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The Middle Ordovician Majiagou Formation in the southern Ordos Basin develops a set of
sub-and peri-tidal carbonate successions that were extensively dolomitized. Diagenetic
dolomitization is widely investigated because dolostones provide high-quality gas
reservoirs in the southern Ordos Basin. Nonetheless, the ultimate mechanism
controlling dolomitization remains enigmatic. In this study, integrated geochemical
indexes including carbon and oxygen isotopes, rare earth elements, and
microthermometry, coupled with U-Pb dating and lithofacies and mineralogic studies,
are investigated to elucidate the periods of hydrothermal fluids involved in the formation of
different types of dolomites in the studied section from Ma5 member. The results reveal
that the micritic dolomite matrix was formed under the involvement of low-salinity meteoric
water in the mixing zone during a shallow-burial environment. The mixing zone of
paleokarst possibly provided accommodation for this dolomitization. The fine-/medium-
sized dolomites were formed due to interactions between hydrothermal fluids of
comparatively low temperature and matrix carbonates, which occurred during the
period of the Middle Jurassic. The dolomitic microbialites were formed due to the
injection of high-temperature acid fluids associated with organic matter maturing. This
dolomitization occurred during the period of the Late Jurassic according to U-Pb ages. The
coarse-sized dolomite cements can be furtherly classified into two types according to
different U-Pb ages and carbon-oxygen isotopes, although they are very similar with
respect to mineralogic features. Comprehensive geochemical evidence revealed that the
dolomitizing fluids of two types of dolomite cements were derived from hydrothermal fluids
associated with periodical magmatism, which occurred during the period of the Early
Cretaceous. This finding provides a new insight for elucidating the diagenetic process of
reservoir dolostones from the Middle Ordovician in the Ordos Basin.
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1 INTRODUCTION

Compared with limestones, dolostones contribute major
hydrocarbon reserves (more than 50%) in worldwide
carbonate successions because the dolomitizing process
usually enhances physical properties of reservoir rocks
(Zenger et al., 1980; Sun, 1995; Warren, 2000; Ma et al.,
2007). Multiple dolomitizing mechanisms have been
proposed to explore dolomite origins, such as evaporative,
seepage-reflux, microbial-mediated, and hydrothermal-fluid
dolomitizations (e.g., Adams and Rhodes, 1960; Friedman
and Sanders, 1967; Badiozamani, 1973; Hsu and Schneider,
1973; Baker and Kastner, 1981; Braithwaite and Rizzi, 1997;
Huang et al., 2008). However, the ultimate nature of dolomites
remains a subject of dispute, because it is difficult to identify
precisely the origins of dolomitizing fluids due to complicated
diagenetic processes and fluid-rock interactions. Hence, it is of
great significance to elucidate the nature of diagenetic fluids. It
is widely recognized that the interplay of diagenetic fluids and
carbonate rocks exerts important controls on reservoir
development in carbonate successions. The dissolution
caused by different post-depositional fluids (e.g.,
hydrothermal fluids derived from deep-burying formation
water or magmatism, organic acid, and Thermochemical
sulfate reduction) can be constructive to reservoir properties
(Smith, 2006; Lavoie and Chi, 2010).

The Middle Ordovician Majiagou Formation of the Ordos
Basin, composed dominantly by dolostones, has been widely
studied due to its abundant natural gas being reserved in
karst-controlled and burial dissolution carbonate reservoirs
(Dai, 2016). In previous studies, the favorable reservoir
condition of the Majiagou Formation was mainly attributed
to telogenetic karstification controlled by Caledonian
tectonism (Chen et al., 2013; He et al., 2013). However, the
dissolution process accompanying karstification was ignored.
Recent studies revealed that complicated dissolving fluids
occurred along fracturing systems and unconformities. For
instance, high-frequency depositional cycles and subaerial
exposure surfaces were identified in the Member-5 section
of the Majiagou Formation (i.e., subsalt Ma5 member),
implying a new type of karstification and associated later-
stage fluids (Xiong et al., 2019). Moreover, hydrothermal
fluids and their constructive effects on reservoir properties
were identified in the Majiagou Formation (Liu et al., 2011).
Nonetheless, the ultimate nature and evolution of these fluids
were undocumented, which hindered our understanding of
the dolomitizing process and the formation of dolostone
reservoirs in this area.

