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Severe air pollution in China has become a challenging issue because of its

adverse health effects. The distribution of air pollutants and their relationships

exhibits spatio-temporal heterogeneity due to influences by meteorological

and socioeconomic factors. Investigation of spatio-temporal variations of

criteria air pollutants and their relationships, thus, helps understand the

current status and further assist pollution prevention and control. Even

though many studies have been conducted, relationships among pollutants

are non-linear due to complicated chemical reactions and were difficult to

model by linear analyses in previous studies. Here, we presented a tri-

clustering–based method, the Bregman cuboid average tri-clustering

algorithm with I-divergence (BCAT_I), to explore spatio-temporal

heterogeneity of air pollutants and their relationships in China.

Concentrations of PM2.5, PM10, CO, SO2, NO2, and O3 in 31 provincial cities

in 2021 were used as the case study dataset. Results showed that air pollutants

except O3 exhibited spatial and seasonal variations, i.e., low in summer in

southern cities and high in winter in northern cities. Variations of PMs were

more similar to those of CO than other pollutants in southern cities in 2021.

Results also found that relationships among these air pollutants were

heterogeneous in different regions and time periods in China. Moreover,

with the increasing level of NO2 from summer to winter in northern cities,

concentrations of O3 first decreased and then increased. This is because the

response ofO3 toNO2was negative at the low pollution level due to the titration

reaction, which, however, changed to positive when concentrations of NO2

became high.
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Introduction

Severe air pollution in China, along with the rapidly growing

economy, has become a concerning issue due to its adverse health

impacts (Jin et al., 2018; Kim et al., 2018). Primary air pollutants

include inhalable particles, such as PM2.5 and PM10 (fine

particulate matters with diameters less than 2.5 and 10 μm,

respectively), and gaseous pollutants, including CO, SO2, NO2,

and O3. Particulate matters (PMs), i.e., PM2.5 and PM10, can

penetrate deep into the lungs once inhaled and increase the

susceptibility to respiratory and cardiovascular diseases (Gordon

et al., 2018; Giani et al., 2020; Tainio et al., 2021). Exposure to

gaseous pollutants also increases health risks by aggravating

chronic respiratory diseases, exacerbating cardiovascular

diseases, and weakening lung defense systems in the long

term (Kampa and Castanas 2008; Mannucci and Franchini

2017). Thus, exploring variations of these air pollutants is

essential to understand the current air pollution status in

China and further assist pollution prevention and control for

local and central government agencies. Since gaseous pollutants

are the main precursors of PMs by enhancing the formation of

secondary aerosols (Blanchard, 2003; Kota et al., 2018; Squizzato

et al., 2018), the exploration and understanding of relationships

among these air pollutants is also important to support decision-

making.

Since the formation of both air pollutants and their

precursors is influenced by meteorological and socioeconomic

factors, distributions of air pollutants and their relationships are

heterogeneous across both space and time (Cogliani, 2001; Fecht

et al., 2015; He et al., 2017). Chai et al. (2014) explored spatio-

temporal variations of these air pollutants in China in 26 cities

from August 2011 to February 2012 and found that high

pollution levels typically existed in northern cities, especially

in winter, because of strong emissions from coal combustion in

the heating period and poor weather conditions for dilution.

They also observed high concentrations in city clusters, e.g.,

Beijing–Tianjin–Hebei in northern China, due to rapid

urbanization. He et al. (2017) analyzed spatio-temporal

heterogeneity of these pollutants in major Chinese cities

during 2014–2015 and found that dispersion of pollution was

determined by large-scale weather conditions and local

meteorology. Xu et al. (2019) explored spatio-temporal

variations of major air pollutants in China during

2005–2016 and identified significant spatial heterogeneity of

air pollution caused by unbalanced regional economic

development.

