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The Yellow-Huai-Hai River Basin (YHHRB) is an important ecological barrier in

China. There are obvious spatiotemporal differences and intrinsic drivers of

vegetation coverage in this region. Using the Normalized Difference

Vegetation Index (NDVI) and meteorological data, the spatiotemporal

characteristics of vegetation change in the YHHRB from 1982 to 2015 and

its related driving factors were analyzed. Combined with CAM5.1-1 degree

model data, the impacts of natural and anthropogenic forcings on climate

change were separated, and the relative roles of other driving factors, natural

and anthropogenic forcings, in vegetation change were further distinguished

by using a residual trend method. Results showed that the vegetation

coverage increased during the study period, the NDVI increased with a

slope of 0.014/10a, and the areas with NDVI significant increased

accounted for 75.78%. NDVI was positively correlated with precipitation

and temperature in the YHHRB, and the correlation between NDVI and

temperature was higher than that of precipitation, indicating that

vegetation growth was more sensitive to temperature. Residual analysis

indicated that other driving factors, natural and anthropogenic forcings,

were responsible for 48.52%, 26.36%, and 25.12% of NDVI variation,

respectively. Natural forcing contributed most to vegetation change in the

Huai River Basin, whereas anthropogenic forcing and other driving factors had

large effects on vegetation coverage in the Hai River Basin. In addition,

obvious spatial differences were observed in the relative roles of different

driving forces on vegetation conditions. The areas where natural forcing

contributed most were mainly distributed in the upper Yellow River Basin,

while the areas where other driving factors played a significant role in

vegetation restoration were mainly concentrated in Inner Mongolia, Shanxi

Province, and northern Hebei Province. Climate change and active human

activities both made positive impacts on vegetation restoration, and the

change in land use was the main factor causing vegetation degradation.
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The results aremeaningful for the ongoing ecological civilization construction

project in the YHHRB.
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1 Introduction

As a crucial component of the terrestrial ecosystem,

vegetation plays a key role in regulating the climate system

and terrestrial carbon balance, which is a sensitive indicator of

global environmental change (Wu et al., 2020; Zhou et al., 2021).

Alongside climate, vegetation can also affect the hydrological

cycle of a watershed by altering certain processes, such as

vegetation transpiration, canopy interception, and soil

evaporation (Zhou et al., 2015; Zastrow, 2019). The

normalized vegetation index (NDVI) is closely related to the

leaf area index, photosynthetic capacity, and net primary

productivity (Lamchin et al., 2018; Chu et al., 2019). In

addition, this index compares the reflection intensity of visible

light and near-infrared bands and is not easily affected by light

conditions, which makes NDVI become the most commonly

used indicator to characterize vegetation dynamics (Kumari

et al., 2020). Under the backdrop of global warming, observed

NDVI showed a significant increasing trend across all continents,

except Oceania (Eastman et al., 2013; Wu et al., 2014). In this

process, both climate change and human activities have

influenced vegetation change and led to spatial variability (Li

et al., 2015).

As an external environmental factor necessary for

vegetation growth, climate factors fundamentally control

the distribution of ecosystems and the range of species.

Among the many factors, precipitation and temperature

have the most significant impact on vegetation coverage

(He et al., 2015; Sun et al., 2015), which directly determine

the necessary hydrothermal conditions for vegetation growth

(Chen et al., 2019). The vegetation growing season in high-

latitude areas is significantly prolonged due to the effect of

global warming (Wang et al., 2017; Myers-Smith et al., 2020).

However, the increase in temperature also accelerates the

evapotranspiration of vegetation, thereby accelerating soil

water consumption and inhibiting vegetation growth.

Previous studies found that vegetation was sensitive to

extreme rainfall events in semi-arid and semi-humid areas

(Liu et al., 2013). However, excessive precipitation will reduce

solar radiation and temperature in humid regions (Nemani

et al., 2003). Moreover, with the increasing population, rapid

economic development, and accelerating urbanization, the

impact of human activities (mainly including land use change

and afforestation) on vegetation had gradually attracted

scholarly attention (Wang et al., 2017; Zheng et al., 2019).

The negative effects of these activities, such as urban

expansion and overgrazing, can degrade vegetation

coverage (Liu et al., 2015; Jin et al., 2018). However,

carefully planned human activities, including vegetation

construction and ecological protection projects, are

beneficial to vegetation restoration (Zhao et al., 2018).

Statistical results show that the global area of planted

forests increased from 167.5 million ha to 277.9 million ha

from 1990 to 2015 (Payn et al., 2015). China launched a large-

scale reforestation program in 1999 and already had the

largest green area in the world in 2014 (Peng et al., 2014).

The effects of human activities and climate change on

vegetation change have two sides, but efforts to isolate

their impacts remain lacking. Therefore, conducting

research on a regional scale to quantify the contributions

of climate change and human activities on vegetation

coverage is essential to improve the adaptability of

ecosystems.

Residual trend analysis is a recognized and robust method for

investigating and identifying different driving forces of

vegetation change (Qi et al., 2019; Shi et al., 2021). Great

efforts have been made to distinguish the impacts of climate

change and human activities on vegetation dynamics by using

this method (Sun et al., 2015; Shi et al., 2021). These studies have

generally characterized the role of climate change by using the

multiple regression values between climate factors and vegetation

indicators. However, climate change is a process of interaction

between human activities and external natural factors.

