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Based on Bayesian model averaging (BMA), the suitability and characteristics of

the BMA model for forecasting 2-m temperature in Xinjiang of China were

analyzed by using the forecast results of the Desert Oasis Gobi Regional Analysis

Forecast System (DOGRAFS) and Rapid-refresh Multiscale Analysis and

Prediction System (RMAPS) developed by the Urumqi Institute of Desert

Meteorology of the China Meteorological Administration, China

Meteorological Administration–Global Forecast System (CMA-GFS)

developed by the China Meteorological Administration, and the European

Center for Medium-Range Weather Forecasts (ECMWF) developed by the

European Center. The results showed that (1) the weight of ECMWF to the

2-m temperature forecast is maintained at about 0.6–0.7 under different

lengths of training periods, and the weight of other model products is below

0.15. (2) The forecasts of eachmodel at the four representative stations are quite

different, and the maximum forecast error reaches 6.9°C. However, the

maximum error of the BMA forecast is only about 2°C. In addition, the

forecast uncertainty in southern Xinjiang is greater than that in northern

Xinjiang. (3) Compared with multi-model ensembles, the overall prediction

performance of the BMA method is more consistent in spatial distribution.

Additionally, the standard deviation and correlation coefficient between the

BMA forecast and observation were greater than 0.98, and the RMSE decreased

significantly. It is feasible to use the BMAmethod to correct the accuracy of the

2-m temperature forecast in Xinjiang.
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1 Introduction

The Xinjiang Meteorological Service has recently

strengthened the construction of a fine grid forecast platform

based on multi-model forecasts. However, due to the uncertainty

of initial field data and model parameters, meteorological factors

such as temperature and precipitation forecast by numerical

models differ from the observations. There are also differences

in the forecast of meteorological elements such as temperature

among model products, making it difficult for a single model

product to fulfill the actual forecast needs (Cai and Yu, 2019;

Peng and Zhi, 2019).

Forecasts based on multi-model ensembles can improve the

performance of model prediction and be used in probabilistic

forecasts. Many studies have investigated the Bayesian model

averaging (BMA) method based on ensemble forecasts (Tan and

Jiang, 2016; Ji et al., 2019; Lee and Shin, 2020). For example,

Raftery et al.(2005) applied the BMA method to the ensemble of

dynamic meteorological models for the first time to forecast

normal variable temperature and sea level pressure and found

that the performance of the BMAmethod was significantly better

than that of the traditional ensemble mean method, and the root

mean square error (RMSE) of the BMA method was 8% lower

than that of the ensemble mean method. Zhiand Wang(2015)

used the BMA method to estimate the temperature in East Asia

from 2011 to 2035. They pointed out that the temperature

generally increased under the representative concentration

pathway 4.5 (RCP4.5) scenario, and the increase in the ocean

was relatively small. Ji and Zhi(2017) studied the extension

period forecast of 2-m temperature in East Asia via the BMA

method and concluded that the BMA method significantly

improved the ensemble forecast performance.

Additionally, the BMA method is better than the traditional

method in simulating observations and can reduce the

uncertainty of model simulation. Miao et al. (2014) used the

BMA method, simple model averaging, and reliability ensemble

averaging (REA) to evaluate the ability of the coupled model

intercomparison project phase 5 (CMIP5) model on interannual

and interdecadal changes in the surface temperature in Eurasia.

The results demonstrated that the BMA and REA methods

significantly improved the ability of model simulation, and the

BMA method had the lowest uncertainty. Brunner et al. (2020)

and Zhao et al. (2020) have pointed out that compared with

traditional methods, the BMA method can better reduce the

deviation between the model and observation and better capture

uncertainty and local climate features. In the statistical

downscaling of large-scale variables, Zhang and Yan(2015)

pointed out that the downscaling method combining the

optimum correlation method and the BMA method has a

better performance than multiple linear regression. Fang and

Li(2016) estimated the uncertainty, weight, and variance of the

paleoclimate modeling intercomparison project phase 3 (PMIP3)

and CMIP5 model simulations by using the BMA method. They

found that the BMA method considers the simulation capability

of different models and generates more reliable past time

variations over long periods based on multi-model ensembles

and training sets. Javanshiriet al(2021) noted that the BMA

method was more accurate, skilled, and reliable than the

ensemble model output statistics-censored shifted gamma

method and had better resolution but poor discrimination in

predicting the probability of high precipitation events.

