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Landslides seriously threaten the safety of human life and property. In order to

predict the on-set of potential landslides, this paper first characterizes the

physical and mechanical parameters of rock mass on the basis of core rock

quality designation identification, the geostatistics interpolation method, and

the Hoek-Brown criterion. Then, the rock-mass physical and mechanical

parameters characterization model was transformed to the slope numerical

models, and the characteristics of potential landslides were predicted

combined with the monitoring data and numerical simulation. Finally, on the

basis of pairing between potential- and historical landslide cases, an early-

warning indicator of a potential landslide was set as a posterior indicator of a

historical landslidewith the highest similarity. The results show that the potential

landslide mode of the west and the southwest slope of the Wushan open-pit

mine, the case study considered here, was a single-step wedge landslide and an

integral-incline landslide. These two types of landslides were found to be most

similar to those in the Anjialing open-pit mine and the Fushun West open-pit

mine. Based on the posterior-warning indicator of the most similar landslide

cases, the warning indicators of the west and southwest slope are set as

12.7 mm/d and 135.2 mm/d. The proposed method here provides a

reference for the establishment of early-warning indicators for landslides in

open-pit mines.
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1 Introduction

In recent years, with the depletion of shallow resources, a large

number of open-pit mines have begun to switch to deep-pit mining.

The increase in the slope height of open-pit mines will undoubtedly

increase the risk of landslides and the associated accidents. Therefore,

it is of great practical significance to carry out research-based studies

on developing warning methods that may assess the slides

(landslides) of the slopes in open-pit mines to reduce the loss of

personnel and property in the process of such mining activities.

Whilst considering the complexity of the properties of the

rock and their respective geological environments, this warning

on the failure of the rock slope that leads to landslides must be

realized by combining monitoring such sites with the commonly

used data-analysis and landslide-warning methods, such as the

statistical induction method, the nonlinear theory method, and

the artificial intelligence method.

The statistical-induction method assesses the future

development trend of the slope based on the statistical law

obtained from the historical landslide phenomenon. For

example, Xu et al. (2011) proposed an improved displacement-

time curve on the basis of the tangential angle of the slope, and

used it to forecast slope failure time, and found that the rock

landslides become irreversible once this angle exceeded 85. Loew

et al. (2017) determined the early-warning threshold through the

fitting of a creep-curve on the basis of recorded data on historical

landslides in the Alps, and successfully predicted the onset of

landslides in the same region in 2012. In addition, quite a few

studies combined creep theory with numerical simulation to

analyze and forecast the mechanical response behavior, and the

time of the landslide and failure of the rock slope (Xu et al., 2014;

Cui et al., 2021; Li et al., 2022.; Li et al., 2021a, b; He and Kusiak,

2017; Zhou et al., 2021).

With the development of system- and nonlinear-science,

nonlinear theory was introduced to analyze landslide disasters,

and many landslides forecast models were proposed based on the

catastrophe-, chaos-, and the renormalization-group theory.

Zhang et al. (2015) proposed an improved strain-energy

catastrophe criterion by using the catastrophe theory, and

concluded that the stability of the system under consideration

could be determined by the catastrophe characteristic values after

regularizing the potential function. Xue et al. (2013) established a

deforming prediction model of chaotic neural network in the

slope rock-mass, on which basis a high-accuracy prediction of

slope deformation was developed. Due to the complexity of

landslide evolution and the variability of external

environment, however, it was still difficult to establish the

nonlinear dynamic equation of the process that may have led

to the formation of the landslide (Qin et al., 2006; Liu, 2013).

With the rapid development of artificial intelligence technology

in recent years, its application has been conducted in early-warning

systems related to landslides. For example, Niu (2020) took the

lithology, the void ratio, the water content, the liquid index, the

slope, and the slope-height factors of rock-soil contact zone in

southern Shaanxi as inputs and established an early-warning safety

model based on neural network. It was found that the prediction

results of the model fit well with the actual results, and hence could

be used to predict landslide-related geological disasters in the rock-

soil contact zones in mountainous areas.

Creep model is suitable for medium and long-term

forecasting, but its disadvantage is that it does not account for

the trigger factors. The curve-fitting and the nonlinear-theory

methods forecast the trend of future data according to the

characteristic changes of the documented historical data,

which are suitable for forecasting. For algorithms that may be

considered intelligent or have a very good predictive power, not

only a large number of training samples are needed, but also

some input parameters should be determined according to the

theory of rock mechanics, and the best possible experience(s)

related to the engineering practices, which together may result in

developing early-warning systems, that do not get severely

compromised by gaps in theoretical calculations.