Anthropogenic forcing factors mainly include the emission of

greenhouse gases and aerosols, and stratospheric ozone depletion

(Matthews et al., 2004), whereas natural forcing factors mainly

include volcanic eruptions and solar activity, as well as

interactions within the climate system (Hansen et al., 1998).

The study indicated that the warming of China in the early 20th

century may be related to solar activity and the internal

interaction of the climate system, while the anthropogenic

greenhouse gas emissions played a leading role in the late

20th century (Zhao et al., 2016). In addition, Ma et al. (2017)

suggested that increased greenhouse gases and reduced aerosol

emissions could increase heavy precipitation in eastern China,

thereby leading to an increased risk of flooding. The effects of

human activities on climate change had been extensively tested.

Therefore, it is necessary to identify and differentiate the relative

contributions of anthropogenic and natural factors to climate

change. In the contribution of climate change to vegetation

coverage obtained by previous studies, natural and

anthropogenic factors had not been separated, which led to a
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poor understanding of the internal driving mechanism of

vegetation change. The rapid development of computer

technology and climate system models have introduced

important tools for attribution analysis of climate change

(Zhao et al., 2016). For instance, in the Coupled Model

Intercomparison Project Phase 5 (CMIP5) (Taylor et al.,

2012), the different single-factor external forcing historical

experiments (natural and anthropogenic forcings) were

designed. After comparing the experimental results with the

actual scenario results, the impacts of human and natural

factors on climate change were effectively isolated (Santer

et al., 2013; Zhang et al., 2013). The research progress made

in climate change attribution, while deepening our

understanding of this scientific issue, also provides a new way

to separate the impacts of natural and anthropogenic forcings on

vegetation coverage in climate change.

The Yellow-Huai-Hai River Basin (YHHRB) is located in

northern China. Affected by climate change and frequent human

activities, the ecological environment in this area is fragile, and

the vegetation coverage has been significantly disturbed. Taking

the Loess Plateau as an example, the climate conditions in this

region showed a warming and drying trend over the past 50 years

(Wang et al., 2017), which may reduce the available water in the

soil and limit vegetation growth, thereby aggravating water and

soil loss (Zhao et al., 2020). In addition, after the implementation

of large-scale water and soil conservation and management,

ecological forest construction, and other projects, the

vegetation coverage in the YHHRB has undergone significant

changes in recent years. Many scholars have studied vegetation

change in different parts of the YHHRB. For instance, Yan et al.

(2017) explored the relationship between precipitation and

vegetation in the YHHRB. Sun et al. (2020) assessed the role

of climate change and human activities in vegetation change in

the Hai River Basin. Shi et al. (2021) explored the driving factors

of vegetation change in the Loess Plateau. However, only few

studies have quantitatively evaluated vegetation change in

relation to different drivers over the YHHRB, and even fewer

studies have considered the impacts of the different factors in

climate change on vegetation dynamics.

Therefore, analyzing the spatiotemporal variation

characteristics of vegetation in the YHHRB and its driving

factors is necessary, which has important reference

significance for ecological environmental protection and

sustainable social and economic development. The primary

purposes of this study are to 1) investigate the spatiotemporal

characteristics of the vegetation coverage in the YHHRB from

1982 to 2015, and analyze the relationships between climate

factors and vegetation; 2) explore the characteristics of land use

change and discuss the responses of vegetation change to

ecological projects; and 3) quantitatively evaluate the relative

roles of climate change and other driving factors in NDVI

variation, and separate the relative contributions of natural

and anthropogenic forcings to vegetation activity in climate

change.

FIGURE 1
Location of the YHHRB and its topography.
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2 Materials and methods

2.1 Study area

The YHHRB (95°–123°E, 30°N–43°N) is a general name for

the Yellow River Basin, Huai River Basin, and Hai River Basin

(Figure 1). The YHHRB covers an area of approximately

1,445,000 km2, of which the Yellow River Basin is

795,000 km2, the Huai River Basin is 330,000 km2, and the

Hai River Basin is 320,000 km2. This region is the location of

the political, economic, and cultural center of the country. The

population, GDP (Gross Domestic Product), cultivated land area,

and grain output of the YHHRB account for about 35%, 32%,

20.4%, and 23.6% of the country, respectively (Hu et al., 2021).

However, the total water resources in the YHHRB are less than

8% of the national total, and the per capita water resource is only

21% of the national level (Ministry of Water Resources People’s

Republic of China, 2020). Due to the wide span of the basin, there

are various vegetation types (Figure 2), and multiple climate

types. The precipitation is unevenly distributed in this region,

with the annual precipitation being about 556 mm, the annual

evaporation being about 1,699.5 mm, and the annual average

temperature ranging from −4 to 16°C.

2.2 Data source

There are three main types of NDVI long-term serial data

products: SPOT NDVI, MODIS NDVI, and GIMMS NDVI.