Coupled with detailed hand specimens, lithofacies,
petrography, and mineralogy studies, integrated isotopic/
elemental geochemical proxies are analyzed in the current
study to elucidate the origin and evolution of hydrothermal
fluids related to reservoir formation of the Majiagou
Formation, thus providing new insights for reservoir
forming mechanism and prediction, as well as an analog to
the occurrence of dolostone reservoirs of similar geological
conditions.

2 GEOLOGICAL SETTING

The Ordos Basin, covering an area of 25 × 104 km2, is located
on the western edge of the North-China craton and consists of
six tectonic structures, i.e., the Yimeng uplift, the Jinxi flexural
belt, the Yishan slope, the Tianhuan depression, the western
edge thrust belt, and the Weibei uplift (Figure 1A; Li et al.,
2019). The Ordos Basin is the second largest inland basin in
China, with abundant hydrocarbon resources and a thickness
of more than 5,000 m of sedimentary rocks. The basement is
composed of Archean and Proterozoic metamorphic rocks.
The Middle-Ordovician Majiagou Formation consists of six
lithologic sections (i.e., from the Ma1 to the M6 members),
which represent a complete marine transgression-regression
cycle upwardly (Figure 1B). The Majiagou Formation is a set
of carbonate rocks intercalated with evaporites (He et al., 2014;
Fu et al., 2017). Among them, the Ma1, the Ma3, and the
Ma5 members are mainly composed of dolostones with
gypsum or salty caprocks; the Ma2, the Ma4, and the
Ma6 members dominantly consist of dolostones and
dolomitized limestones. The gypsum and salt intercalations
are mainly developed in the Ma1, the Ma3, and the
Ma5 members, which indicate the depositional interval of
the seawater regressive period. The Ma5 member can be
furtherly divided into ten sub-members according to
evaporative cycles upwardly, i.e., from Ma5-1 to Ma5-10
(Figure 1B). The Ma5-6 sub-member was deposited at the
widest range with an area of −50000 km2, and the thickness of
regional gypsum rocks can reach to more than 80 m, thus
dividing Ordovician strata into post-salt and pre-salt period.
The eighth and 10th sub-members comprise mostly gypsum/
salts and gypsiferous dolomites, which were considered to
deposit under a highly saline environment and act as an
important source of sealing rocks (Xia et al., 2007).
Intraplatform shoals and microbial mounds were
intercalated developing within these sub-members, thus
forming important gas reservoirs of the Ordos Basin.

3 SAMPLES AND METHODS

Cored Samples are exclusively collected from the Ma5 member
in the studied area (i.e., the Fuxian area, as shown in
Figure 1A). Specific sampling intervals are shown in
Figure 1B. A total of 185 samples are preliminarily
described and treated in the field to avoid weathering crusts
or drilling mud contamination. Detailed lithofaices,
petrographic, and mineralogic observations of cores and
thin-sections are undertaken for subsequent isotopic and
elemental analysis. A proportion of thin-sections are
impregnated with epoxy resin to identify the pore system.

For stable oxygen and carbon isotopic analyses, a total of
78 powder samples (weighting 50 mg) are obtained with a dental
drill of diameter 50 μm. The powder samples are subsequently
reacted with HNO3 (90% in concentration) at 72°C for 5 h linked
to Finnigan Delta-V mass spectrometer. All results are recorded
in per mil of V-PDB standard. The accuracy of the isotopic
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measurements is calibrated by replicate analyses of internal-
standard NBS-19 and the analytical error is better than ±0.05‰.

For radioactive strontium isotope (87Sr/86Sr) determination,
200 mg powder dissolved in distilled water solution is prepared.
The aimed samples are transferred into Teflon vials containing a
mixture of 2 ml concentrated HF, 3 ml concentrated HCl and
0.5 ml HNO3. Samples are heated at 90°C for 48 h. Subsequently,
the solution is dried, redissolved in 2.0 ml HCl, and heated for
24 h 87Sr/86Sr concentrations are determined using a Neptune
multi-collector ICP-MS by static measurement of 82Kr, 83Kr, 84Sr,
85Rb, 86Sr, 87Sr, and 88Sr ion beam intensities. Corrected 87Sr/86Sr
ratios are then normalized to NBS SRM 987 (certified value of
0.71024 ± 0.00025). The measurement accuracy is better than
0.00002. The detailed experimental protocol and procedure
follows Boral et al. (2021).