A few works also studied spatial and temporal

heterogeneity of relationships among air pollutants in

China. Wang et al. (2014) analyzed spatio-temporal

variations of relationships among these six air pollutants in

31 provincial cities in China during 2013–2014 using the

Pearson correlation coefficients. Seasonable variations were

identified with high correlations among pollutions in winter

due to strong formation of secondary PMs. Zhang et al. (2018)

characterized spatial and temporal heterogeneity of

relationships between air pollutants influenced by

meteorological and geographical conditions by gray

correlation analysis. Liu et al. (2021) explored spatio-

temporal changes in relationships among pollutants by

Pearson correlation analysis and identified seasonal

variations because of weather conditions. In addition to

being spatially and temporally heterogeneous, relationships

among these air pollutants are also non-linear due to complex

chemical reactions, which refer to the concurrent formation of

different air pollutants (Wang et al., 2014; Chu et al., 2015;

Abdullah et al., 2019). For instance, reactions of NO2 and O3

generate NO3 and N2O5, which are the main contributors to

form PMs (Healy et al., 2010; Zhang et al., 2018). Then, small

reductions in NOx emissions could lead to rising

concentrations of O3 due to the photochemical regime

limited by the intermediate-volatility organic compounds

(NMVOCs), i.e., the NMVOC-limited regime. A significant

reduction in NOx emissions, nonetheless, would change the

regime from NMVOC-limited to NOx-limited, which leads to

the declination in concentrations of O3 (Zhao et al., 2017;

Womack et al., 2019). Such nonlinear relationships are

difficult to explore using linear models in previous

studies. Since air pollution is still a challenging issue in

China, the exploration and reasonable understanding of

the relationships is a prerequisite for effective control (Xing

2011).

Under this situation, tri-clustering methods can be used to

explore non-linear relationships among air pollutants and also

their spatio–temporal heterogeneity. Long et al. (2007) applied

the tri-clustering method to analyze homogenous and

heterogeneous relationships between different types of

actors in IMDB movies. Gan et al. (2020) developed the tri-

clustering method named TriPCE to investigate the varying

relationships among different cancer types. Wu et al. (2018)

developed a tri-clustering algorithm called the Bregman

cuboid average tri-clustering algorithm with I-divergence

(BCAT_I) to explore the complicated patterns in spatio-

temporal data. Compared with one-way clustering (also

known as traditional clustering) and co-clustering methods,

tri-clustering methods simultaneously search clusters along

three dimensions in 3D data and thereby enable the

exploration of more complex patterns in the data (Wu

et al., 2020). By formatting air pollutant datasets into a 3D

data cube with locations, timestamps, and air pollutants as

three dimensions, the tri-clustering methods partition the

cube along three dimensions simultaneously (Figure 1).

Then, by examining variations of air pollutants across space

and time and also responses of air pollutants among each other

along with these variations, non-linear relationships among

air pollutants and their spatio-temporal heterogeneity can be

explored.
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Data and methods

In this section, the case study dataset is first introduced.

Then, the specific tri-clustering algorithm, BCAT_I, used for

analyzing the dataset is described in detail.

Data

To illustrate the tri-clustering analysis in this study, data on

PM2.5, PM10, CO, SO2, NO2, and O3 collected from monitoring

stations in 31 municipalities and provincial cities in the Chinese

mainland (Figure 2) were used. Concentrations of these air

pollutants were measured by the automatic monitoring

systems installed at each station, according to the National

Environmental Protection Standards HJ 193-2013 (MEP 2013)

and HJ 655-2013 (MEP 2013). Monthly concentrations of these

air pollutants in 2021 were obtained for free from the website of

the China Air Quality Monitoring and Analysis Online Platform

(https://www.aqistudy.cn/historydata/). For the tri-clustering

analysis, normalization was performed on concentrations of

each pollutant to [0 1] to assure the same scale.

Bregman cuboid average tri-clustering
algorithm with I-divergence

Bregman cuboid average tri-clustering algorithm with

I-divergence (BCAT_I) allows the clustering analysis of any 3D

data cube with positive and real values. The case study dataset was

used to exemplify the optimization procedure of the tri-clustering

algorithm. The formatted 3D data cube of the monthly

concentrations of air pollutants can be seen as a 3D concurrence

matrix OSMP among three variables: the station variable S taking

values in 31 stations, the month variable M taking values in

12 months, and the pollutant variable P taking values in six air

pollutants. Accordingly, the tri-clustered data cube can be seen as

another 3D concurrence matrix ÔSMP among variables of station

cluster Ŝ, month cluster M̂, and pollutant cluster P̂, which take

values in z station clusters, lmonth clusters, and h pollutant clusters,

respectively. As a member of the information theory family,

BCAT_I measured the quantity of shared information among

variables using mutual information and constructed the objective

function by calculating the loss of mutual information between

OSMP and ÔSMP with information divergence. Then, the algorithm

optimized the objective function to obtain the optimal tri-clustering

results. We have summarized the four main steps of the

optimization procedure of BCAT_I (Figure 3) as follows.