Compared with the other two data products, the GIMMS data

set is currently the NDVI data product with the longest time

range (Zhou et al., 2020). The NDVI dataset used in the

YHHRB from 1982 to 2015 was derived from the third

generation Global Inventory Modeling and Mapping

Studies (GIMMS NDVI3g.V1.0), produced by the Global

NASA and Monitoring and Modeling Research Group. The

spatial resolution is 1/12°, and the temporal resolution is

15 days. Jin et al. (2020) and Du et al. (2016) demonstrated

that this dataset had good applicability in the study of

vegetation change in China. A maximum value composite

(MVC) method was utilized to calculate the annual maximum

NDVI data.

The data of precipitation and temperature during

1982–2015 were obtained by the gridded daily observation

dataset over the China region (CN05.1), published by the

National Climate Center, the China Meteorological

Administration (Wu and Gao, 2013), and the spatial

resolution is 0.25°. Moreover, the spatial resolution is

bilinearly interpolated to the same resolution as the NDVI

data. The land use data for 1980 and 2015 used in this study

were obtained from the Resources and Environment Data

Cloud Platform of the Institute of Geographic Sciences and

Natural Resources Research, Chinese Academy of Sciences

(https://www.resdc.cn), with a spatial resolution is 1 km. The

distribution of land use types in the YHHRB in 2015 is shown in

Figure 2.

To assess the impacts of natural and anthropogenic forcings

on NDVI variation in the YHHRB from 1982 to 2015, the data of

FIGURE 2
Distribution of land use types in the YHHRB in 2015.
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precipitation and temperature under two experiment scenarios of

the CAM5.1-1degree model in the C20C+ Detection and

Attribution project was used in this study, with the horizontal

resolution of 1.25° × 0.9375°. The CAM5.1-1degree model is the

atmospheric part of the Community Earth SystemModel version

1.0.3 (CESM1.0.3), which has been run under two scenarios in

accordance with the requirement of the C20C+ project (Xu et al.,

2021). The one scenario that we have experienced (All-Hist), uses

the observed boundary conditions (including sea surface

temperature, carbon dioxide concentration, etc) to drive the

model to obtain results under the influence of natural and

anthropogenic forcings. Another scenario that we might have

experienced is a climate system without human interference

(Nat-Hist), which uses the boundary conditions from the

CMIP5 model test simulation to drive the model to obtain

results under the only influence of natural forcing. Detailed

information on the CAM5.1-1degree model can be found in

the literature (Stone et al., 2018) and on the official website of the

C20C+D&A program data (http://portal.nersc.gov/c20c/data.

html). Also, the precipitation and temperature data are

bilinearly interpolated to the same resolution as the NDVI data.

2.3 Methods

2.3.1 Trend analysis
The slope of the linear regression method was utilized to

characterize the interannual variation trends of NDVI,

precipitation and temperature of each pixel, and the slope was

obtained by least squares fitting (Chu et al., 2019). The formula is

as follows:

θslope � n × ∑n
i�1i × Xi − ∑n

i�1i∑n
i�1Xi

n × ∑n
i�1i2 − (∑n

i�1i)2 , (1)

where θslope refers to the linear trend of NDVI, precipitation and

temperature; n is the study period equal to 34; Xi signifies the

value of the research object in i year. Based on the slope of the

linear trend (θslope) and its corresponding p-value, the change

trend were classified as follows: significant increase (θslope >0,
p<0.05); insignificant increase (θslope >0, p>0.05); significant
decrease (θslope <0, p<0.05); insignificant decrease (θslope <0,
p>0.05).

The MK method was used to examine the significance of

NDVI variation trend on the confidence level of 95%, and also

used to analyze the abrupt change of NDVI series. The

calculation method of MK method can be found in literature

(Hu et al., 2021).

2.3.2 Partial correlation analysis
The partial correlation analysis method can exclude the

influence of other variables when one variable is correlated

with multiple variables at the same time, and only analyze the

correlation between two of the variables (Stow et al., 2003). This

method was used to determine the influence of precipitation and

temperature on NDVI variation in this study. The formula is as

follows:

rij·k � rij − rikrjk��������������(1 − r2ik)(1 − r2jk)
√ , (2)

where rij·k represents the partial correlation coefficient

between variables i and j, with k as the fixed variable; rij,

rik, and rjk indicates that the simply correlation coefficient of

the two variables. Based on the corresponding p-value of the

partial correlation coefficient, the partial correlation

coefficient can be divided into significant partial

correlation (p<0.05) and insignificant partial correlation

(p>0.05).

2.3.3 Residual trend analysis
The residual trend analysis approach was used to

separate the impacts of climate change and human

activities on NDVI variation, which was proposed by

Evans and Geerken (2004). The method consists of three

main steps: 1) Based on the residual analysis model, the data

of precipitation and temperature under the observed

scenario and “Nat-Hist” scenario were used to predict

NDVI (NDVIcc and NDVInf); 2) The difference between

NDVIcc and NDVInf was used to describe the effect of

anthropogenic forcing (NDVIaf), which include the

emission of greenhouse gases and aerosols, and the

depletion of the stratospheric ozone; and 3) The

influence of other driving factors on NDVI variation

(NDVIof) could be calculated as the difference between

the observed NDVI values (NDVIob) and NDVIcc. The

equations are as follows:

NDVIcc � a1 × Ti + b1 × Pi + c, (3)
NDVInf � a2 × Tj + b2 × Pj + d, (4)
NDVIaf � NDVIcc −NDVInf, (5)
NDVIof � NDVIob − NDVIcc, (6)

where i and j represents the annual data of the observed and

“Nat-Hist” scenarios, respectively; a and b are the regression

coefficients; c and d are intercepts.