The terrain of Xinjiang is relatively complex. The regional

numerical model assimilates local observation data and satellite

data, which can better simulate and forecast extreme weather,

and has advantages in forecasting some small-scale regions.

However, due to the limitation of computing resources and

storage space, the current regional numerical model can only

provide deterministic forecasting results. In addition, the

forecasting results of global numerical models such as the

ECWMF model are relatively stable but cannot simulate and

forecast extreme weather well. Therefore, in this study, global

numerical models are combined with regional models to

investigate the probabilistic forecasts of 2-m temperature in

Xinjiang, China, using the BMA method. Section 2 introduces

observations and four model products. Section 3 introduces the

BMA method. Section 4 selects the best training period of the

BMA model, analyzes the temporal and spatial characteristics of

BMA deterministic and probabilistic forecasts, and evaluates the

BMA forecast performance. Section 5 and Section 6 provide the

discussion and main conclusions, respectively.

2 Data and methods

2.1 Data

The 24 h 2-m temperature forecasts (initialized at 0000 UTC)

fromMay 30 to 31 August 2020, used in this study were obtained

from the Xinjiang regional weather forecast system Desert Oasis

Gobi Regional Analysis Forecast System (DOGRAFS) and Rapid-

Refresh Multiscale Analysis and Prediction System (RMAPS)

developed by the Urumqi Institute of Desert Meteorology of

China Meteorological Administration, the European Center for

Medium-Range Weather Forecasts (ECMWF), and the China

Meteorological Administration–Global Forecast System (CMA-

GFS) (Zhang and Chen, 2012).

DOGRAFS, which achieved business access in 2015, is based

on the weather research and forecast (WRF) model and WRF

data assimilation (WRFDA) in version 3.5.1, with triple nested

domains and 40 vertical computational layers. The regional

resolution of Xinjiang is 9 km, and the regional resolution of

Urumqi to Xiaocaohu is 3 km. The atmospheric and surface

fields of the National Centers for Environmental Prediction

(NCEP) GFS model forecasts were introduced as the initial

conditions. The RMAPS is based on the WRF model and

WRFDA in version 4.1.2, with two nested domains and
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50 vertical computational layers. For the Central Asia region and

Xinjiang, China, the regional resolutions are 9 km and 3 km,

respectively. The RMAPS takes the atmospheric and surface

fields of the NCEP GFS model forecasts as the initial

conditions and realizes trial operation at the end of May 2018

(Ju and Liu, 2020; Tang and Li, 2021).

All forecasts are interpolated to 103 observation stations over

Xinjiang, China, to evaluate the performance of the BMAmethod

and different model products and their ensemble mean. Figure 1

shows the orographic effects of the study area and the location of

observation stations. It can be seen that the distribution of

observation stations in the study area is not uniform, and the

terrain is complex. In addition, southern Xinjiang is subjected to

drought, with large diurnal temperature differences and complex

climatic characteristics (Yao et al., 2022). Furthermore, the

topography of the initial field of the numerical model is

different from the actual topography. All of these factors may

have an impact on BMA forecast results (Liu and Ju, 2020; Xin

and Li, 2021).

2.2 Methods

BMA is a statistical post-processing method for multi-model

ensemble forecasts. Its basic principle is to take a weighted average of

multi-model forecasts instead of selecting the best members (Raftery

et al., 2005). Assuming that y is the predictor, yT is the observation

data during the training period, fk(k � 1, . . . , K) is the forecast

result of K model products, and the probability density function

(PDF) of the BMA model is given by

p(y) � ∑K
k

p(y∣∣∣∣fk)p(fk

∣∣∣∣yT) (1)

where p(y|fk) is the conditional probability of predictor y based

on model fk, p(fk|yT) is the posterior probability of y

forecasted by model fk for a given yT, and ∑K
k
p(fk|yT) � 1.

In essence, the BMA method uses p(fk|yT) as the weight of

model k. Therefore, the PDF of the BMA model can be

expressed as

p(y∣∣∣∣f1, . . . , fk) � ∑K
k

ωkpk(y∣∣∣∣fk) (2)

where ωk represents the relative contribution of model k to the

forecast (i.e., the weight ofmodel k), and∑K
k ωk � ∑K

k p(fk|yT) � 1.

