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Landslides are geohazards of major concern that can cause casualties and property
damage. Short-term landslide displacement prediction is one of the most critical and
challenging tasks in landslide deformation analysis, and is beneficial for future hazard
mitigation. In this research, a novel short-term displacement prediction approach using
spatial-temporal correlation and a gated recurrent unit (GRU) is proposed. The proposed
approach is a unified framework that integrates time-series instant displacements
collected from multiple monitoring points on a failing slope. First, a spatial-temporal
correlation matrix, including the pairwise Pearson’s correlation coefficients, was studied
based on the temporal instant displacement data. Then, the extracted spatial features
were integrated into the time-series prediction model using GRU. This approach combines
both spatial and temporal features simultaneously and provides enhanced prediction
performance. In the last step, a comparative analysis against other benchmark algorithms
is performed in two case studies including the conventional time-seriesmodeling approach
and the spatial-temporal modeling approach. The computational results show that the
proposed model performs best in terms of performance evaluation metrics.

Keywords: GPS monitoring, slope deformation, spatial-temporal modeling, gated recurrent unit, time-series
modeling

INTRODUCTION

In mountainous regions, widely distributed landslides are a commonly observed phenomenon that
threatens local people’s lives and properties (Zhou et al., 2021a; Zhou et al., 2021b; Zhou et al., 2022).
Monitoring landslide displacement time series can directly reflect landslide deformation and slope
stability (Gao and Meguid, 2018; Gao et al., 2021; Li et al., 2022). The prediction of landslide
displacement is considered an essential part of an operational early warning system for future
landslides. Thus, accurate and effective predictions of future displacements are valuable (Wang et al.,
2020).

Existing studies on landslide displacement prediction can be roughly classified into three
categories: physics models, statistical models, and artificial intelligence models (Gao and Meguid,
2021). According to the literature review, physics models were developed based on creep theory and
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validated via large-scale laboratory experiments. During this
process, the physical parameters were estimated and
monitored to forecast the incoming landslide displacements
(Yang et al., 2019). Helmstetter et al. (2004) utilized a slider
block friction model to analyze landslide displacement and
velocity data. Corominas et al. (2005) developed a momentum
equation in which a viscous term was added to predict the
landslide displacements and velocities in water-triggered
landslides. Mufundirwa et al. (2010) proposed an empirical
physics model to forecast the failure time of landslides based
on slope gradient and performed laboratory experiments for
validation. Thiebes et al. (2014) proposed a physics-based
model that combined hydrology and stability to provide an
early warning for landslide occurrence. All physics-based
models can provide clear physical explanations of landslides,
but the implementation of sufficiently accurate models can be
complex, time-consuming, and expensive.

On the other hand, statistical models are designed to discover
statistical regularities or patterns in massive observed data points
(Gao et al., 2020). Xu et al. (2011) constructed an autoregressive
time-series model to fit temporal patterns in a landslide
displacement dataset. Krkač et al. (2017) used a random forest
regression model to forecast incoming landslide displacements.
Zhao et al. (2018) optimized classification and regression trees to
predict future landslide movements. Kavoura et al. (2020) used
the Verhulst inverse function and residual correction to enhance
the autoregressive integrated moving average (ARIMA) model
for displacement time-series prediction. All statistical models
investigate and extract statistical properties in the temporal
domain, and construct corresponding models to forecast
future displacement values. Promising results were obtained
using statistical models fitted to the landslide displacement series.

Advances and applications of artificial intelligence (AI) have
provided new ideas for landslide displacement prediction. Lian
et al. (2015) initially applied an artificial neural network (ANN) to
construct forecasting models for landslide displacement time-
series datasets. Zhou et al. (2016) used the particle swarm
optimization (PSO) algorithm to optimize the hyperparameter
setting of a support vector machine (SVM) to further improve the
prediction accuracy of the prediction model to forecast future
displacements. Case studies of water-triggered landslides located
in the Three Gorges Reservoir, China confirmed the validity of
the proposed approach for field practice. Cao et al. (2016)
introduced a single hidden layer feedforward (SHLF) neural
network structure, the extreme learning machine (ELM), to
predict landslide displacement series. Compared with
conventional ANN, ELM is computationally effective and
more reliable in terms of prediction performance. Li et al.
(2018) incorporated the power of ELM with parametric copula
models to study the patterns of seasonal step-like landslide
displacements. Heavy precipitation and reservoir water level
fluctuation are correlated with seasonal faster motion of slope
failure, and thus are suggested to be utilized as input factors for
modeling displacement time series. Li et al. (2020) trained a deep
belief network (DBN) as a regression algorithm to forecast
landslide displacement in the Three Gorges Reservoir, China.
Exponential weighted moving average (EWMA) control charts

were introduced as thresholds to classify between hazardous
seasonal and faster seasonal displacements. The above work
confirms the superior power of AI technologies in landslide
displacement prediction tasks.