1) Step 1: The initialization was performed by randomly

mapping 31 stations to z station clusters, 12 months to

lmonth clusters, and six air pollutants to h pollutant clusters.

2) Step 2: The loss of mutual information was computed before

and after tri-clustering as the objective function. First, the tri-

clustered data matrix ÔSMP was generated using the

initialized cluster assignments in Step 1. The amount of

information shared among three variables, i.e., mutual

information before and after cluster assignments, was

calculated as I(S;M;P) and I(Ŝ; M̂; P̂), respectively, where
I(;) is the mutual information among variables. The optimal

FIGURE 1
Tri-clustering analysis of air pollutants.
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tri-clustering results minimize the loss of mutual information

before and after tri-clustering I(S;M;P) − I(Ŝ; M̂; P̂), which
can be measured using information divergence between the

original and tri-clustered data cubes:

f obj � DI(OSMP‖ÔSMP).

Here, DI(·‖·) indicates the information divergence between two

elements.

3) Step 3: The assignments of station clusters, month clusters, and

pollutant clusters were updated to optimize the objective

function. Each of the 31 stations was assigned to the station

cluster, which yielded the lowest value of the objective function,

and the station-cluster assignment was updated. Similarly,

month-cluster and pollutant-cluster assignments were updated.

4) Step 4: The objective function was re-computed using the

updated cluster assignments. The tri-clustered data matrix

was re-generated using updated station clusters, month

clusters, and pollutant clusters. Then, the objective function

was re-computed. If the convergence was achieved,

i.e., variation of the objective function in two consecutive

iterations was smaller than a predefined threshold, the

algorithm would yield the optimal tri-clustering results;

otherwise, steps 3 to 4 were repeated until convergence.

FIGURE 2
Geographic locations of 31 studied cities in China.
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It has been proved that the objective function decreases

monotonically after each iteration (Banerjee et al., 2007),

which assures the local convergence of BCAT_I. Nonetheless,

random initialization was performed several times to maximize

the likelihood of global convergence, and the one with the

smallest loss of mutual information was finally selected. For a

detailed explanation of BCAT_I, the study by Wu et al. (2018)

can be referred to.

After the BCAT_I analysis, the air pollutant dataset was

partitioned into z × l × h tri-clusters. Nevertheless, these tri-

clusters might still have had similar values due to the

predefinition of the cluster numbers (Wu et al., 2018). To

solve this issue and refine the BCAT_I results, the k-means

clustering algorithm was used to regroup these tri-clusters

since it was proven to generate satisfactory results for the

refinement of co-clustering/tri-clustering results (Wu et al.,

2016; Wu et al., 2018). The mean and variance of each tri-

cluster were used as input parameters for the algorithm to

produce k axis-parallel but non-cubical tri-clusters.

Experiment design

As mentioned earlier, the air pollutants’ data cube with size

31 (stations) × 12 (months) × 6 (air pollutants) was first

partitioned by BCAT_I into the z (station clusters) × l (month

clusters) × h (pollutant clusters) data cube, which was then re-

grouped by k-means into k final tri-clusters. The

predetermination of numbers of clusters was needed by taking

into account the case study dataset and also the purpose of the

study (Table 1). In this study, the number of station clusters was

set as three to divide the cities in the whole study area as severely,

moderately, and slightly polluted cities, following the work of

Zhao et al. (2016). The number of month clusters was set as four

so that months could be partitioned into four “real” seasons to

explore seasonal variations of air pollutants. The number of

pollutant clusters was chosen as six, the same as the number

of air pollutants, because the objective of this study was to explore

the spatio-temporal heterogeneity of these air pollutants and

their relationships, and thus, it was important to still distinguish

these air pollutants after being processed by BCAT_I. The

number of the final tri-clusters was set as six and optimized

using the silhouette method that generated clustering results

highly correlated with experts’ decisions (Lewis et al., 2012).