The calculation method of the relative contributions was

proposed by Xu et al. (2009). According to Table 1, the relative

contributions of different factors to NDVI variation in the

YHHRB from 1982 to 2015 were calculated. The linear trend

of NDVIcc, NDVIof, NDVInf, and NDVIaf represents the

variation trend of NDVI under the influence of climate

change, other driving factors, and natural and anthropogenic

forcings. Combined with the finding from Jin et al. (2020), the

effects degree of different factors on vegetation can be divided

into five levels (Table 2).
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3 Results

3.1 Spatiotemporal variation in NDVI

The annual mean NDVI showed a fluctuating and increasing

trend in the YHHRB from 1982 to 2015 at a rate of 0.0014/a

(Figure 3A). At the 34-year time scale, the highest NDVI was

generated in 2013 (0.402), and the lowest value was 0.344 in 1982.

Results of the Mann–Kendall test indicated that the annual mean

NDVI exhibited a significantly increasing trend (Z >1.96). In
addition, a significant abrupt change in NDVI occurred around

2003, and the increase rate from 1982 to 2002 reached 0.0012/a,

after which the index demonstrated a rapid increase (0.0021/a).

The annual mean NDVI of the sub-basins showed a significant

increasing trend over the past 34 years, with the fastest increase

rate occurring in the Huai River Basin (0.0021/a), followed by the

Hai River Basin (0.0013/a), and the Yellow River Basin (0.0011/a)

(Figures 3B–D). Figure 3 shows an obvious abrupt change in the

annual mean NDVI of the Yellow River Basin in 2001. Multiple

abrupt changes in NDVI of the Huai River Basin occurred

continuously from 1989 to 1993, but they were all

insignificant. In addition, there were four mutation points in

the NDVI series of the Hai River Basin, including

1998,1992,1993, and 2000.

The spatial distribution of the multi-year average NDVI in

the YHHRB from 1982 to 2015 is shown in Figure 4A, and the

NDVI showed a decreasing trend from southeast to northwest.

The regions with NDVI values of below 0.2 were located in the

Loess Plateau and the northern part of Qinghai Province, and the

areas with NDVI values of above 0.5 were mainly distributed in

Anhui Province and Henan Province. The areas where vegetation

increased and decreased accounted for 91.48% and 8.52% of the

study area, respectively (Figure 4B). The NDVI in most areas of

the YHHRB (75.78%) showed a significantly increasing trend,

mainly concentrated in the North China Plain and the Middle

and Lower Yellow River Basin (Figure 4C). Meanwhile, the

significant decreases in NDVI occurred in 2.11% of the study

area, which had a scattered distribution. The areas where NDVI

variation was insignificant were mainly concentrated in the

paramos regions of the Yellow River Basin.

TABLE 1 Relative contributions of different factors to vegetation change.

Vegetation coverage
trend

Snf Saf Sof Contribution of climate change Other driving
factors

Natural forcing Anthropogenic
forcing

Increase (Sob>0) >0 >0 >0 Sof/(Snf + Saf + Sof) Sof/(Snf + Saf + Sof) Sof/(Snf + Saf + Sof)
>0 >0 <0 Snf/(Snf + Saf) Sof/(Snf + Saf) 0

<0 >0 >0 0 Saf/(Saf + Sof) Sof/(Saf + Sof)
>0 <0 >0 Snf/(Snf + Sof) 0 Sof/(Snf + Sof)
>0 <0 <0 100 0 0

<0 >0 <0 0 100 0

<0 <0 >0 0 0 100

Decrease (Sob<0) <0 <0 <0 Snf/(Snf + Saf + Sof) Saf/(Snf + Saf + Sof) Sof/(Snf + Saf + Sof)
<0 <0 >0 Snf/(Snf + Saf) Saf/(Snf + Saf) 0

>0 <0 <0 0 Saf/(Saf + Sof) Sof/(Saf + Sof)
<0 >0 <0 Snf/(Snf + Sof) 0 Sof/(Snf + Sof)
<0 >0 >0 100 0 0

>0 <0 >0 0 100 0

>0 >0 <0 0 0 100

Sof , Snf , and Saf represents the variation trend of the NDVI under the impacts of other driving factors [Slope (NDVIof)], natural forcing [Slope (NDVInf)] and anthropogenic forcing

[Slope (NDVIaf)], respectively, Slope (NDVI) represents the linear variation trend of the NDVI.

TABLE 2 Classification of the impacts of different factors on
vegetation restoration (×10−3/a).