So far, a large number of landslide cases have occurred in

open-pit mines, and it is important to fully analyze these cases.

The engineering analogy method used in slope design is kind of a

simple comparative analysis of cases, but there is still a lack of an

in-depth analysis of such cases. Therefore, it may follow that

landslide cases and engineering experience from such cases into

knowledge, which may lead to development of models that have

the capacity to predict the onset of landslides, is key to scientific

and reasonable warning of landslides.

In this study, we have attempted to characterize the Wushan

open-pit mine rock-mass mechanical parameters based on the

RQD (rock quality designation) identification of the core of

boreholes. Then, the potential landslide characteristics were

predicted by numerical simulation. Based on the landslide

case-matching, early-warning indicators of potential landslides

in the Wushan open-pit Mine was established.

2 Project profile

The copper-molybdenum open-pit mine at Wushan is located

at Xinbaerhu Right Banner, Inner Mongolia Autonomous Region,

China. The mining area is 9.84 km2 in area, and the annual

processing capacity of the mine is 2.475 million tons. The

current height of the slope is more than 240 m, the overall

slope angle is 43–45, and the step-slope angle is 65.

Under the influence of mining disturbance and rock-joints,

the stability of the rock-mass has become very unstable, several

local, failures of the slopes and landslides have occurred in the

west and south slopes of the open-pit mine (Figure 1).

In order to monitor the stability of the west and south slope

in real time, we established a ground-based radar (GBR), and its

installation position is shown in Figure 2. The GBR is IBIS-Pover

radar monitoring equipment produced by IDS GeoRadar.
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3 Characterization of the rock-mass
mechanical parameters

3.1 Identification and characterization and
model-establishment of RQD

Cores of 160 geological survey boreholes (shown in

Figure 2) with a total length of 64,000 m were

photographed, and 9,605 core digital images were

obtained. Automatic identification of RQD, on the basis of

digital images of the core, were transformed into a deep-

learning problem of case segmentation. Then the Mask

R-CNN deep-learning network was used to identify the

core segments with lengths greater than or equal to 10 cm

from the core images (Liu et al., 2021), and calculate the RQD

values of cores with different depths according to the

following formula Eq. 1 and these formed the logging of

the RQD borehole database. The RQD values of a few

boreholes are shown in Figure 3.

RQD �
∑m
i�1
li

Lc
× η × 100% �

∑m
i�1
ni

Nc
× η × 100% (1)

where m is the number of core segments with a length ≥10 cm, li
is the length of ith core segment with a length ≥10 cm, Lc is the

total length of a single row of cores, ni is the number of pixels on

the axis of ith core segment with a length ≥10 cm, Nc is the

number of pixels on the axis of a single row of cores, and η is the

core recovery rate, defined as the ratio of core length to the actual

drilling footage, which is recorded during the construction of the

drilling process.

The copper-molybdenum ore at Wushan is a hydrothermal-

magmatic deposit, and the anisotropy of rock mass is not

obvious; due to this, the anisotropy of the semivariogram of

RQD was not considered. Since the exploration line spacing was

100 m, it was difficult to establish the omni-directional test

semivariogram and, hence along the hole, a test

semivariogram was used to characterize the spatial variability

of RQD. The experimental and the semivariograms fitted by the

spherical model are shown in Figure 4.

Based on the RQD borehole database, the RQD block

model with uneven spatial distribution can be established by

ordinary Kriging interpolation (Figure 5), in which the

nugget value of the semivariogram was 5.5, the base value

was 5.6, and the variation range was 250 m. The

representative elementary volume scale of the jointed rock

FIGURE 1
Rock mass failure and landslide in Wushan Open-pit Mine. (A) Rock-mass failure in the west slope; (B) Landslide in the south slope.

FIGURE 2
The position and the monitoring scope of GBR and locations
of the borehole.
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mass generally ranges between 7 and 10 m (Huang et al.,

2020). Considering that the bench height of the Wushan

open-pit mine is 15 m, the shape and scale of the block unit

was set as cube and 15 m.

3.2 Establishment of rock mass
mechanical parameter characterization
model

According to Hoek et al. (2013), the relationship between the

geological strength index (GSI) and RQD can be expressed as

follows (Eq. 2):

GSI � 1.5JCond89 + RQD/2 (2)

where JCond89 is related to the grade conditions of the surface of

the structural plane of the rock mass, which can be obtained by

field observation of the outcrop joints of the rock mass and the

quantitative method shown in Table 1.