These six tri-clusters were categorized as “lowest,” “medium-

low,” “low,” “high,” “medium-high,” and “highest” in the order of

increasing concentrations.

In addition, other parameters, i.e., the numbers of iterations

and initializations and the threshold for convergence, were

empirically selected using the case study dataset to assure the

FIGURE 3
Optimization procedure of BCAT_I exemplified by monthly air pollutant data in 31 provincial cities of China.
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convergence of the tri-clustering analysis. Different settings of

these parameters were used in experiments: the number of

iterations from 50 to 100 with 10 as the interval, the number

of initializations as 300, 400, and 500, and the threshold for

convergence as 10−4 and 10−6 (Table 2). Experiments using the

numbers of iterations from 50 to 80 yielded different tri-

clustering results than the experiment using 100, which was

because the convergence was not yet reached. As mentioned

earlier, memberships of station clusters, month clusters, and

pollutant clusters were first randomly assigned, which

required a sufficient number of iterations for updating

membership assignments to reach local convergence. The

experiment using the number of iterations as 90 yielded

similar results as the experiment using 100 but with a higher

loss of mutual information. Experiments using different numbers

of initialization yielded similar tri-clustering results, which

means local convergence was reached, and the experiment

using 500 was with the smallest loss of mutual information.

Experiments using the threshold for convergence as 10−4 yielded

similar results in combination with different initializations, while

those using 10−6 mostly yielded the same results with a smaller

loss of mutual information. This is because the criterion for

convergence was loosened with a higher value of the threshold.

Finally, the numbers of iterations and initializations and the

threshold for convergence were selected as 100, 500, and 10−6

(Table 1).

After the tri-clustering analysis, these six tri-clusters were

visualized from different perspectives to display the spatio-

temporal heterogeneity of the six air pollutants and their

relationships (Figure 4). As to the perspective of pollutant

clusters, a set of heatmaps was used to visualize variations of

each air pollutant along station clusters and month clusters to

uncover spatial and temporal heterogeneity of air pollutants

(Figure 4A). As to the perspective of station clusters, a set of

ringmaps was used to visualize variations of air pollutants along

month clusters to uncover spatial heterogeneity of relationships

among air pollutants (Figure 4B). As to the perspective of month

clusters, another set of ringmaps was used to represent variations

of air pollutants along station clusters to uncover temporal

heterogeneity of relationships among air pollutants (Figure 4C).

Results

Overview of air pollutants

Based on the data on PM2.5, PM10, CO, SO2, NO2, and O3 in

31 provincial cities in 2021, the distribution of these air pollutants

is shown using the boxplot in Figure 5. In each boxplot, the

bottom and top edges of the box represent the 25th (Q1) and 75th

(Q3) quantiles of concentrations of corresponding air pollutants,

and the upper and lower whiskers represent concentrations of

Q1 − 1.5 × (Q3 −Q1) and Q3 + 1.5 × (Q3 −Q1) for

corresponding pollutants. In addition, their spatial distribution

in the study area and their temporal distribution over the

12 months in 2021 are displayed in Figure 6.

TABLE 1 Parameters for the tri-clustering analysis of the air pollutant dataset.

Parameter Number
of station
clusters

Number
of month
clusters

Number
of pollutant
clusters

Number
of final tri-
clusters

Number of
iterations

Number of
initializations

Threshold for
convergence

Value 3 4 6 6 100 500 10−6

Explanation Cities in China
divided as severely,
moderately, and
slightly polluted cities
following the work of
Zhao et al. (2016)

Months
expected to fall
into four “real”
seasons

Same as the number
of air pollutants to
distinguish these
pollutants after the
analysis

Selected using
the silhouette
method

Empirically set
with experiments
to assure the stable
tri-clustering
results

Empirically set with
experiments to assure
the stable tri-clustering
results

Empirically set with
experiments to assure
the convergence of
BCAT_I

TABLE 2 Loss of mutual information with different settings of numbers of iterations and initializations and the threshold for convergence for the air
pollutant dataset.