In-situ analyses are carried out to determine trace and rare
earth elements for dolomites and matrix calcites. A LSX-200 UV
laser ablation system linked to Nd-YAG laser emitter and Helium
carrier is applied for measurement. The diameter of the laser spot
is 50 μm with a wavelength of 213 nm and an impulse frequency
of 10 Hz. The detection limits range from 0.001 ppm to 1 ppm
with respect to different elements, and detection precision is
better than 3%. The preparation of functional thin-sections and
workflows follow Liu et al. (2017).

Zircon grains from carbonate samples by magnetic and
methylene iodide liquid separation. Separated zircon grains are
hand-picked and fixed in epoxy resin. Subsequently, the epoxy

mounts are polished for the following date measurement. The
samples are dated by in-situ Laser Ablation Inductively-Coupled
Mass Spectrometry method. The equipment is introduced above.
The synthetic glass NIST-610 is applied for instrumental
optimization. The standard zircon 91500 is used as an external
standard. The counting time of measurement is 30 s, including
the first 10 s for background measuring.

Microthermometric fluid-inclusion analyses are performed
using a Linkam THMS 300 heating-freezing stage linked with
an electrical microscope and microthermometric analysis
software. Inclusion populations are carefully described with
respect to their sizes, distribution, and vapor-liquid ratios. The
micro-areas developing fluid-inclusion assemblages (FIA) are
focused and then the 0.5-mm-thick thin-sections are treated
with acetone solution to acquire previously focused fragments
for microthermometric analysis. Homogenization
temperatures (Th) and Ice-melting temperatures (Tm) are
measured on primary liquid-vapor inclusions. The detailed
measurement procedure sensu Shepherd et al. (1985).
Salinities were calculated in form of wt% in the H2O-NaCl-
CaCl2 system using the equation proposed by Hall et al. (1988),
i.e., NaCl (wt%) = 1.78Tm–0.0442Tm

2 + 0.000557Tm
3. The

measured accuracy of the Th and Tm values are within ± 1°C
and ± 0.5°C, respectively.

The above experiments were carried out at the State Key
Laboratory of Petroleum Resources and Prospecting in China
University of Petroleum, Beijing.

FIGURE 1 | (A) Structural units and studied location within the Ordos Basin (modified after Dai, 2016). (B) Lithologic column showing stratigraphy of the Majiagou
Formation and sampled interval.
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4 LITHOFACIES AND MINERALOGY

In the studied area, Silurian or Devonian strata are absent because
of the uplifting of the Ordovician carbonates, thus causing
longtime depositional hiatus (Figure 1B). Therefore, erosional
surfaces of multiple levels are documented mainly at the top of
deposits including intraplatform shoals, microbials, and gypsum
or salt bearing strata. This typical evaporitic environment resulted
in the development of micritic dolomites (Figure 2A).
Microbialites are widely developed in the subsalt
Ma5 member, mainly consisting of stromatolite. The
stromatolites are characterized by regular repetition occurrence
of mm-scale thin layers of different colors (Figure 2B). Plate-
shaped and corrugated stromatolites are major types. The
breccias are widely developed below the exposed surfaces with
a thickness of several centimeters. The breccias exhibit dark
yellowish nodular features from observed cores (Figure 2C),
showing distinctively different contact surfaces to the
surrounding dolostone matrix. Particularly, breccias collapse
easily at intervals of exposed erosional surfaces (Figure 2D).
At intervals distal from exposure surfaces, karstification did not
occur widely, thus developing few breccia dolostones. Instead,
dissolved pores or fractures induced by other fluids forming

visible caves are observed from bulky dolostones (Figure 2E).
Nonetheless, these pores or fractures are rarely developed in
micritic dolomites, possibly due to few porosities for
accommodating diagenetic fluids. These fractures are regularly
distributed (Figure 2E), thus providing effective reservoir
porosities for natural gas. Micritic-to silty-dolostones most
widely occurr as matrix rocks. This type of dolostones is
widely developed in the platform shoal and evaporative zone.
It is featured by coarse silty to fine-sized crystals, developing no
visible pores or fractures from core observation (Figure 2F). The
gypsum and salt are generally formed by leaching and/or
collapsing of upper tidal-flat sabkha environments caused by
meteoric-water influx during penecontemporaneous exposure
(Figure 2G). Carbonate silts or authigenic argillaceous
infillings of grey to black colors are commonly distributed in
the gypsum or salt vugs, forming a chickenwire-like structure
(Zhang et al., 1991).