Slope (NDVI) Grade

≤−2 Significant inhibition

−2~−0.2 Slight inhibition

−0.2–0.2 No impact

0.2–2 Slight promotion

≥2 Significant promotion

Slope (NDVI) represents the linear variation trend of the NDVI, under the impact of

other driving factors [Slope (NDVIof)), natural forcing (Slope (NDVInf)] and

anthropogenic forcing [Slope (NDVIaf)], respectively.
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3.2 Correlations between climatic factors
and vegetation change

From 1982 to 2015, the annual precipitation in the YHHRB

ranged from above 1,300 mm in the southeast to less than 300 mm

in the northwest. The mean value and trend of annual

precipitation in this area were 565.05 and 0.89 mm/a,

respectively (Figures 5A,B). The areas with increasing and

decreasing trends of precipitation accounted for 67.87% and

32.13% of the study area, respectively, of which about 7%

passed the significance test. The increasing trend of annual

precipitation was obvious in northern Shanxi Province and part

of Qinghai Province, and the decreased area of precipitation was

mainly distributed in Hebei Province, Henan Province, and the

Loess Plateau. The temperature in the YHHRB was affected by

topography and increased alongwith decreasing altitude fromwest

to east. The annual mean temperature was 8.63°C and ranged

from −10 to 20°C, and themean linear variation trend was 0.04°C/a

(Figures 5C,D). The areas with the largest increase in temperature

were mainly located in Qinghai Province, Gansu Province, and

Ningxia Province. Overall, the climate of the YHHRB showed

characteristics of warming and wetting.

To spatially determine the impacts of precipitation and

temperature on vegetation change, the partial correlations

coefficients were mapped (Figure 6). The mean partial

correlation coefficient between annual mean NDVI and annual

precipitation was 0.21, 34.62%, and 2.56% of the YHHRB

demonstrated positive and negative correlations at the

0.05 confidence level, respectively. The areas that exhibited a

significant positive correlation between NDVI and precipitation

were primarily distributed in the Middle Yellow River Basin and

the local area of the Hai River Basin, and significant negative

correlations were concentrated in the Upper Yellow River Basin

(Figure 6B). The mean partial correlation coefficient between

FIGURE 3
Interannual variation of the NDVI and sequential Mann–Kendall tests in the YHHRB (A), Yellow River Basin (B), Huai River Basin (C) and Hai River
Basin (D) from 1982 to 2015. p < 0.05 indicates significance at the 95% confident level.
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annual mean NDVI and temperature was 0.36, and 60.43% of the

total area exhibited a positive correlation at the 0.05 confidence

level, indicating that the vegetation in the YHHRB positively

responded to temperature change (Figure 6D).

3.3 Influence of other driving factors on
vegetation change

Apart from climate change, other driving factors, including

ecological construction projects, urban expansion, agricultural

production, and land use, are important factors with unignorable

effects on vegetation distribution (Sun et al., 2020). Land use

change results from the continuous utilization of land resources,

and such variation directly affects the underlying surface

structure and vegetation coverage (Cihlar et al., 1991). The

transfer matrix of land use types in the YHHRB from 1980 to

2015 is shown in Table 3. The main characteristics of land use

change were the conversion of farmland into city and grassland,

and the transformation of grassland into farmland and unused

land. About 19,113 km2 of farmland was converted into urban

land, and 4,009 km2 of grassland was degraded to unused land.

FIGURE 4
Spatial distributions of the annual mean NDVI (A), annual variation trends in NDVI (B), and significance of the various trends in NDVI (C) in the
YHHRB from 1982 to 2015.
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FIGURE 5
Spatial distributions of the annual mean precipitation (A), temperature (C), and their trends (B,D) in the YHHRB from 1982 to 2015. Regions
labeled with “+”in (B) and (D) represent the trends are significant (p<0.05).

FIGURE 6
Spatial distribution of the partial correlation coefficients between NDVI and annual precipitation (A,B) and annualmean temperature (C,D) in the
YHHRB from 1982 to 2015.
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Although the farmland, forest, and grassland area in the basin

changed during 1980–2015, these changed areas only accounted

for less than 5% of the total area. As a result of the increasing

population and accelerating urbanization, the urban area

increased by about 32.48% from 1980 to 2015, and the

expansion of the city scale had resulted in severe degradation

of vegetation coverage. However, under the concept of “building

a livable city,” the proportion of green areas in the city gradually

increased, and the vegetation coverage consequently improved.

Also, the vegetation coverage changed roughly demonstrated the

spatial characteristics of “downtown improvement, center-

periphery degradation” (Sun et al., 2020). As can be seen in

Figure 7, the percentage of area with a significant increase in

NDVI was above 60% for all land use types, and farmland and

forest land showed the most significant improvements (79.38%

and 72.56%, respectively). Meanwhile, 2.57% of the urban land

showed significant degradation.

The annual afforestation area data of main ecological

construction projects in the YHHRB were collected from the

Statistical Yearbook of China Forestry (Figure 8). The variation

trend of the NDVI was basically consistent with that of the

afforestation area from 2000 to 2015, indicating that active

human intervention had a significant effect on improving

regional vegetation coverage. The Grain for Green Project

began in 1999 and was fully implemented throughout the

country in 2002. Also a large afforestation area was reported

at the initial stage of the project but showed a decreasing trend

after 2005. Despite the significant reduction in afforestation area

between 2003 and 2004, an obvious increase in NDVI was

reported during the same period due to the lagged impacts of

the afforestation projects on the vegetation change. From 2000 to

2008, the project of the Beijing and Tianjing Sandstorm Source

Control Project and Grain for Green Project contributed the

most to regional vegetation restoration. The effects of the Three-

North Shelter Forest Program gradually enhanced after 2009.