Number of
initializations\number of
iterations

50–80 threshold for convergence 90 threshold for
convergence

100 threshold for
convergence

10−4 10−6 10−4 10−6 10−4 10−6

300 No convergence No convergence 0.5574 0.5326 0.5428 0.5156

400 No convergence No convergence 0.5132 0.5038 0.5088 0.4936

500 No convergence No convergence 0.4537 0.4327 0.4412 0.4243
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FIGURE 4
Exploration of tri-clustering results from different perspectives ((A): pollutants, (B): stations, (C): months) using the small multiples, linear
timeline, heatmap, and ringmap.

FIGURE 5
Distribution of concentrations for six criteria air pollutants.
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Concentrations of PM2.5 ranged from 6 to 108μg/m3, with

an average of 31.18±16.61μg/m3. The annual average

concentration in around 94% of these cities exceeded the

Grade I standard (15 μg/m3) according to the Chinese

ambient air quality (GB3095-2012, 2012), and around 40%

of these cities exceeded the Grade II standard (35 μg/m3).

Concentrations of PM10 ranged from 13 to 127μg/m3, with an

average of 55.27± 22.74μg/m3. The annual average

concentration in more than 90% of these cities exceeded

the Grade I standard (40 μg/m3) (GB3095-2012, 2012).

High concentrations of PM2.5 and PM10 were mainly

observed in northern and middle cities, e.g., Beijing, Jinan,

and Tianjin, whereas low concentrations were distributed in

southern cities, e.g., Haikou and Kunming. In the aspect of

temporal distribution, PM2.5 concentrations were high in the

late autumn and winter, while they became low in spring

and reached the bottom in summer. The temporal

distribution of PM10 was similar to that of PM2.5 but with

more variations.

Concentrations of CO ranged from 0.32 to 1.74mg/m3

with an average of 0.72± 0.21mg/m3, while the range of SO2

concentrations was from 2 to 32μg/m3 with an average of

9.03± 4.99μg/m3. Concentrations of NO2 ranged from 6 to

72μg/m3, with an average of 31± 11.85μg/m3. Similar to that of

PMs, concentrations of CO, SO2, and NO2 increased from late

autumn, peaked in winter, then decreased in spring, and

reached the bottom in summer. Concentrations of O3

ranged from 34 to 182μg/m3, with an average of

90.07± 30.40μg/m3. The temporal distribution of O3

exhibited the opposite patterns compared with other air

pollutants, whose concentrations were the lowest in winter,

increased in spring, and peaked in summer.

Spatio-temporal heterogeneity of air
pollutants

After the tri-clustering analysis, 31 stations, 12 months, and

six air pollutants were grouped into three station clusters, four

month clusters, and six pollutant clusters, respectively. The

spatial distribution of station clusters, temporal distribution of

month clusters, and variations of air pollutants are displayed in

Figure 7.

Figure 7A displays the three station clusters as slightly,

moderately, and severely polluted from station cluster 1 to

station cluster 3. The spatial coverage of station clusters is

indicated by provinces of corresponding cities (stations) in

that station cluster by the gray color. Slightly polluted cities

were mainly located in southern China, such as Haikou and

Guangzhou. Moderately polluted cities were mainly distributed

in middle and western China, such as Lanzhou and Chengdu,

whereas severely polluted cities were distributed in the northern

region, including Beijing and Shijiazhuang. Zhao et al. (2016)

clustered the same 31 provincial cities according to the annual

variation of these six air pollutants and obtained similar spatial

distributions. Figure 7B shows the temporal distribution of the

four month clusters, with an increasing level of pollution from

month cluster 1 to month cluster 4. Elements in the month

cluster 1 included May, months of summer, and September,

which were the least polluted months. January and December

were the most polluted months in 2021, which was supported by

the temporal distribution of air pollutants in Figure 6, where

concentrations of most air pollutants peaked in these 2 months.

Heatmaps in Figure 7C show variations of air pollutants

across space and time after the tri-clustering analysis. These six

categories of pollutants’ concentrations are represented by

FIGURE 6
Spatial distribution of six air pollutants at 31 provincial cities in China and temporal distribution of pollutants for 12 months.
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different colors and interpreted from the de-normalized values of

the tri-clustered values for each corresponding air pollutant.