Various types of dolomites are developed in the studied
interval of the Majiagou Formation. 1) Micritic dolomite. This
type of dolomite is mainly distributed in the platform flat and
associated with evaporative minerals, exhibiting anhedral to
subhedral crystals with grain sizes commonly less than 20 μm
(Figure 3A). Some scattered pyrites are variably distributed

FIGURE 2 | Core sample photographs showing lithofacies of the studied interval in the Ma5 member. (A) Micritic dolomite matrix showing laminated layers. (B)
Stromatolites developing thin layers of different colors. (C) Dolomite breccias. (D) Breccias collapsing in the studied interval, leaving visible fractures. (E) Fractures
developing in bulky dolostones. (F) Silty dolomites developing no visible pores. (G) Gypsum developing in upper tidal-flat sabkha environment.
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within this type of dolomite, having content less than 10% in
volume (Figure 3B). 2) Fine-to medium-sized dolomite. This
type of dolomite is dominantly distributed in the middle part of
meter-scale stratigraphic cycles, as well as the major construction
of the carbonate matrix. Under thin-section observation, it
usually displays a poikilotopic texture with euhedral to
subhedral crystals and 50 μm–200 μm in crystalline sizes

(Figure 3C). Few evaporative minerals are developed within
this type of dolomite. In some coarse crystals, the texture of
“cloudy-center-clear-rim” is observed (Figure 3C).
Intercrystalline dissolved pores are widely developed with
associated authigenic infillings in this type of dolomite
(Figure 3D). 3) Dolomitic microbialites. This type of
microbialites is displayed as thrombolites and stromatolites,

FIGURE 3 | Photomicrographs showing mineralogic features of dolostones in the studied interval under plane-polarized light. (A) Micritic dolomites showing
anhedral to subhedral crystals with micritic grain sizes. Well-J48, 3,225.86 m. (B) Pyrites distributed in micritic dolomites in scatter. Well-J432, 3,584.12 m (C) “Cloudy-
center-clear-rim” features developing medium-sized dolomite. Well-J48, 3,237.48 m. (D) Intercrystalline pores developing in medium-sized dolomites. Well-J48,
3,239.89 m. (E) Bitumen and bioclasts developing in microbialites. Well-J445, 4,105.56 m. (F) Residual pores are visible in medium-sized dolomites of
microbialites. Well-J431, 4,425.11 m. (G) Dolomite cements developing intercrystalline pores. Well-J431, 4,428.91 m. (H) Dolomite cements composed of smaller
crystals developing no porosities and exhibiting saddle shapes. Well-J52, 4,123.56 m.
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both containing biotic debris and reflecting a high-energy
shallow-water environment (Figure 3E). The microibalites
usually exhibit cluster and granular structures and grid
textures. Only a small proportion of residual pores are visible
due to agglutinates filling (Figure 3F). Bituminous fillings are
commonly developed in dolomitic microbialites (Figure 3E). 4)
Dolomite cements. The dolomite cements consist of coarse
crystals with sizes ranging from 400 μm to 1,000 μm, which
generally occur as authigenic minerals filling in dissolved
vuggy pores in the matrix dolostones. This type of dolomites
exhibits planar euhedral to subhedral. The large-sized dolomites
commonly develop intercrystalline porosities (Figure 3G). By
contrast, the dolomite cements of comparatively smaller crystals
usually develop no porosities (Figure 3H). Meanwhile, some
authigenic minerals such as quartz and fluorite are associated
with large-sized dolomite cements (i.e., saddle dolomite).

5 RESULTS AND DISCUSSION

5.1 Dolomitization of Matrix Dolomites
In the eastern Ordos Basin, the occurrence of widespread micritic
dolostones has been previously interpreted as the product of
seepage-reflux dolomitization (Yang et al., 2018). However, its
ultimate mechanism in the studied area is remaining unsolved.
The Sr concentrations decrease with increasing burial depth during
dolomitization (Liu et al., 2016). The micritic dolomite matrix
exhibits Sr values ranging from 77 ppm to 135 ppm (mean value
of 92 ppm), which is consistent with Sr content in normal seawater
(i.e., less than 550 ppm; Tucker and Wright, 1990). Meanwhile, the
Mn content of the matrix dolomite ranges from 55 ppm to 86 ppm
with a mean value of 68 ppm, reflecting little influence on diagenesis
because theMn/Sr ratios are exclusively less than 2 (Figure 4; Huang
et al., 2008). However, the δ13C values are slightly negative and out of
the range of seawater origin (Figure 5), suggesting that this type of
dolomite may not be formed in a typical marine environment.
Diagenesis with meteoric water involvement should result in