The afforestation area of the YHHRB decreased between

2011 and 2013, whereas the NDVI gradually increased

probably due to climate change.

TABLE 3 The transfer matrix of land use types in the YHHRB from 1980 to 2015 (km2).

1980\2015 Farmland Forest Grassland Water City Unused land

Farmland 578,243 2,319 3,742 2,824 19,113 691

Forest 876 185,230 1952 148 631 115

Grassland 6,233 2,882 446,268 988 2,634 4,009

Water 2,865 139 934 31,590 1,099 590

City 155 15 68 76 74,476 10

Unused land 1752 533 3,778 768 1,145 70,302

FIGURE 7
Statistical results of the percentage variations in NDVI for
different land use types.

FIGURE 8
Statistical results of the NDVI and afforestation area in the
YHHRB from 2000 to 2015. The bar graph represents the change
in the afforestation area, and the line graph represents the NDVI
variation.
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3.4 Contributions of driving factors to
NDVI variation

The impacts of other driving factors, natural and

anthropogenic forcings on vegetation change in the YHHRB

vastly differed, and the distribution of driving factors is shown in

Figure 9. The results demonstrated that the areas where natural

forcing promoted vegetation restoration accounted for 60.18% of

the study area, and the significant restoration regions were

mainly distributed in Anhui Province. Whereas the area of

vegetation coverage inhibited by natural forcing accounted for

1.3% of total areas, which showed a punctiform distribution

within the YHHRB. The effects of anthropogenic forcing on

vegetation variation had a similar spatial distribution as natural

forcing. Compared with the effects of climate factors, the areas

where other driving factors inhibited vegetation restoration

accounted for a larger proportion (about 7%). Vegetation

restoration attributable to other driving factors was primarily

observed in the eastern and central YHHRB, which accounted for

73.41% of the YHHRB. Meanwhile, the regions where natural

and anthropogenic forcings had no effect on vegetation change

were mainly distributed in Inner Mongolia and northern Hebei

Province, whereas the regions where other driving factors exerted

no effect were primarily found in Qinghai Province. Overall,

climate change and other driving factors both contributed to a

slight restoration of vegetation coverage in the YHHRB from

1982 to 2015. However, the above three factors showed varying

influences in the same region. For example, natural forcing

caused a slight restoration in the Upper Yellow River Basin,

whereas other driving factors did not produce any effect.

The calculation method listed in Table 2 was used to

determine the relative contributions of different factors to

FIGURE 9
Spatial distribution of the impacts of natural forcing (A), anthropogenic forcing (B), and other driving factors (C) on vegetation restoration in the
YHHRB during 1982–2015.

FIGURE 10
Contributions of different factors to vegetation change in the
YHHRB from 1982 to 2015.
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vegetation change. As shown in Figure 10, the mean relative roles

of other driving factors, natural and anthropogenic forcings in

the YHHRB were 48.52%, 26.36%, and 25.12%, respectively. The

direct and indirect contributions of human factors to vegetation

change reached up to 73.64%. The highest contribution rate of

natural forcing was observed in the Huai River Basin (32.46%),

whereas the lowest contribution rate occurred in the Hai River

Basin (15.28%). The other driving factors contributed most to

vegetation change in the Hai River Basin (56.25%), followed by

the Yellow River Basin (47%) and the Huai River Basin (44.21%).

The spatial distribution of the relative contributions of the

abovementioned three driving factors is shown in Figure 11. The

areas where natural forcing contributed around 0–25% to the

NDVI variation accounted for the majority of the study area

(58%), which were primarily distributed in the Middle Yellow

River Basin and Hai River Basin. In comparison, the regions

where natural forcing contributed more than 75% accounted for

about 5% of the study area, which were located in the paramos

regions of the Upper Yellow River Basin. Different from the

distribution of natural forcing contribution, the relative role of

FIGURE 11
Spatial distribution of the contributions of natural forcing (A), anthropogenic forcing (B), and other driving factors (C) to vegetation coverage
change in the YHHRB from 1982 to 2015.
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anthropogenic forcing ranged from 0 to 50% and covered about

98% of the study area. Moreover, the areas where the relative

contribution of other driving factors was between 50% and 75%

showed the widest distribution and it accounted for about 42% of

the YHHRB. In addition, the areas with the relative contribution

of other driving factors greater than 75% were mainly distributed

in Inner Mongolia, Shanxi Province, and northern Hebei

Province.