For surface temperature forecasting, the normal linear

hypothesis with expectation ak + bkfk and variance σk can be

adopted:

y
∣∣∣∣fk ~ N(ak + bkfk, σ

2
k) (3)

FIGURE 1
Orographic effects of the study area and the location of observation stations. The blue inverted triangles represent the example stations of
X51053, X51705, X51815, and X51855.
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where ak and bk can be obtained from the linear relationship

between observation yT and forecast fk. Under this assumption,

the conditional expectation of predictor y is the mean value of

the BMA forecast:

E[y|f1, . . . , fk] � ∑K
k

ωk(ak + bkfk) (4)

Eq. 4 can be understood as a deterministic forecast, which

can be compared with the mean value of the multi-model

ensemble mean or a single-model forecast.

Under the assumption of normal linearity, parameters of the

BMAmodel were solved by using the observation andmodel data

in the training period. For predictor, the estimates of ak and bk
can be regarded as a simple deviation correction process. The

weights and variance σk can be estimated using the log-likelihood

function. Assuming that the forecast error is independent of

space (different stations) and time (different forecast times), the

log-likelihood function of the BMA model is provided by

ℓ(ω1, . . . , ωk, σ
2) � ∑N

n�1
log⎡⎣∑K

k�1
ωkpk(yst

∣∣∣∣fkst)⎤⎦ (5)

whereN represents the length of the training period, and s and t

represent station s and time t, respectively. When Eq. 5 estimates

the conditional distribution of predictor y based on model fk

(i.e., when a single predictor y is estimated), there is no analytical

maximum. Therefore, the expectation-maximization algorithm

is used to solve the parameters.

In addition, this study uses the continuously ranked probability

score (CRPS), forecast accuracy, relative error analysis, Brier score

(BS), RMSE, and Taylor diagram to evaluate the correction and

performance of the BMA method on multi-model ensembles.

The CRPS of the multi-model ensemble mean can be

written as

CRPS(F, x) � EF|X − x| − 1
2
EF

∣∣∣∣X −X′
∣∣∣∣ (6)

whereX andX are independent copies of a random variable with

the distribution function F and finite first moment (Gneiting and

Raftery, 2007).

The forecast accuracy can be expressed as

forecast accuracy s �
1
T
∑T
t�1
{ 1,

∣∣∣∣fst − yst
∣∣∣∣≤ 2°C

0,
∣∣∣∣fst − yst

∣∣∣∣> 2°C (7)

wherefst and the ystrepresent the forecast and observation of the

station s during the time t, respectively (Cui and Peng, 2002).

Assuming that Pmi and Poi are the probabilities of numerical

models (or BMA forecasts) and observations within the ith

interval and k is the number of separated intervals (Fu et al.,

2013), then the BS is given by

BS � 1
k
∑k
i�1
(Pmi − Poi)2 (8)

3 Results

3.1 Selection of the best training period

The BMA method needs to divide data into training and

forecast periods, and the length of the training period affects the

BMA forecast results (Zhi and Peng, 2018). Therefore, before

forecasting the 2-m temperature in the Xinjiang region,

determining the best training period for the BMA model is

necessary. Because the data duration was 92 days, the first

70 days were selected to participate in the sliding training.

The best training period was selected from 41 to 70 days.

Figure 2 shows the CRPS scores and RMSEs for different

training periods. The CRPS score and RMSE showed the same

trends. Before 47 days, the CRPS score and RMSE decreased, but

after 47 days, they continued to increase. When the training

period was 47 days, the CRPS score and RMSE were the

minimum. Therefore, 47 (from June 1 to July 17) days were

selected as the training period of the BMA model to conduct

deterministic and probabilistic forecasts of 2-m temperature, and

the remaining 45 (from July 18 to August 31) days were used to

evaluate the BMA forecast and multi-model ensembles

(i.e., forecast period).

Additionally, to demonstrate the contribution of eachmodel to

the 2-m temperature forecast under different training periods,

Figure 3 shows a boxplot of the weights of the four models in the

sliding training periods. Except for ECMWF, the weights of the

other three models change little at different training periods,

indicating that each model has a relatively stable contribution

to 2-m temperature prediction at different training periods. The

weight of the ECMWF remained 0.6–0.7, the RMAPS weight was

less than 0.1, and the DOGRAFS and CMA-GFS weights were

0.1–0.15. This result indicates that among the 2-m temperature

forecasts of 103 stations in Xinjiang, ECMWF forecast information

is dominant, followed by DOGRAFS, CMA-GFS, and RMAPS.