Thus, it needs to be noticed that the same color indicates

different values for different air pollutants. For instance, green

as the “lowest” category indicates 18μg/m3 for PM2.5, 26μg/m3

for PM10, 0.5mg/m3 for CO, 5.5μg/m3 for SO2, 14μg/m3 for

NO2, and 51μg/m3 for O3. Concentrations of PM2.5 were the

lowest in southern cities for all months in 2021 except January

and December, which became high in spring and winter for

northern cities and peaked in all cities in China except southern

cities in January and December. Concentrations of PM10 had

similar variations with PM2.5. Concentrations of CO were low in

China in summer, increased in middle and western cities in

winter, and peaked in the northern cities in winter.

Concentrations of SO2 had similar variations with CO, except

that there were more low concentrations in all cities except

northern cities in winter. Concentrations of NO2 were high

for almost all cities throughout the year. As expected,

concentrations were the lowest in southern cities in summer

and increased in northern cities in winter and finally peaked in

January and December. The variation of O3 was the opposite of

that of other pollutants, with the lowest concentrations in all

cities except southern cities in winter. Variations of CO and SO2

were similar in all cities, especially in northern cities. In addition,

FIGURE 7
(A) Spatial distribution of station clusters with coverage indicated by provinces of corresponding cities (stations) in that station cluster, (B)
temporal distribution of month clusters, and (C) variations of air pollutants.
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variations of PM2.5 and PM10 were more similar to those of CO

than other pollutants in cities in the southern region of China.

Spatial variations in concentrations of air pollutants except

for O3, i.e., low in southern cities and high in northern cities, and

seasonal variations, i.e., low in summer and high in winter, are

mainly due to emissions and meteorological conditions. Cities in

the northern region of China generally have higher

concentrations because of emissions from residential coal

combustion and biomass burning for heating in winter (Wang

et al., 2014; Li et al., 2017). More coal-based industries, such as

coal-fired power plants, iron and steel manufacturing, and

biomass burning–based domestic home heating in winter

(from middle November through middle March), result in

higher emissions and concentrations in the northern region

(Zhao et al., 2011). In addition, weather conditions in winter,

e.g., lower temperature, weaker winds, and less precipitation,

further exacerbate air pollution due to poor diluted conditions,

and less scavenging impacts of particles by precipitation lead to

accumulation of pollutants and high concentrations of air

pollutants (Zhao et al., 2016). As such, the slow winds and

surface mixing layers in winter lead to high concentrations

near the surface (Fu et al., 2018).

In contrast, high temperature, strong turbulent eddies, and

more precipitation in summer could mitigate air pollution

because of scavenging effects and favorable conditions of

diffusing air pollutants by frequent rainfalls and appropriate

conditions favoring pollutant diffusion (Li et al., 2019). Since

the photochemical reaction to form O3 is promoted by solar

radiation, the seasonal variation of O3, i.e., low in winter and high

in summer, is because winter is with the minimum intensity of

solar radiation (Pochanart 2015). By influencing the photolysis

rate of NO2 and the reaction rate coefficient of NO and O3, high

radiation duration and intensity in summer enhanced chemical

reactions for O3 (Zhang et al., 2018).

Spatio-temporal heterogeneity of
relationships among air pollutants

Each ringmap in the first set of heatmaps in Figure 8 displays

variations of PM2.5, PM10, CO, SO2, NO2, and O3 from inside out

for 12 months for each station cluster. The color scheme is the

same as that used for heatmaps in Figure 7. Variations among

these air pollutants are heterogeneous across space (station

clusters). For slightly polluted cities in southern China

(station cluster 1), variations of PM2.5, PM10, and CO were

the same, with medium-low concentrations in January and the

lowest concentrations in other months. The variation of SO2 was

FIGURE 8
Spatial heterogeneity of relationships among six air pollutants from the perspective of station clusters; the map indicates spatial distribution of
station clusters with coverage indicated by provinces of corresponding cities (stations) in that station cluster.
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also similar to that of the aforementioned three air pollutants but

opposite to that of O3. For cities in moderately polluted middle

and western China (station cluster 2), PM2.5 and PM10 had

similar variations, except that the pollution level of PM2.5 was

higher than that of PM10. For cities in northern China (station

cluster 3), variations of PM2.5 and PM10 were the same, with

medium-low concentrations from May to September and high

concentrations in January. Variations of CO and SO2 were the

same, with the lowest concentrations of air pollutants in summer,

increasing in spring and autumn, and achieving the peak in

January. Variations of PM2.5 and PM10 were similar to those of

CO and SO2 from October to December and from January to

April, except that pollution levels of PM2.5 and PM10 in April and

October were higher than those of CO and SO2, which might be

caused by dust events. Thus, relationships among air pollutants

were varying at different regions.