Based on the generalized Hoek-Brown criterion (Hoek and

Brown, 2019), and GSI parameters, mb, s, α values, the

mechanical parameters of rock mass can be obtained, which

can all be expressed as in the following (Eqs 3–6):

σ1 � σ3 + σci(mb
σ3
σci

+ s)α

(3)

FIGURE 3
Automatic identification of RQD based on core digital image.

FIGURE 4
Semivariogram of RQD.

FIGURE 5
RQD block model.
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mb � mi exp(GSI − 100
28 − 14D

) (4)

s � exp(GSI − 100
9 − 3D

) (5)

α � 1
2
+ 1
6
(e−GSI15 − e

−20
3 ) (6)

where σ1 and σ3 are the major and minor principal stresses,

respectively, σci is the uniaxial compressive strength of the intact

rock that constitutes the rock mass,D is a factor which depends upon

the degree of disturbance to which the rock mass has been subjected

(for instance, during and after blast damage and stress relaxation),mi

is amaterial constant for the intact rock that constitutes the rockmass.

The elastic modulus of rock mass can be calculated by Eq. 7:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Em(GPa) � (1 − D

2
) ���

σci
100

√
10
(GSI−10

40 )
σci < 100MPa

Em(GPa) � (1 − D

2
)10(GSI−10

40 )
σci > 100MPa

(7)

If the Poisson’s ratio of the intact rock and the rock mass are

assumed to be the same, then both the Lame constant and the bulk

modulus can be obtained. The friction angle and the cohesion index

of the rock mass can be obtained according to Equations 8-10:

ϕ′ � sin−1⎡⎣ 6αmb(s +mbσ′3n)α−1
2(1 + α)(2 + α) + 6αmb(s +mbσ′3n)α−1⎤⎥⎥⎦ (8)

c′ � σci[(1 + 2α)s + (1 − α)mbσ′3n](s +mbσ′3n)α−1
(1 + α)(2 + α)

���������������
1 + 6αmb(s+mbσ′3n)α−1

(1+α)(2+α)

√ (9)

σ′3n � σ′3max

σci
(10)

where σ′3max is the upper-limit value of the limiting stress of the

relationship between the Hoek-Brown criterion and the Mohr-

Coulomb criterion, which is determined by Eq. 11:

σ′3max

σ′cm
� 0.72( σ′cm

ρgH
)−0.91

(11)

where σ′cm, ρ, g, and H are the compressive strength of the rock

mass, the density of rock mass, the acceleration of gravity, and

height of the slope.

Combined with the actual engineering geological conditions

and the mechanical parameters of the intact rock block (Table 2),

RQD block model can be transformed into a rock-mass mechanical

parameter block model (Figure 6) by Eqs 2–11. In addition, the

block model can be directly transformed into a structured finite-

element mesh for subsequent numerical simulations.

As shown in Figures 6A,B, the bulk modulus and the cohesion

of the rock mass in the open-pit mine at Wushan are distributed in

the range of 0–8.1 GPa and 0–750 kPa, respectively, and the spatial

distribution of the mechanical properties of the rock mass is very

uneven. In general, the mechanical properties of the shallow parts

are lower than those of the deeper parts. As shown in Figures 6C–F,

the distribution of the mechanical properties inside the slope can be

observed through the sections of the west and southwest slopes.

Inside the west slope, the bulk modulus and the cohesion of the

upper part is lower and increases with depth, while the same of the

lower part is higher and also more random. Inside the southwest

slope, the bulk modulus and the cohesion in the back side is lower

than of the same in the front side.

4 Analysis of potential landslide
characteristics combiningmonitoring
and simulation

The 2D rock-mass mechanics parameters block models of

the west and the southwest slopes was transformed into a

structured 2D finite-element mesh, and the mesh was further

refined for numerical simulations. Displacement constraints,

perpendicular to the bottom and the side boundaries of the

numerical model, were applied, respectively. The Mohr-

Coulomb strength criterion was adopted in the numerical

simulation.

Based on the slope displacement monitoring results by the

ground-based radar, distance-power inverse-ratio method was used

TABLE 1 Definition of JCond89 after bieniawski (1989) and (Singh and Goel, 2011).

Structural plane condition Fractional number

Rough wall, discontinuity, no opening, no weathering 30

Wall slightly rough, opening less than 1 mm, slightly weathered 25

Wall slightly rough, filling less than 5 mm, opening less than 1 mm, slightly weathered 20

Smooth wall, opening 1–5 mm, continuous surface distribution 10

Soft filling greater than 5 mm, opening greater than 5 mm, continuous distribution of structural plane 0
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to calculate the displacement at each mesh-node of the numerical

model, and then the displacementwas added to eachmesh-node as the

initial displacement boundary condition. Using a method based on a

reduction in strength, the potential landslide mode, the sliding surface

angle, and the current safety coefficient were forecast (Figure 7), which

provided the analogical factors and the constraint conditions for the

establishment of landslide warning indicators.

