lϕ‖, all outliers are associated
with the constant, unlike the geometric terms. Thus, the outlier

term is a uniform label.

The outlier label also included points assigned to label that

were excluded because they failed to satisfy the criteria of the

initial model selection process and those that were removed from

the labels because they were outside the selected cluster during

orientation clustering. However, these points may include

significant data that can demonstrate fracture connectivity,

but are excluded because they were not assigned to a suitable

label during the algorithm operation. Therefore, new fracture

models were searched for outlier label after the re-estimation step

to allow reassignment of some outlying points to labels rather

than outliers.

2.3.5 Flowchart of algorithm
A flowchart of the developed algorithm, GARNET, is

shown in Figure 2. The main steps are summarized as follows.

1) Initial label sets (L0) are generated from the given data

by random sampling, using the maximum number of

predefined models possible. The initial model generation

should incorporate the maximum number of possible

FIGURE 2
Schematic diagram of the GARNET algorithm.

FIGURE 3
Synthetic experiments to verify the effect of orientation on
fracture plane extraction. (A) True model consisting of six fracture
planes and (B) 200 randomly distributed points from each fracture
plane with low ratios of location errors.
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points. In this study, the RANSAC algorithm was used to

rapidly generate the initial models and assign points to initial

labels.

2) The orientations of the generated fracture model from

label and those of the points assigned to the label are compared to

eliminate insignificant data showing large angle-value

differences. In this study, the angle was calculated using the

difference between the normal vectors.

3) For energy minimization, α-expansion is performed using

Eq. 3. In this step, the spatially consistent label that includes the

highest number of inliers is obtained through expansion between

labels.

4) If energy minimization is not achieved in step 3), the final

labels are output and calculate the errors between their normal

vector angles of plane and point. Conversely, the iterative

algorithm operation was continued.

5) When the energy decreases, DBSCAN is used to cluster

the orientations of the points assigned to each label for

classification. The cluster with the maximum number of

points is extracted and then compared the orientations

from the fracture model and the location points used in

step 2) to eliminate data with large angle differences from

the label.

6) The remaining labels are re-estimated and the existing

label set is replaced with a new set satisfying Eq. 5.

7) New points associated with the fracture models are

extracted from the points assigned to the outlier label.

8) If planes with similar model parameters are present, the

difference between their normal vector angles and distances are

calculated, and the fracture planes satisfying the conditions are

merged. Then we return to Step 3) to restart from the

α-expansion for energy minimization.

FIGURE 4
(A) Initial model created using the Random Sample
Consensus (RANSAC) method with 100 randomly generated
planes. (B) Results of Delaunay triangulation application to the
synthetic data shown in Figure 3B.

FIGURE 5
(A) Result of the re-estimated model in the first iteration
without using orientation data. (B) New plane models for the
outlier label after the re-estimation step.
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3 Numerical experiments

A synthetic seismic dataset was applied to the fracture

network imaging using the GARNET algorithm.

3.1 Orientation angle usability

The principal difference between the GARNET algorithm

and the original PEARL algorithm is the incorporation of

orientation data for accurate model imaging. Therefore, the

effect of orientation on fracture imaging was examined using

an identical point cloud. The synthetic data model was

constructed to include six fracture planes in 80 m × 80 m ×

150 m cubes and approximately 200 randomly distributed

locations per plane, as shown in Figure 3. To reproduce the

measurements and errors during data processing, a standard

deviation (SD) of 2 was applied to the actual points to randomly

alter their locations.

First, the fractures were estimated using only points without

orientations as the synthetic data. The initial model created using

these points, with approximately 100 randomly generated planes,

is shown in Figure 4A. Instead of using three points to generate

numerous initial models, the RANSAC algorithm was used to

promote the rapid assignment of points to labels. The value of

threshold distance was 2 and each plane was generated using at

least four points.

To calculate the energy, the smoothing term in Eq. 1

requires clear information about the neighborhood from

which the data are collected. In this study, the Delaunay

triangulation method was used to reproduce the

neighborhood system of the data, and the results are shown

in Figure 4B. The first iteration of the re-estimated model is

shown in Figure 5A. Compared with the initial model, the

number of insignificant planes decreased significantly after the

expansion and re-estimation steps, indicating that the points

switched labels. Images of the fracture model created after the

re-estimation step incorporating outlier labels are shown in

Figure 5B. New models were also investigated using points that

were excluded from the existing label during the algorithm

operation, thereby producing several models that were added to

the existing labels.