Each ringmap in the other set of heatmaps in Figure 9

displays the variation of these air pollutants from the inside

out along all three station clusters for each month cluster. The

color scheme is the same as that used for heatmaps in Figure 7

and Figure 8. Variations among other air pollutants were

heterogeneous across time (month clusters). For most months

in summer (month cluster 1), variations of PM2.5 and PM10 were

the same, with the lowest concentrations in southern cities and

increasing values in other cities. SO2 and CO shared the same

variations with the lowest concentrations for all cities. For spring

and October, PM2.5 and PM10 had the same variations, with the

lowest concentrations in southern cities, increasing inmiddle and

FIGURE 9
Temporal heterogeneity of relationships among six air pollutants from the perspective of month clusters; the map indicates spatial distribution
of station clusters with coverage indicated by provinces of corresponding cities (stations) in that station cluster.

Frontiers in Earth Science frontiersin.org11

Wu 10.3389/feart.2022.951510

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.951510


western cities, and reaching the peak in northern cities. For

February and November, variations of PM2.5, PM10, and COwere

the same, with the lowest concentrations in southern cities and

high concentrations in other cities, which are similar to those of

SO2. The variation of NO2 was opposite to that of O3. For January

and December, the variation of PM2.5 was similar to that of PM10,

which was also similar to those of CO, SO2, and NO2, with

relatively low concentrations in southern cities and high

concentrations in other cities. Variations of these air

pollutants, except O3, were closest to each other in January,

which was typically the coldest month of the year. This is because

these gaseous precursors were mainly generated from

anthropogenic activities, e.g., coal and biomass burning for

heating in this period, which directly contaminated the

environment and also facilitated the formation of PM2.5 (Liu

et al., 2021).

In addition, non-linear relationships among air pollutants

can also be observed in the tri-clustering results. For instance, in

the relationship between NO2 and O3, in southern cities where

the pollution level was low, the variation of O3 was similar to that

of NO2. However, in northern cities where the pollution level was

high, with the increasing concentrations of NO2 from summer to

winter, concentrations of O3 first decreased from September to

October and then increased from autumn to winter. This is

because the oxidation reaction of NO2 resulted in O3 depletion,

and concentrations of NO2 showed a negative contribution to O3

at the low pollution level. Nonetheless, the response of O3

changed from negative to positive when NO2 reached a higher

pollution level due to the existence of NMVOC (Xing et al.,

2011).