3.2 Probability forecast of Bayesian model
averaging

After selecting the best training period, the deterministic

prediction results of the BMA forecast and multi-model ensembles

were analyzed. The forecasting performance of the same numerical

model at different stations is quite different, and different numerical

models have different forecasting performances at the same station.

Furthermore, the BMA forecasting error of most stations is within

2°C, but the BMA forecasting error of some stations is more than 2°C.

Therefore, in order to compare the results of observation, BMA

probabilistic forecast, BMA deterministic forecast, and different

numerical model forecasts, four stations where there are great

differences among different forecast results are selected as

representative stations. Figure 4 shows the BMA probability
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forecast curve, BMA deterministic forecast, and different model

deterministic forecasts and their ensemble mean values of 2-m

temperature with a lead time of 24 h at four representative

stations. Representative station X51053 is an example (Figure 4A):

the observed 2-m temperature is 23.7°C (solid gray line in Figure 4A);

the maximum andminimum errors of the four models are 4.9°C and

0.63°C, respectively (solid green and blue lines in Figure 4A); and the

prediction error of the multi-model ensemble mean also reached

3.1°C (solid black line in Figure 4A). After the multi-model forecasts

are processed by the BMA method, the error between the BMA

deterministic forecast and observation is 1°C.

For representative stations X51705, X51815, and X51855,

although the minimum error of each model and multi-model

ensemble means for the 2-m temperature forecast was 1°C, there

were significant differences among the models, and the maximum

forecast error reaches 6.9°C. Moreover, the same model had different

forecasting performances at different stations. The maximum error of

the deterministic BMA forecast weighted by the four models is

approximately 2°C, indicating that the BMA method can

effectively reduce the error of the observation and model forecasts.

Additionally, except for the X51705 station, the observation of the

other three representative stations basically falls within the uncertainty

range (i.e., the solid gray line is in the shadow). As shown in Figure 4,

with the larger interval (i.e., the PDF is flatter), there is a larger

possibility that the observation (gray line in Figure 4) is to fall in the

interval. In other words, the forecast uncertainty is lower.

To further analyze the regional characteristics of BMA

probability forecast uncertainty (i.e., the probability that the

forecast error is within 2°C), Figure 5 shows the spatial

distribution of 2-m temperature uncertainty with a lead time

of 24 h in Xinjiang (i.e., the probability distribution centered on

the BMA deterministic forecast of each station and with an

interval length of 2°C). The probability of most stations in

Xinjiang exceeded 0.6. Among them, the probability of most

stations in southern Xinjiang is 0.6 ~ 0.8 and of some stations is

FIGURE 2
Verification metrics of (A) CRPS score and (B) RMSE with different training period lengths for the BMA forecast.

FIGURE 3
Boxplot of weights of four models under different training
periods for the BMA forecast.
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less than 0.6. The probability of most stations in northern

Xinjiang is more than 0.7, and the probability of stations in

western northern Xinjiang is 0.9–1. This result shows that

forecast uncertainty in southern Xinjiang is greater than that

in northern Xinjiang. In other words, from low latitude to high

dimension, the 2-m temperature uncertainty of the BMA forecast

in Xinjiang decreases.

3.3 Evaluation of the Bayesian model
averaging forecast

According to the aforementioned analysis, different models

have different forecast performances on four stations, and the

BMA method effectively reduces the forecast error between the

observation and models. To compare the performance of the

multi-model ensemble mean and BMA forecast for each station,

Figure 6 shows the CRPS score of the multi-model ensemble

mean and BMA forecast. There are significant differences in the

CRPS scores of the multi-model ensemble mean at each station.

Among them, the CRPS scores of some stations in central

Xinjiang exceeded 4, and some stations exceeded 7. The CRPS

FIGURE 4
Deterministic forecasts and BMA probability forecasts of 2-m temperature at stations (A) X51053, (B) X51705, (C) X51815, and (D) X51855 with a
lead time of 24 h. The black curve and black dotted line represent the BMA probability forecast curve and deterministic forecast curve, respectively.
Gray and black solid lines represent the observed and multi-model ensemble mean deterministic forecasts; the remaining solid lines represent the
deterministic forecasts of the four models. The shadow represents the probability centered on the BMA deterministic forecast with an interval
length of 2°C.