The result of fracture modeling without orientation data are

shown in Figure 6. Although convergence was achieved after only

four iterations, 10 planes were estimated, demonstrating an

overestimation compared to the actual fracture planes shown

in Figure 3A. The estimated fracture orientations of many planes

FIGURE 6
Result of fracture modeling without orientation data. The
extracted planes were overestimated compared to the true model
shown in Figure 3A.

FIGURE 7
(A) Initial model removing planes with large angular
differences between planes and locations. (B) Results of
orientation clustering after energy reduction.
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differ from the actual orientations. The errors associated with the

strike and dip angle of plane estimates were 20.23% and 24.63%,

respectively. If the actual fracture pattern is partially known, then

it is safe to assume that statistical estimation is possible after

multiple iterations, as long as the input parameters are

adequately controlled. However, the accuracy of the

orientations of the modeled fractures cannot be guaranteed.

Next, the fractures were modeled by integrating the

orientation data with the location points as input data in the

GARNET algorithm and applying these data to the synthetic

model shown in Figure 3. After the initial model selection and

energy calculation, the orientation clustering step was added to

the estimationmethod, using only the location points. The results

of eliminating models using orientation data with

differences ≥30° between the plane orientation and the mean

angle of the location points after the initial model was generated

are shown in Figure 7A, confirming that the randomly generated

initial model exhibited sorting consistent with the actual fracture

pattern based solely on the selection process.

During subsequent energy calculations, orientation

clustering was performed for each label if the energy

decreased; the result confirmed the presence of clusters with

different orientations within the same label (Figure 7B). This

indicates that the application of energy optimization for distance

can produce inaccurate fracture models. Therefore, the cluster

with the most points was extracted and retained after clustering,

whereas all other points were excluded from the label.

The result of fracture modeling using orientation data are

presented in Figure 8. Convergence was achieved after only three

iterations, and the number and orientation of the modeled

fracture planes were consistent with those of the actual

fracture model (Figure 3A). The errors of the plane shown in

the result were 1.32% and 0.83% for the strike and dip,

respectively. When the orientation data were missing, the

number of iterations was lower and the computation time was

reduced. These results confirm that fractures were modeled more

rapidly and reliably using the GARNET algorithm involving the

orientation data.

3.2 Application to synthetic data including
noise and outliers

The applicability of the GARNET algorithm was verified

using a fracture model. In this subsection, we examine the

FIGURE 8
Result of fracture modeling using orientation data. The
number and orientation of the planes were almost identical to
those of the true model shown in Figure 3A.

FIGURE 9
Synthetic experiments to verify the suitability of the GARNET
algorithm for location data including outliers. (A) True model
consisting of 10 fracture planes, (B) 100 randomly distributed
points from each fracture plane with high ratios of location
errors and 500 outlier points independent of the microseismic
event.
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suitability of the algorithm for modeling fractures when the

locations cannot be accurately expressed owing to the

presence of many errors and outliers unrelated to fractures in

the acquired data. The synthetic data model comprises

10 fracture planes (Figure 9A), with each plane containing

approximately 100 randomly distributed points. To reproduce

data with many errors, SD values of 6 and ≥12 were applied to the
location and orientation data, respectively, to randomly alter

both parameters. In addition, 500 outlier points that were

unrelated to the microseismic event were randomly generated

(Figure 9B).

The results of the DBSCAN analysis performed on the

orientation of the points assigned to the labels during the

first iteration (Figure 10A) indicate that for fractures

associated with a complex formation process, the

probability of points assigned to the labels belonging to

multiple clusters with diverse orientations and many

outliers is high. The results of the model re-estimation

performed after orientation clustering for the same

number of iterations are shown in Figure 10B. Although

not all fracture planes were identified, a pattern similar to

that of the actual planes emerged, despite many outliers. The

results of the fracture modeling using data, including noise

and outliers, are presented in Figure 11A. The number and

orientation of the modeled fracture planes were not

significantly different from those of the actual fracture

model (Figure 9A). The errors of the strike and dip angle

estimates were 1.89% and 1.64%, respectively.

FIGURE 10
(A) Result of orientation clustering using the density-based
spatial clustering of applications with noise (DBSCAN) method in
the first iteration. Events associated with labels were classified as
orientation clusters and outliers. (B) Result of the re-
estimatedmodel in the first iteration. Extracted planes were similar
to those of the true model from among data with many outliers.