All studies cited above performed autoregressive time-series
prediction of future landslide instant displacement. Their work
considered the displacement data measured from a single point as
a single autoregressive time series, but received no impact from
outside factors. However, in practice, a landslide event with slope
failure is a super-complex system that cannot be represented by a
single time series. Multiple displacement time-series datasets vary
owing to the different measurement locations on the slope.
Intuitively, this refers to the different extents of deformation
in various parts of the landslide region.

To overcome this limitation, in this study, we propose a novel
spatial-temporal prediction framework for landslide
displacement modeling. Instead of using a single measured
displacement series, multiple displacement series from adjacent
monitoring locations on the same slope were considered. A
spatial-temporal correlation matrix was computed and applied
as an input in the prediction model to estimate future
displacement. The gated recurrent unit (GRU) algorithm was
selected as the regression algorithm for the prediction tasks as it
extracts both spatial and temporal features effectively (Minh et al.,
2018; Becerra-Rico et al., 2020; Dutta et al., 2020; Bonassi et al.,
2021; ur Rehman et al., 2021).

The major contributions of this study can be summarized as
follows. First, it proposes a novel displacement prediction
approach using spatial-temporal correlation from a dataset
collected from multiple sensors. Second, GRU was trained as a
time-series forecasting algorithm to perform short-term
displacement forecasting.

The remainder of the manuscript is organized as follows: Case
Study Region introduces the case study area and describes the
landslide displacement data collection process. Prediction
Methodology provides details about the spatial-temporal
modeling process and the GRU model. Experimental Results
presents the computational outcomes, and Conclusion
concludes the study’s findings.

CASE STUDY REGION

Our case study area, the Zhangjiawan landslide, is located in
Pengjia Village, Chengxi County, central Qinghai Province,
China. The slide is located at latitude 101°38′59″ and
longitude 36°38′25″. The landslide event threatens the state
road which passes through the front of the landslide. In total,
more than 2000 residents live in the surrounding area. An
overview of the Zhangjiawan landslide is shown in Figure 1.

As illustrated in Figure 1, the Zhangjiawan landslide is a
colluvial landslide in which the slide body materials contain
sandstone and mudstone interbeds. The entire landslide area is
approximately 1,600 m long and 900 m wide. Meanwhile, the
total area is approximately 1.26 km2. In total, 12 deformation
monitoring (DB) points (see Figure 1) were configured by field
engineers on the sliding region. All points are installed with global

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9507232

Ma et al. Spatial-Temporal Slope Deformation Prediction

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


positioning system (GPS) in order to monitor the deformation
process in real time from late July 2020. They collected daily
instant displacement values in millimeters until the current time.

PREDICTION METHODOLOGY

Spatial-Temporal Sequence Modeling
Geographical scale is a critical component for discussing the
spatial correlation of landslide displacement prediction tasks
(Vega Orozco et al., 2012; Pathak et al., 2021; Li, 2022b). A
large geographical scale is usually preferred in practice when the
landslide is large scale. Thus, in this study, the geographical scale
was set according to the boundaries of deformation (red line in
Figure 1), and all monitoring points were included in the scale for
prediction.

In our case study area, the relationship between the faster-
moving part and the slower moving part is often not simple,
owing to time delay, slope instability, and sliding materials.
Moreover, various sliding directions exist for all GPS
monitoring points. Therefore, it is challenging to analyze the
displacement at a single point and use the obtained results to
estimate the entire slope deformation process. Spatial-temporal
correlation can offer a reliable solution for landslide displacement
prediction based on multiple monitored time-series data.

In this study, a total of 12 GPS points that monitor
displacement were considered for spatial-temporal correlation
modeling. We support all points represented by a 12 × 12 matrix
consisting of 12 rows and 12 columns. The location of each GPS
point can be described by two-dimensional coordinates (i, j),

where i denotes the row number, and j denotes the column
number expressed in (1) as follows:

Xt �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ(1, 1)t ρ(1, 2)t / ρ(1, 12)t
ρ(2, 1)t ρ(2, 2)t . . . ρ(2, 12)t

..

.

ρ(12, 1)t
..
.

ρ(12, 2)t
1 ..

.