FIGURE 5
Spatial distribution of 2-m temperature uncertainty of the
BMA forecast at each station. (i.e., probability distribution with the
BMA deterministic forecast as the center and interval length
of 2°C).
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scores of other stations were approximately 1–4 and those of

some stations were lower than 1 (Figure 6A). In the spatial

distribution, the simple ensemble mean method has poor

prediction performance, and the CRPS scores differ. The

CRPS score of the BMA forecast of some stations was less

than 2, and the CRPS score of most stations was less than 1

(Figure 6B). This shows that the forecast performance of the

BMA method is better than that of the multi-model ensemble

mean. Additionally, the overall prediction performance of the

BMA method for spatial distribution is consistent.

Figure 7 shows the spatial distribution of RMSE between the

observation and BMA deterministic forecasts, four models, and

their multi-model ensemble mean in the forecast period. During

the forecast period, the RMSE between the observation and

DOGRAFS, RMAPS, and CMA-GFS forecasts was above 2°C

for most stations in Xinjiang (Figures 7C,D,andF). Among them,

FIGURE 6
Spatial distribution of the CRPS score for (A) multi-model ensembles and (B) BMA forecast of 2-m temperature with a lead time of 24 h.

FIGURE 7
Spatial distribution of RMSE between (A) BMA, (B) multi-model ensemble mean, (C) DOGRAFS, (D) RMAPS, (E) ECMWF, (F) CMA-GFS and
observed 2-m temperature during the forecast period.
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the RMSE of the RMAPS forecast at some stations exceeded 3°C,

and the RMSE of the CMA-GFS forecast exceeded 5°C. The

RMSE between the observation and ECMWF forecast is between

1°C and 4°C at most stations (Figure 7E). Among them, the

RMSE of stations in the northwest of northern Xinjiang is

between 1 and 3°C. Additionally, the RMSE between the

observation and multi-model ensemble mean is between 2°C

and 5°C at most stations (Figure 7B). The RMSE between the

observation and BMA forecast is reduced to less than 2°C at most

stations, and at some stations, it is between 2°C and 3°C. In other

words, there is a large forecast error between the observation and

the CMA-GFS forecast at most stations in the forecast period,

and the forecast error of the other three models remains between

2°C and 5°C. In addition, the multi-model ensemble mean does

not reduce the forecast error between the observation and the

model. The error between the observation and the BMA forecast

in the forecast period was lower than that of each model, and

there was no obvious regional difference.

Furthermore, Figure 8 shows the box plot of the Brier score,

relative error and forecast accuracy of BMA forecast, and different

model forecasts of 2-m temperature at observation stations during

the forecasting period. As shown in Figure 8, the distribution of Brier

score, relative error, and forecast accuracy of single model forecasts

are scattered, which means that the accuracy of single model

forecasts at different stations is significantly different in the

forecasting period. During the forecasting period, the distribution

of the Brier score, relative error, and forecast accuracy of BMA

forecasts is concentrated. The Brier score and relative error of most

stations are also close to 0, and the median forecast accuracy is close

to 0.8. Compared with a single model forecast, the accuracy of BMA

forecasts is basically consistent in spatial distribution better than

single model forecasts.

FIGURE 8
Box plot of the (A) Brier score, (B) relative error, and (C) forecast accuracy analysis of the BMA forecast and different model forecasts of 2-m
temperature at observation stations during the forecasting period.
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In addition, to make a more intuitive comparison between the

BMA forecast and different models’ (and multi-model ensemble

mean) forecasts of 2-m temperature in the Xinjiang, Figure 9 shows

the Taylor diagram of the forecasts and observation (the mean of the

forecast period at each station). The distance from different forecasts

to the observation (the hollow point on the abscissa) represents the

RMSE of the observation and forecast. The distance from different

forecast results to the origin of the coordinate represents the ratio of

the standard deviation of the forecast and observation. The angle

between different forecasts and the horizontal axis represents the

correlation coefficient between forecast and observation. The abscissa

represents the correlation coefficient of forecast and observation. The

correlation coefficient between the deterministic forecast of the four

models, and the observation is approximately 0.9, RMSE is above 0.5,

and the ratio of standard deviation exceeds 1. Compared with the

forecast of each model, the multi-model ensemble mean only

improves in correlation. However, the standard deviation and

correlation coefficient between the BMA forecast and observation

were over 0.98, and the RMSE decreased significantly.