dolomites characterized by negative δ13C composition (Swart
et al., 2005). Meanwhile, the δ18O values of the matrix dolomite
(mean value of −8.05‰, V-PDB) are more pronouncedly depleted
than the published ratios for Ordovician seawater (i.e., −6.6‰
to −4.0‰; Allen and Wiggins, 1993). This result indicates that
the micritic dolomite matrix was formed under the involvement of
meteoric fluids. This is also consistent with the distribution pattern
of the rare earth elements of the micritic dolomites, which are
different from seawater-origin micritic limestones (Figure 6A). The
calculated salinity of this type of dolomite is Z = 105.5 using equation
proposed by (Keith andWeber 1964) [i.e., Z = 2.048 (δ13CPDB + 50)
+ 0.498 (δ18OPDB + 50)].

Presumably, the matrix dolomites were formed under a low-
salinity environment with the involvement of meteoric water at the
mixing zone during the shallow-burial stage. The mixing zone
possibly provided accommodation for widespread dolomitization.
It is noteworthy that this dolomitization occurred at a normal burial

temperature, as is evidenced by the homogenization temperature
(i.e., mean value of 85°C; Figure 7A).

5.2 Multi-Stage of Hydrothermal
Dolomitizing Fluids
To determine the absolute ages of crystalline dolomites
(i.e., crystal sizes larger than 50 μm), U-Pb dating has been
conducted for quantitative measurement. The result shows
that different dolomites were formed at different diagenetic
stages. The recrystallized fine-to medium-sized dolomites were
formed at the earliest geological period, with measured U-Pb
age of 494 ± 12 Ma and 498 ± 36 Ma, respectively (Figures

FIGURE 4 | Crossplot showing Mn/Sr ratios of the micritic dolomites.

FIGURE 5 | Crossplot showing carbon and oxygen isotope features of
different types of dolomites. The isotopic ranges are referred from Li et al.
(2011).
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8A,B), which is equivalent to Middle Jurassic. The dolomitic
microbialites were formed at a later-stage after burial, with
measured U-Pb age ranging from 474 ± 31 Ma to 480 ± 12 Ma
(Figures 8C–E). It is equivalent to Late Jurassic. The dolomite
cements of large-sized crystals were formed at the latest stage,
which can be further classified into two periods, i.e., 459 ±

6 Ma −466 ± 11 Ma and 440 ± 15 Ma −445 ± 11 Ma (Figures
8F–I). This period of geological time is equivalent to the Early
Cretaceous.

For pervasively distributed fine-/medium-sized dolomites, the
calculated homogenization temperatures range from 96°C to
143°C, with a mean value of 126°C (Figure 7B), which is

FIGURE 6 | Distribution patterns of the rare earth elements in different types of dolomites or calcites. (A)Micritic dolomites and calcites. (B) Fine-to medium-sized
dolomites. (C) Medium-to coarse-sized dolomites. (D) Dolomite cements. All samples are normalized to PAAS standard (Gromet et al., 1985).

FIGURE 7 | Histograms showing homogenization temperatures of different types of dolomites. (A) Micritic dolomite matrix. (B) Fine-to medium-sized dolomites.
(C) Medium-to coarse-sized dolomites. (D) Dolomite cements.
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approximately 10°C higher than burial temperature during the
Middle Jurassic (i.e., 125°C according to the thermal gradient of
2.5°C and burial depth of 2,800 m; Lei et al., 2020). Moreover, the
carbon and oxygen isotopes are plotted at the zone of
“hydrothermal-fluid origin” (Figure 5), indicating that this
type of dolomitizing fluid was featured by a hydrothermal
source. Nonetheless, the distribution pattern of REEs shows
seawater-like composition, but has no positive Eu anomaly
(Figure 6B). Presumably, this type of dolomites was formed
due to interactions between hydrothermal fluids of comparatively
low temperature and matrix carbonates (Liu et al., 2017).