The depth of the sliding surface was determined by the

average distance between each point on the sliding surface and

its vertical upper slope. The simulation results show that

single-step landslide with a 10 m depth-sliding surface may

occur at the west slope (Figure 7A), and an overall landslide

with more than a 60 m height slip-mass and more than a 15 m

depth-sliding surface may occur at the southwest slope

(Figure 7B). Combined with the historical landslide

(Figure 1), and the simulation results, it may be inferred

that the potential landslide mode of the west slope would

be a single-step wedge landslide, whilst the potential landslide

model of the southwest slope would be a large-scale incline

landslide.

TABLE 2 Mechanical parameters of intact rock.

Lithology Density
(kg/m3)

Uniaxial
compressive
strength (MPa)

Modulus of
elasticity
(GPa)

Poisson’s
ratio

Cohesion
(MPa)

Internal
friction
angle (°)

Suballergenic breccia lava 2.62 120.46 15.37 0.18 27.068 43.77

Biotite granite 2.62 140.83 17.78 0.31 30.15 44.12

Subplagioclase granitic
porphyry

2.58 63.21 9.98 0.29 14.422 44.5

FIGURE 6
3D block model of the rock-mass mechanical parameters. (A) Bulk modulus of the 3D block model; (B) Cohesion of the 3D block model; (C)
Bulkmodulus profile of thewest slope; (D)Cohesion profile of thewest slope; (E) Bulkmodulus profile of the southwest slope; (F)Cohesion profile of
the southwest slope.
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5 Construction of landslide warning
indicators

5.1 The construction principle of landslide
early-warning indicators based on case-
matching

A total of 48 typical open pit landslide cases were collected

and described quantitatively from three type features: mechanical

mechanism, slope structure, and engineering geology (Table 3).

The mechanical mechanism includes three secondary factors:

landslide mode, angle of the sliding surface, and the condition of

the sliding surface. The structure of the slope includes three

secondary factors: the angle between the dominant structural

plane and slope, rock-mass quality grade, and the slope angle.

The engineering geology feature include three secondary factors:

the thickness of the loose and weathered layer, the groundwater

level, and the rainfall. Then, each landslide case can be

FIGURE 7
The potential landslide simulation. (A) West slope (safety factor: 1.12); (B) Southwest slope (safety factor: 1.07).

TABLE 3 Reference score of the landslide feature.

Score Mechanical mechanism Slope structure Engineering geology

Type
of landslide

Sliding
surface
angle
(°)

Sliding
surface
condition

Angle
between
structural
plane
and slope
(°)

Rock
mass
quality
(GSI

Slope
angle
(°)

Thickness
of loose
weathered
layer(m)

Groundwater
level(m)

Rainfall
(mm)

1 Plastic flow-
tensile

0–10 0, 1, 2 0–10 0–10 0–10 0–5 0–5 0–10

2 Plane failure-
tensile

10–20 3, 4 10–20 10–20 10–20 5–10 5–15 10–25

3 Plane failure 20–30 5, 6 20–30 20–30 20–30 10–20 15–30 25–50

4 Slip-split
failure

30–40 7, 8 30–40 30–40 30–40 20–30 30–60 50–100

5 Slip-flexural
failure

40–50 9, 10 40–50 40–50 40–50 30–45 60–100 100–250

6 Wedge failure 50–60 11, 12 50–60 50–60 50–60 45–60 >100 >250
7 Block toppling 60–70 13, 14 60–70 60–70 60–70 60–80

8 Flexural
toppling

70–80 15, 16 70–80 70–80 70–80 80–100

9 Block flexural
toppling

80–90 17, 18 80–90 80–90 >100

10 Circular failure

Notes: Sliding surface condition refer to SCR (surface-condition rating) in RMR (rock mass rating) method.
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represented as a score vector with nine features according to

Table 3, Fi j = [fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8, fi9] and i = 1,2, . . . k,

where i is the serial number of landslide cases in the database. The

score vector, Gj, of a potential landslide (target landslide) of the

open pit at Wushan can then be established.

Before case matching, the weight of each of the feature

attribute was determined for the target landslide. The

neighboring, comparative matching-method was used to

determine the weight vector (Snyder, 2001). The weight-vector

of the potential-wedge landslide in the west slope of the open-pit

mine is [21.8%, 14.0%, 10.9%, 10.0%, 10.0%, 10.0%, 7.8%, 5.4%,

10.1%], and the integral-incline landslide in the southwest slope

is [24.91%, 9.34%, 12.45%, 11%, 10%, 9%, 7.80%, 5.40%, 10.10%].