. . . ρ(12, 12)t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

where ρ(i, j)t denotes the Pearson’s correlation coefficient of the
displacement series between GPS points i and j at time t. Then,
the prediction model can be described as (2):

~Xt+1 � argmax
Xt+1

p(Xt+1|Xt−1,Xt−2,Xt−3, ...,Xt−n) (2)

where p() denotes the probability function, ~Xt+1 is the target
correlation matrix that is our prediction target, and Xt−1 to Xt−n
represent the observed correlation coefficient matrix in the
historic timestamp. Once ~Xt+1 is computed, the prediction
model integrates the values with the autoregression model to
forecast the short-term displacement.

Gated Recurrent Unit
To strengthen the prediction power of the proposed spatial-
temporal approach, GRU was applied as the regression
algorithm in this study (Ravanelli et al., 2018). A GRU unit
has similar architecture in comparison with a long short-term
memory (LSTM) unit (Minh et al., 2018). They both have gates to
extract temporal patterns from the dataset and pass relevant
information for prediction making process. In comparison with
LSTM, GRU does not have a forget gate or cell state (Li, 2022a).

FIGURE 1 | Case study area in Zhangjiawan landslide.
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Consequently, GRU requires less memory and is more
computationally effective than LSTM.

The GRU computation steps can be expressed by (3)–(5)
below:

ĥt � tanh(WC · [rtpht−1, xt]) (3)
rt � σ(Wr · [ht−1, xt]) (4)
ht � 1 − ztpht−1 + ztpĥt (5)

where ht−1 denotes the output from the previous step, xt denotes
the current input, and the final cell state ht is the weighted
summation of the previous cell state ht−1 and possible update
value ĥt. The weight zt can be computed using (5) below:

zt � σ(Wz · [ht−1, xt]) (5a)
where σ() denotes the sigmoid function and determines the value
of the current cell state, ht. The process expressed in (5) is similar
to the forget gate in LSTM, which transmits information from the
previous unit to the next.

Training Strategy
The training strategy utilized in this study is the same approach
used for training the LSTM-RNN in time-series tasks by other
researchers. The size of the time window considers both the
seasonality patterns and autocorrelation between the current and
historic displacements. In total, almost 2 years of GPS-recorded
daily displacement data in millimeters were utilized as the
training and test datasets.

Within the dataset, the first 80% of the prepared dataset was
used to train and validate the GRUmodel, and the remaining 20%
was reserved as a held-out testing sample. In each training
experiment, 10% of the training samples were further split for
validation during the training process. To ensure the optimal
parameter setting of the GRU, a grid search approach was applied
to seek the best combination of hyperparameters via cross-
validation. The loss function for training the GRU is the mean
squared error loss which will be introduced in Performance
Evaluation Metrics.

Benchmark Models
To demonstrate the superior power of the proposed GRU, three
other benchmark time-series prediction algorithms were selected

as benchmark algorithms for comparative analysis. These
algorithms are also popular in landslide displacement
prediction. They include kernel extreme learning machine
(KELM), ANN, and LSTM-RNN.

KELM is an improved version of the original ELM. Similar to
ELM, which is computationally efficient and robust, KELM
proposes using a kernel function to enhance the generalization
capacity and reduce possible overfitting issues (Iosifidis et al.,
2015; He and Kusiak, 2017). Among the multiple kernel options,
the most popular choices include the linear kernel, polynomial
kernel, radial basis function (RBF) kernel, or exponential kernel.
In this study, we consider the three most typical kernel functions,
namely, the RBF kernel, hyperbolic tangent kernel, and wavelet
kernel, for possible options in fitting displacement time series.

ANN is one of the most widely used machine-learning
algorithms in both regression and classification tasks (Li et al.,
2021a; Li et al., 2021b). It has a feedforward neural network
architecture and involves three major components: the input,
hidden, and output layers. By adaptively adjusting the weights
and bias, meaningful features that are relevant to the target output
can be extracted from the dataset.

LSTM is a special type of recurrent neural network with the
capacity to remember values from the earlier stages (Gers et al.,
2002; Greff et al., 2016). Each LSTM unit contains a set of cells in
which data streams are captured and stored. The assembly of the
cells results in an information transportation line that conveys
data from the past and gathers them for the present timestamp.
The memorization of earlier values assists in identifying both the
trend and seasonality within the time-series dataset.

The hyperparameters that require tuning for the proposed
GRU and other benchmark models are summarized in Table 1.
KELM has twomajor hyperparameters: the selection of the kernel
function and the number of hidden neurons within a single
hidden layer. ANN has two hyperparameters that require
tuning: the number of hidden layers and the number of
hidden neurons inside the hidden layer. LSTM has the
number of hidden nodes, learning rate, and sliding window
steps as hyperparameters. GRU has the same hyperparameters
that require tuning during the cross-validation process.