For medium-to large-sized dolomites composing microbialites,
the introduction of organic matter provided probable dolomitizing
fluids, because bituminous matters are widely developed within
microbialites (Figure 3E). This inference is supported by other
geochemical proxies. Firstly, this type of dolomites shows much
depleted carbon isotopes with δ13C values ranging from −4.05‰
to−6.18‰ and amean value of−5.33‰ (Figure 5). These depleted
carbon isotopes may result from the interplay of organic matter
featured by extremely low δ13C composition and normal marine
carbonates (e.g., Meyer et al., 2011). Secondly, this type of
dolomites displays REE distribution pattern that is distinctively
different from marine origin carbonates (Figure 6C). Particularly,
negative Ce anomalies (i.e., δCe mean values of 0.75; Figure 6C)

FIGURE 8 | U-Pb ages from carbonate minerals using LA-ICP-MS method. (A) Fine-sized dolomite, age of 494 ± 12 Ma. (B) Fine-sized dolomite, age of 498 ±
36 Ma. (C) Dolomitic microbialite, age of 474 ± 31 Ma. (D) Dolomitic microbialite, age of 480 ± 12 Ma. (E) Dolomitic microbialite, age of 477 ± 12 Ma. (F) Dolomite
cement, age of 466 ± 11 Ma. (G) Dolomite cement, age of 459 ± 6 Ma. (H) Dolomite cement, age of 440 ± 15 Ma. (I) Dolomite cement, age of 445 ± 11 Ma.

FIGURE 9 | Evolution of carbon and oxygen isotopes of dolomite
cements at different ranges from fractures.
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indicate a reduced environment, which is consistent with the
environment for preservation of organic matter. Moreover, the
microthermometric data reveals that the homogenization
temperatures range from 134°C to 163°C with a mean value of
157°C (Figure 7C), which is consistent with a slight Eu anomaly
(i.e., δEu mean value of 1.35; Figure 6C). To conclude, it is
probably that the injection of high-temperature acid fluids
associated with organic matter maturing has caused
dolomitization and related dissolution.

Coarse-sized dolomite cements exhibit similar petrologic
(Figures 3G,H) and REE distribution patterns (Figure 6D)
although having different U-Pb ages. This may indicate that
two types of dolomite cements were derived from similar
origins but temporally discontinued. The microthermometric
data reveals that two stages of homogenization temperature
exist, i.e., the mean values of −195°C and −215°C, respectively
(Figure 7D), which are significantly higher than temporal burial
temperature. This indicates that the dolomitizing fluids are
characterized by super-high temperatures, which is verified by
pronouncedly positive Eu anomaly of dolomite cements (i.e., δEu
mean value of 1.70; Figure 6D). To determine the ultimate
differences of two type of hydrothermal fluids, the evolution
patterns of δ13C and δ18O values are analyzed according to
different distances from fractures. The result shows that the
dolomite cements filling in major fractures display high δ13C
value and low δ18O value (mean value of 3.3‰ and −23.5‰,
respectively). On the contrary, the δ13C and δ18O values from
dolomite cements decrease or increase linearly with increasing
distances from visible fractures (Figure 9). This reflects that the
dolomitizing fluids of two stages were derived from hydrothermal
fluids associated with periodical magmatism because all previous
proxies are consistent with features of magmatic fluids. Moreover,
this inference is also evidenced by periodical volcanism occurring
in the Ordos Basin (Li and Gao, 2010; Lei et al., 2020).

6 CONCLUSION

According to the current study, the following conclusions can be
drawn:

(1) The recrystallized fine- and medium-sized dolomites were
formed in the geological period equivalent toMiddle Jurassic.
The dolomitic microbialites were formed at a later stage after
burial. This stage is equivalent to Late Jurassic. The dolomite

cements of large-sized crystals were formed at the latest stage,
which can be further classified into two periods (i.e., 459 ±
6 Ma −466 ± 11 Ma and 440 ± 15 Ma −445 ± 11 Ma). This
period of geological time is equivalent to the Early
Cretaceous.

(2) The matrix dolomites were formed under a low-salinity
environment with the involvement of meteoric water at
the mixing zone during the shallow-burial stage. The
mixing zone possibly provided accommodation for the
occurrence of dolomitization.

(3) The fine-to medium-sized dolomites were formed because of
the interplay between hydrothermal fluids of comparatively
low temperature and matrix carbonates.

(4) The medium-to large-sized dolomites were formed because
of injection of high-temperature acid fluids associated with
organic matter maturing, which has caused dolomitization
and related dissolution.

(5) The two types of dolomite cements were derived from similar
origins but temporally discontinued. The geochemical
proxies reveal that dolomitizing fluids of two stages were
derived from hydrothermal fluids associated with periodical
magmatism.
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