Each landslide case in the database was compared with the

target landslide to find the most similar landslide cases. After

getting the score vector, Fij, of each case in the database, and

obtaining the score vector, Gj, and the weight vector, µ, of the

target landslide, the matching vector,Di, was calculated (Eq. 12 as

follows (Liu et al., 2021):

Di �
min(Gj, Fij)
max(Gj, Fij) (12)

where i = 1,2, . . . k and j = 1,2, . . . 9.

The similarity, Si, between the target landslide and the slope

landslide case was calculated as follows (Eq. 13):

Si � μ ·Di (13)

The landslide case that is closest to the potential landslide of

the open-pit mine can be obtained by a similar quantification.

which can provide a basis for determining the warning threshold

of a potential landslide at the mine at Wushan.

5.2 Construction of landslide early
warning indicators of wushan open pit
mine

Each index score for the west and the south slope is listed in

Table 4. The type of the landslide and the sliding-surface angle

were determined by simulations as described in Section 4. A

least-square method was used to linearly fit the sliding surface,

and the angle between the fitting line and the horizontal plane

was the angle of the sliding surface. The sliding-surface condition

and the structural-plane angle were obtained by field

observations of the outcrop joints of the rock mass. The rock-

mass quality was determined by Eq. 2 and the block model in

Figure 5. The slope angle, the groundwater level, and the depth of

the weathering zone were determined by the engineering-

geological and the design data. The rainfall was determined by

the on-site rain-gauge monitoring.

According to Table 4, the most similar cases with the

potential landslide of the Wushan-type open-pit mine with
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the west and southwest slopes are Anjialing open-pit mine and

Fushun-West open-pit mine, respectively; amongst the latter two

open-pit mines, the similarity, with respect to Wushan open-pit

mine, reached 77.39% and 80.90%, respectively. The deformation

monitoring data of the surface of the slope of the whole landslide

preparation and occurrence process in Anjialing open pit mine

and FushunWest open pit mine are shown in Figure 8 (Nie et al.,

2015). The maximum displacement rates of the surface of the

slope surface prior to the landslide at Anjialing open-pit mine

and Fushun-West open-pit mine reached 12.7 mm/day and

135.2 mm/day, respectively.

The three-level landslide early-warning indicators was

determined according to the principle of trisection, as shown

in Table 5.

6 Conclusion

In this paper, the landslide warning indicators of Wushan

Open-pit Mine were established combined with the

characterization parameters of rock mechanics involving

spatial distribution, numerical simulation, and matching of

landslide cases. The main conclusions are as follows:

(1) The inhomogeneous distribution of the mechanical

parameters of the rock mass were characterized based on

core RQD automatic identification method and the ordinary

Kriging interpolation and the Hoek-Brown criterion.

Compared with the traditional method that assigns

identical mechanical parameters to the same lithology in

the study area, the characterization methods in this paper

were found to be more reasonable.

(2) Using the monitoring data to modify the initial conditions of

the slopes were found to be suitable to improve the reliability

of the results obtained from numerical simulation results.

The simulation results show that a local landslide with a 10 m

depth sliding surface may occur at the west slope, and a

large-scale landslide accompanied with a slip-mass may

occur at the southwest slope when the height is more

than 60 m.

(3) Based on the quantification of landslide features, the

landslide early-warning indicator in this study was

FIGURE 8
Displacement-time curves prior to the landslide at Wushan compared other similar landslide cases. (A) Anjialing open-pit mine; (B) Fushun-
West open-pit mine.

TABLE 5 Landslide early-warning indicators at Wushan.

Three warning levels West slope Southwest slope

Displacement velocity (mm/d) Displacement velocity (mm/d)

Ordinary level (warning color: blue) 4.2≤v ≤8.4 45.1≤v ≤90.1

Attention level (warning color: yellow) 8.5< v <12.7 90.1≤v <135.2
Alarm level (warning color: red) v≥12.7 v≥135.2

Note: The warning indicators in the table are based on the displacement velocity of the slope surface.
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constructed by using similar cases from the landslide

database. The displacement rates for the alarm level were

found to be on the order of 12.7 mm/day and 135.2 mm/day

for west slope and southwest slope, respectively. Finally, the

methods outlined in this study may a provide a reference

framework for the establishment of early-warning indicators

of slope failures in other in open-pit mines.
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