Discussion

A few studies have applied the clustering analysis for

exploring variations of air pollutants in China. For instance,

Zhao et al. (2016) performed the clustering analysis of

31 provincial cities based on the annual and diurnal changes

of six air pollutants from 2014 to 2015 and divided all cities into

severely, moderately, and slightly polluted cities. Their results

were supported by the spatial distribution of divided cities in this

study (Figure 7A) that severely polluted cities were mainly

located in the northern region, moderately polluted cities in

middle and western regions, and slightly polluted cities in the

southern region. Nonetheless, a bit of difference existed in the

clustering results, i.e., Changchun belonged to the severely

polluted city cluster in their study, whereas it was divided into

the moderately polluted city cluster in this study, which might be

caused by different study periods. Ye et al. (2018) applied a spatial

clustering method to explore the hot spot areas of PM2.5 in

338 Chinese cities and identified Beijing–Tianjin–Hebei and

southwest Xinjiang as severely polluted areas. Although

Beijing, Tianjin, and Shijiazhuang, the provincial city of

Hebei, belonged to severely polluted cities in this study,

Wulumuqi, the provincial city of Xinjiang, was divided as a

moderately polluted city. The difference might be caused by the

difference in the study area, i.e., 338 cities in their study and

31 cities in this study. In addition, many previous works have

studied the spatial and temporal heterogeneity of air pollutants in

China (Wang et al., 2014; He et al., 2017; Wang et al., 2017; Liang

et al., 2019). These studies concluded that concentrations of air

pollutants except O3 are low in southern cities and high in

northern cities, and low in summer and high in winter. Also,

variations of PM2.5, PM10, CO, and SO2 are similar in the whole

study area and study period. These findings agree well with the

results in our study that concentrations of air pollutants except

O3 were generally the lowest in summer, increased in northern

and western cities in spring and autumn, and finally peaked in

January and December (Figure 7). However, compared to

findings reported by Wang et al. (2017) and Liang et al.

(2019) that variations of PM2.5 and PM10 were more similar

to those of CO than other pollutants in winter, results in this

study found that variations of PM2.5, PM10, and CO were more

similar than those of other pollutants in southern cities for the

whole year (Figure 7C). This could be caused by the

implementation of the “National Action Plan on Air Pollution

Control” (State Council of the People’s Republic of China, 2013)

from 2013 and the “Three-Year Action Plan for Winning the

Blue Sky War” (State Council of the People’s Republic of China,

2018) from 2018 to 2020, as well as the consequent

heterogeneous reactions in the atmosphere. In addition, in

comparison with previous studies, the tri-clustering analysis in

this study not only explored the spatio–temporal heterogeneity of

air pollutants but also enabled the exploration of varying

relationships among these air pollutants at the same time.

A few studies have analyzed the spatial and temporal

heterogeneity of relationships among these air pollutants in

China. Xie et al. (2015), Li et al. (2017), Zhang et al. (2018),

and Liu et al. (2021) conducted the regional or national analysis of

relationships among PM2.5, PM10, CO, SO2, NO2, andO3 inChina.

These studies concluded that relationships among these air

pollutants were heterogeneous in different cities and time

periods. Such a conclusion was confirmed by the results of our

study. Nonetheless, Zhao et al. (2016) found that variations of PMs

were more similar to those of SO2 than CO, which is different from

the results in this study that CO shared similar variations with PMs

other than SO2. We suppose this is because of the different lengths

of study periods and numbers of stations in the study area. Finally,

compared with the aforementioned studies mainly using Pearson

correlation analysis to explore relationships among pollutants, the

tri-clustering analysis used in this study enabled the extraction of

the non-linear relationships, e.g., with the increasing level of NO2

in northern cities, concentrations of O3 first decreased due to the

titration reaction and then increased when the level of NO2 was

high. Since rapidly increasing ozone pollution has been noticed in

recent years (Li et al., 2021), these findings could be helpful to
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support pollution control for local government agencies in

northern cities.

Conclusion

In this study, we used the tri-clustering–based method to

explore the spatial and temporal heterogeneity of air pollutants

and their non-linear relationships in China. Concentrations of

six criteria air pollutants, i.e., PM2.5, PM10, CO, SO2, NO2, and

O3, at 31 provincial cities in 2021 were used as the case study

dataset. Our results showed that concentrations of air pollutants

except O3 exhibited spatial variations, i.e., low in southern cities

and high in northern cities, and seasonal variations, i.e., low in

summer and high in winter. Variations of PMs and CO were

more similar than those of other pollutants in southern cities in

2021. Results also concluded that relationships among these air

pollutants were heterogeneous in different regions and time

periods in China. Moreover, our results found that with the

increasing level of NO2 in northern cities, concentrations of O3

first decreased due to the titration reaction and then increased

when concentrations of NO2 became high. The future work

mainly includes two directions: 1) in this study, only data on

air pollutants from 31 municipalities and provincial cities in

China were used; thus, in future work, it is recommended that

data from individual sites across provinces could also be collected

to enrich the case study dataset before being processed by the tri-

clustering method; 2) since spatio–temporal heterogeneity also

exists in relationships among air pollutants and their driving

forces, e.g., meteorological and socio-economic factors (Zhao

et al., 2018; Jin et al., 2019), in future work, it is thus

recommended to apply the tri-clustering based analysis to the

visual exploration of the spatio–temporal heterogeneity of air

pollutants and their driving factors.
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