These results indicate that the 2-m temperature forecasts of

the four models and their ensemble mean differ from the

observations in dispersion degree and spatial distribution. The

BMAmethod significantly reduces the difference, and its forecast

is closer to the observation.

4 Discussion

Notably, the regional numerical models adopted in this study are

the forecast products commonly used by the XinjiangMeteorological

Bureau for daily weather forecasting. In this study, we evaluated the

performance and error of four models for 2-m temperature forecasts

in the Xinjiang region while conducting probability forecasts based

on the BMA method. In general, the ECMWF was better than the

other three regional numerical models. Additionally, the

deterministic forecast of the 2-m temperature in Xinjiang by

different models is inconsistent in different regions. The BMA

method makes up for the spatial uniformity of the model

forecast, effectively reduces the RMSE of the model forecast and

observation, and provides probabilistic prediction results.

In addition, BMA forecast reliability (forecast uncertainty) can

be judged using the BMA deterministic forecast and probability

forecast results. Zhi and Peng(2018) and Peng and Zhi(2019) have

studied the 2-m temperature probability forecast in different seasons

in East Asia and pointed out that the forecast uncertainty of land is

greater than that of marine areas and that of high-latitude areas is

greater than that of low-latitude areas. In the forecast of 2-m

temperature in Xinjiang, the uncertainty of the BMA forecast in

southern Xinjiang is greater than that in northern Xinjiang, which

may be caused by drought and the desert in southern Xinjiang.

5 Conclusion

In this study, first, based on the deterministic forecasts of the

DOGRAFS, RMAPS, ECMWF, and CMA-GFS models, an analysis

of the applicability of the BMA method for 2-m temperature

forecasts in Xinjiang, China, was conducted. Second, the

deterministic and probabilistic forecast characteristics of the

BMA method were discussed, and the BMA forecast and

different models (and their ensemble mean) were evaluated and

compared. The results showed the following:

(1) During the sliding training period, the CRPS score and RMSE

exhibited the same trend. The CRPS score and RMSE decreased

before day 47 but increased after day 47. Therefore, 47 days was

the training period selected for the BMAmodel. In addition, the

contribution of eachmodel to the 2-m temperature forecast was

relatively stable under different training periods. Among them,

the weight of ECMWFbasically remains 0.6–0.7, and theweight

of the other models is below 0.15.

(2) Although the minimum error of each model and multi-model

ensemble means for the 2-m temperature forecast of the four

representative stations is only 0.63°C, there is a difference in the

forecast of eachmodel, and themaximum forecast error reaches

6.9°C. Moreover, the same model had different forecasting

performances at different stations. However, the maximum

error of the BMA forecast is only approximately 2°C, which

effectively reduces the error of observation and model forecast.

Regarding the uncertainty of the forecast, the probability of

most stations in southern Xinjiang is 0.6~0.8, and the

probability of most stations in northern Xinjiang is above

0.7, indicating that the uncertainty of the BMA forecast in

southern Xinjiang is greater than that in northern Xinjiang.

FIGURE 9
Taylor diagram of BMA and multi-model forecast of 2-m
temperature during the forecast period.
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(3) Spatial distribution of the CRPS score of the multi-model

ensemble mean was significantly different, with the CRPS

score ranging from 1 to 7. The CRPS score of the BMA

method at each station was below 2, indicating that the

overall forecast performance of the BMA method is

consistent in space. During the forecast period, the RMSE of

the observations and the four model forecasts at most stations

were above 2°C, and the largest RMSE exceeded 5°C. However,

the RMSE of the observations and BMA forecasts at most

stations are within 2°C. In the forecast period, the RMSE of the

observation and BMA forecasts were lower than those of the

other models, and there was no obvious regional difference.

Additionally, the standard deviation and correlation coefficient

between the observation and BMA forecasts aremore than 0.98,

and the RMSE decreases significantly.

Machine learning algorithms such as the support vector

machine, light gradient boosting machine, and long short-

term memory have been widely used in forecasting

meteorological elements (Wang et al., 2018; Fan et al., 2019;

Hamid et al., 2020; Qadeer et al., 2020). Compared with machine

learning algorithms, statistical post-processing methods such as

BMA are relatively easy to model but not sufficiently flexible

(Javanshiri et al., 2021). Further research could compare and

combine BMA and other statistical methods with machine

learning algorithms to evaluate the post-processing methods

suitable for Xinjiang. These conclusions provide theoretical

support for the post-processing of regional numerical models

in Xinjiang.
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