4 Discussion

4.1 Impacts of climate change and human
activities on vegetation change

The vegetation conditions in the YHHRB showed an obvious

improvement trend from 1982 to 2015, and the NDVI significantly

increased in 75.78% of the region, which was consistent with

previous studies’ results (Chen et al., 2005; Li et al., 2007; Wang,

2017). Climate change is undoubtedly a major factor influencing

vegetation dynamics (Qu et al., 2020; Ge et al., 2021). The surface

temperature inChina, especially in its northern areas, has been rising

rapidly since the 1980s, and the climate gradually moved toward

warming and wetting (Zhou et al., 2015). The precipitation and

temperature in the YHHRB increased during 1982–2015, which

promoted the development of a warm and humid climate and

favored vegetation restoration, this finding is consistent with Wang

(2017). The increase in temperature not only prolongs the vegetation

development cycle but also accelerates the decomposition of soil

organic matter and the release of nutrients, thereby accelerating

vegetation growth (Li et al., 2017). Meanwhile, increased

precipitation offsets the water loss from warming and helps

vegetation to survive under drought conditions (Wang et al.,

2017). This study found that the sensitivity of NDVI to

temperature was significantly greater than precipitation in the

YHHRB. However, further increases in temperature will rapidly

promote evapotranspiration, which may cause a warmer and drier

climate, thereby inhibiting vegetation growth, especially for shrubs

and sparse vegetation (Propastin et al., 2008; Liu et al., 2014).

The response of vegetation to climate factors varied depending

on the vegetation types and climate conditions. Hu et al. (2011)

suggested that water and heat conditions were key factors affecting

vegetation growth, and argued that moisture was more important to

vegetation than heat. This conclusion supports the findings of this

study for the Middle Yellow River Basin and Hai River Basin, these

areas are dominated by arid and semi-arid regions, where

evaporation is large and vegetation is highly dependent on water.

However, in contrast to Hu et al. (2011), this study revealed that the

impact of temperature on vegetation was much greater than that of

moisture in the Huai River Basin and parts of the Tibetan Plateau.

The precipitation is relatively abundant in the Huai River Basin, and

the soil moisture content in the region is high. Given that an increase

in temperature benefits the extension of the vegetation growing

season and the accumulation of dry matter mass in these regions

(Fang et al., 2004), the vegetation activities in these areas are closely

related to temperature. Meanwhile, the precipitation and NDVI in

the Tibetan Plateau showed a negative correlation, suggesting that

excessive precipitation in this region will inhibit the growth of

vegetation, and this result is consistent with Gao et al. (2013).

The Tibetan Plateau with its high altitude, and the melting of snow

due to climate change provided enough water for vegetation growth.

However, the excessive precipitation in this area will result in low

temperature and radiation, thereby inhibiting photosynthesis in

plants (Zhang et al., 2016; Luo et al., 2018).

Since the 1980s, the Chinese government has successively

implemented a number of ecological protection and restoration

projects in the YHHRB, such as the Three-North Shelter Forest

Program, the Grain for Green Project, and the Natural Forest

Protection Program (Sun et al., 2015; Zhou et al., 2020). Lu et al.

(2015) and Zhao et al. (2018) demonstrated the positive effects of

the implemented ecological construction and protection measures

on vegetation change in China. Specifically, the implementation of

these projects fundamentally improved the vegetation conditions

in the YHHRB and reduced soil erosion in this area. Other

researchers also found that the ecosystem restoration projects

played a key role in increasing vegetation coverage in the Loess

Plateau, Hai River Basin, and Beijing-Tianjin-Hebei Megacity

Region (Li et al., 2015; Zhao et al., 2019; Sun et al., 2020; Shi

et al., 2021). Figure 3 shows that the increasing trend of NDVI in

the YHHRB accelerated significantly after 2003, which was directly

related to the implementation of ecological projects. The same

trends were also confirmed by the statistical results in Figure 8. The

results of partial correlation analysis showed that NDVI and

precipitation were negatively correlated in some regions of the

southern Yellow River Basin. The regions are part of irrigated areas

where vegetation is mainly affected by irrigation projects, and

human intervention is particularly strong in years with low

precipitation, thereby limiting the influence of water stress on

vegetation (Shi et al., 2021; Wang et al., 2021). Active human

activities through improved agricultural management (such as

fertilization and irrigation) can also effectively increase

vegetation coverage in local areas. However, the vegetation

coverage in some regions of the Tibetan Plateau remained in a

degraded state caused of mining and overgrazing (Zhang et al.,

2016; Teng et al., 2020). Moreover, the rapid urbanization

converted a large amount of land into construction land,

resulting in a decline in vegetation coverage of the YHHRB.

Overall, the impact of direct human activities on vegetation

coverage has two sides.

4.2 Relative contributions of different
factors to vegetation change

Many researchers have applied the residual trend method to

analyze the driving forces of vegetation change in different
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regions of the YHHRB. For example, Shi et al. (2021) found that

climate change and human activities contributed 45.78% and

54.22% to vegetation change in the Loess Plateau, respectively. Jin

et al. (2020) showed that human activities played a dominant role

in the typical areas covered by the Grain for Green projects, such

as Shaanxi and Shanxi provinces, the contributions of these

activities to the increase of NDVI exceeded 50% in most

areas. In the Tibetan Plateau region, Li et al. (2011) found

that the vegetation recovery was mainly attributed to climate

change, and the trend of climate warming and wetting

determined the direction of vegetation growth in the region.

