AUTHOR=Burns Dale H. , de Silva Shanaka L. TITLE=Andesites and evolution of the continental crust: Perspectives from the Central Volcanic Zone of the Andes JOURNAL=Frontiers in Earth Science VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.961130 DOI=10.3389/feart.2022.961130 ISSN=2296-6463 ABSTRACT=
Named for the Andes, andesites (53%–63% SiO2) are the archetypal magma erupted at magmatic arcs. They have been established as the average composition of continental crust and as such are integral to the growth and evolution of the continental crust. However, andesites are quite variable in trace element and isotopic composition reflecting disparate paths of origin. Herein we return to the original site of their identification, the Central Andes, and use a comprehensive dataset of published and unpublished trace elements and isotopes to show that during the past 6 Myr two distinct types of andesite have erupted in the Central Volcanic Zone (CVZ), which correspond with different geodynamic conditions. Consistent with previous work, we confirm that major composite cones and minor centers of the steady state (low magmatic flux) Quaternary CVZ arc have trace element and isotopic characteristics consistent with magma generation/fractionation in the lower crust. Within the Quaternary arc centers, there are also significant latitudinal variations that correspond with the age, composition, and P-T conditions of the lower crust. However, in contrast to this prevailing model, in the 21–24°S segment 6–1 Ma andesites from ignimbrites and lava domes associated with the peak of the regional Neogene ignimbrite flare-up have compositions that indicate these andesites are hybrids between mantle-derived basalts and