FIGURE 11
(A) Result of fracture modeling using the GARNET algorithm
for data containing high noise levels and many outliers. (B) Energy
values obtained after each iteration were minimized in the third
iteration.
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The energy decreased rapidly during the iteration, and the

optimal fracture model planes were estimated through energy

minimization within three iterations (Figure 11B). These synthesis

model results confirmed that the fracture models were robustly

estimated using the proposed GARNET algorithm, despite the

inclusion ofmany locationmeasurement errors or outliers in the data.

FIGURE 12
(A) Microseismic events detected by The Geysers broadband
and geophone network in the vicinity near the injection site,
adapted from Gritto et al. (2018). (B) Microseismic data were
monitored by 34 permanent and 33 temporary geophones;
752 microseismic events were evaluated.

FIGURE 13
(A) Fracture network imaging results obtained using the
GARNET algorithm with microseismic location and orientation
data. (B) Statistical representation of the generated fracture
network below production well (red) and injection well (blue),
adapted from Gritto et al. (2018).
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4 Application to field microseismic
data

To investigate the applicability of the developed algorithm to

field microseismic data, it was utilized data acquired during the

Geysers Enhanced Geothermal System (EGS) resource

development project in California, USA as shown in

Figure 12A. This project was conducted to enhance the

technology for assessing the temporal changes and volumetric

distribution of fluids introduced during resource development, as

well as field stress magnitudes, fracture sizes, and orientations.

Using a network comprising 34 permanent geophones, high-

frequency seismic data were acquired as broadband data using a

temporary network containing 33 geophones. The analysis of the

acquired data revealed 752 microseismic events (Gritto et al.,

2018), as shown in Figure 12B.

During the fracture network modeling, orientation clustering

was performed for each label by applying the GARNET algorithm

to the field data. The ε and MinPts values were 2 and 3,

respectively, and the result of fracture network produced is

shown in Figure 13A. The angle of the normal vector for

convergence was set to 15°, and the fracture planes were

obtained via energy convergence after only three iterations. The

estimated number of fracture planes was 6, and the errors

associated with the strike and dip angle estimates were 2.89%

and 2.83%, respectively. All fracture planes produced strike values

of N10°E-N30°E and a dip of 75°–85°, with no overlapping

orientation. The statistical representation result of the fracture

network using the same microseismic event data are presented in

Figure 13B (Gritto et al., 2018). The rupture area is shown by the

size of the circle; the colored points at the hypocenters represent

the moment magnitude of the event. The estimated orientation of

the rupture area is almost similar to the orientation estimated by

GARNET with a strike of N10°E±10° and a dip of 80°±10°.

These results demonstrate that the fractures progressed

along a particular orientation owing to hydraulic fracturing

in the boreholes. Because data with inconsistent

orientations or insufficient points are eliminated by

orientation clustering, network modeling is simpler.

These results confirm the suitability of the algorithm for

orientation and location data in the rapid and accurate

modeling of field data involving major fracture plane

networks.

5 Conclusion

The GARNET algorithm was developed as an improved version

of the PEARL algorithm, and then used for fracture network imaging.

The GARNET algorithm exploits the location data acquired during

microseismic events or earthquakes, and orientation data obtained

from the moment tensors of associated events. The function of this

algorithm improves the location accuracy of the estimated fracture

plane by generating and reproducing labels based on the energy

differences between locations. In addition, clustering using DBSCAN

was applied to the orientation angle to improve the reliability of the

extracted fracture direction.

Synthetic data suitable for simulating microseismic

events were used to assess the performance of the

algorithm. A synthetic fracture model relying solely on

location data exhibited poor accuracy in estimating the

number and orientation of the fracture planes. Conversely,

the number and orientation of the fracture planes obtained

using the proposed algorithm incorporating orientation data

matched those in the actual data. In the second synthetic

model, fractures were modeled by applying the algorithm to

data with high noise levels and many outliers. The results

demonstrated robust fracture plane estimation with a

negligible impact of errors and outliers, despite few

iterations. The proposed algorithm was also applied to

field data acquired during an EGS resource development

project to assess its utility. The resulting fracture network

modeling process produced strike orientations of

N10°E–N30°E and a dip angle of 75°–85°, with six

representative fracture planes. The errors associated with

the strike and dip angle estimates were 2.89% and 2.83%,

respectively. These results are similar to statistical

representation results, and we validated the suitability of

the algorithm for accurately simulating fracture locations

and orientations in real fracture networks.
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