In the Beijing–Tianjin–Hebei regions, the implementation of the

Three-North Shelter Forest Program and the Beijing–Tianjin

Sand Source Control Program resulted in a significant vegetation

restoration (Zhao et al., 2019). The advancement of urbanization

was also highlighted as the main factor for vegetation

degradation in some areas (Cao et al., 2021). These findings

were generally consistent with the study, the improved vegetation

coverage in the YHHRB was mainly caused by climate change

and human activities, both of which caused more than 60% of the

area to increase NDVI.

Climate system models are the main tool currently used in

climate assessment researches, however, previous studies roughly

attributed vegetation change to both climate change and human

activities. In this paper, the drivers of vegetation change were

subdivided into other driving factors, natural and anthropogenic

forcings. Further research found that in the Tibetan Plateau, the

relative contribution of natural forcing to vegetation change was

greater than that in other regions. The vegetation of this region is

particularly sensitive to global climate change and the intensity of

human activity is low (Piao et al., 2006). In the Loess Plateau

region, the contribution rates of natural and anthropogenic

forcings were similar, ranging from 0% to 25%. Direct human

activities such as afforestation were the main driving forces for

the improvement of vegetation coverage in this region, however,

CO2 and aerosol emissions caused by human activities were also

factors that cannot be ignored in the vegetation change. The

anthropogenic forcing contributed most to vegetation change in

the Hai River Basin, which is an important base for industrial and

agricultural production and high-tech industries in China, the

land area only accounts for 3.3% of the national total, while the

population accounts for 13.6% of the national total (Yang et al.,

2021). An intensive human activities made the contribution of

greenhouse gas and aerosol emissions to vegetation change

significantly greater than natural forcing in this region.

4.3 Uncertainties and limitations

This study employed the residual trend analysis method to

separate the relative roles of other driving factors and natural and

anthropogenic forcings in vegetation change. Nevertheless, some

uncertainties and limitations in this study should be

acknowledged. First, the application of the residual trend

analysis method is premised on the assumption that the

relationship between climate factors and NDVI in the

regression model is linear. The failure to consider the non-

linear relationship between vegetation and impact factors as

well as the time lag and cumulative effects of vegetation

growth may bias the NDVI prediction equation (Song and

Ma, 2011; Liu and Lei, 2015). Second, this study only selected

precipitation and temperature to establish the NDVI prediction

equation and overlooked other driving factors (such as wind,

radiation, and evapotranspiration) (Liu et al., 2014; Zhang et al.,

2016). There are no established criteria for choosing reasonable

climate elements. Third, the impacts of specific human activities

(such as grazing and urbanization) on vegetation change were

not distinguished, there is a compelling need to conduct field

surveys and refer to large amounts of socio-economic data to

address this problem. With the continuous development of

technology, some scholars have begun to use machine

learning algorithms instead of the residual analysis method

(Chen et al., 2020; Shi et al., 2020). However, the residual

trend analysis method is always the most popular method due

to its simple operation and easy access to data (Ge et al., 2021).

5 Conclusion

The spatiotemporal characteristics of vegetation change in

the YHHRB from 1982 to 2015 and their responses to driving

factors were analyzed and evaluated in this study. First, the

spatiotemporal trends of vegetation change were analyzed

using multiple trend analysis methods. Second, the vegetation

change responses to climate change and human activities were

analyzed via partial correlation analysis and slope trend analysis.

Third, given the role of human activities and natural factors in

climate change, this study further separated the contributions of

natural and anthropogenic forcings and other driving factors to

vegetation change. Several conclusions can be drawn:

(1) The vegetation coverage in the YHHRB had increased from

1982 to 2015, with a change rate of 0.014/10a, and the annual

mean NDVI series changed abruptly in 2003. Spatially, the

significantly improved vegetation areas accounted for

75.78% of the area, which was primarily distributed in the

North China Plain and the Middle Yellow River Basin.

Nearly 2.11% of the total area exhibited a significant

decrease in vegetation coverage, which was primarily

distributed in the periphery of some cities.

(2) Over the past 34 years, the precipitation and temperature

showed an insignificant and significant increasing trend,

respectively. Vegetation change was more sensitive to

temperature than precipitation. At the spatial scale, a

negative correlation between the NDVI and precipitation

was observed in the paramos regions of the Yellow River
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Basin, and the positive correlation between the NDVI and

temperature was strongest in the southern part of the Huai

River Basin.

(3) A series of ecological construction projects in the YHHRB

effectively improved vegetation coverage. Meanwhile,

human activities, such as urbanization, construction land

encroachment, and unreasonable farming methods

negatively affected regional vegetation restoration.

(4) Other driving factors, natural and anthropogenic forcings,

both played a positive role in vegetation restoration, with the

relative contribution of 48.52%, 26.36%, and 25.12%,

respectively, indicating that other driving factors was the

dominant driving factor affecting vegetation change in the

YHHRB. The highest contribution rate of natural forcing

was observed in the Huai River Basin (32.46%), whereas

other driving factors contributed most to vegetation change

in the Hai River Basin (56.25%). At the spatial scale, the

regions with natural forcing contributions of greater than

75% were mainly distributed in the paramos regions of the

Upper Yellow River Basin. The areas where the relative

contribution of other driving factors was greater than 75%

were primarily distributed in Inner Mongolia, Shanxi

Province, and northern Hebei Province.
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