Performance Evaluation Metrics
To evaluate the performance of the landslide displacement
models, three evaluation metrics, namely, mean squared error
(MSE), mean absolute percentage error (MAPE), and predictive
R-squared (R2), were selected in this study. MSE computes the
squared error between the predicted and actual displacements. It
is also utilized as a loss function for training all the algorithms.

TABLE 1 | Summary of the hyperparameters of the algorithms tested.

Algorithm Hyperparameters Options

KELM Number of hidden neuron (5, 10, 15, 20, 25, 30)
Kernel function RBF, hyperbolic tangent, wavelet

ANN Number of hidden layer (1, 2, 3, 4)
Number of hidden neuron (5, 10, 15, 20, 25, 30)

LSTM-RNN Number of hidden nodes (16, 32, 64, 128)
Learning rate (0.001, 0.01, 0.05, 0.1)
Sliding window steps (3, 6, 12, 18)

GRU Number of hidden nodes (16, 32, 64, 128)
Learning rate (0.001, 0.01, 0.05, 0.1)
Sliding window steps (3, 6, 12, 18)

TABLE 2 | Prediction performance evaluation metrices.

Metric Formula

MSE MSE � 1
N∑N

j�1oj − t2j
MAPE MAPE � 1

N∑N
i�1|oj−tjtj

|
R2

R2 � 1 − ∑N

j�1 oj−t2j∑N

j�1 �o−t2j
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MAPE computes the average percentage error between the
predicted and actual measured displacements. R2 determines
how well the predicted displacements fit the actual
displacement from a distribution perspective. Intuitively, it
quantifies the percentage of variance within the test dataset
explained by the prediction model. The formulas for
computing these two metrics are summarized in Table 2.

EXPERIMENTAL RESULTS

To predict the future displacement following the proposed
approach, the spatial-temporal correlation is the foundation
for the development of the prediction model. Following the
methods introduced in Spatial-Temporal Sequence Modeling,
we computed the average Pearson’s correlation coefficient in a
pairwise manner for all 12 GPS points. The correlation
coefficients ranged between -1 and 1. The computational
results are displayed in Figure 2.

As shown in Figure 2, the spatial-temporal matrix containing
correlation coefficients among the displacement time series in all
GPS points differs from each other. The range varies between -1
and 1, where a positive value indicates a positive correlation and a
negative value indicates the opposite scenario. All diagonal values
in the spatial-temporal correlation matrix are 1, which represents
a super positive correlation between the measured displacements
and themselves. Furthermore, because it measures pairwise
correlation, the entire spatial-temporal matrix is symmetric
along the diagonal line. For the intra-GPS correlations, we
applied a threshold of 0.5 to determine if the displacements

measured in the neighborhood region are a valuable input for
the prediction model. Thus, only a few neighboring
displacements were considered in this study.

To train the proposed GRU model, the MSE loss was selected
as the loss function, and the Adam optimizer was used to
optimize the parameter settings within the GRU. The training
process is illustrated in Figure 3. In total, 100 epochs were tested
during the training and validation steps. It can be observed that

FIGURE 2 | Spatial-temporal correlation matrix with Pearson’s correlation coefficient.

FIGURE 3 | Convergence of loss functions for training and validation
dataset.
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the training loss is constantly reduced and converges around the
40th epoch. Meanwhile, the validation loss is significantly
reduced before the 40th epoch but then starts to increase
slowly. This phenomenon is a clear indication of overfitting
after epoch 40. Thus, we extracted the weights at epoch 40 as
our optimal model for displacement prediction.

Figure 4 shows the predicted displacement versus the
actual displacement within the reserved independent test
dataset. For a fair comparison, we scaled all predictions
and actual measured displacements between 0 and 1. The
central diagonal dashed line denotes perfect prediction, which

means that the predicted displacement values are exactly the
same as the actual values for the displacement. The scattered
points around the dashed line represent the predicted
outcomes of the GRU algorithm. For our six case study
GPS points, it can be observed that the majority of the
points are scattered in the close neighborhood region of
the dashed diagonal line. This indicates that the error
between the prediction and actual measurement was within
a small range, which confirms the accuracy of the prediction
model. The quantitative prediction performance for all the
algorithms tested is summarized in Table 3.

FIGURE 4 | Actual measured displacement versus the predicted displacement.

TABLE 3 | Summary of prediction performance in all GPS points tested.

Algorithm Metric GPS#1 GPS#2 GPS#3 GPS#4 GPS#5 GPS#6

KELM MSE 0.21 0.14 0.17 0.23 0.11 0.19
MAPE 15.70% 10.33% 11.16% 17.72% 10.01% 24.30%
R2 0.79 0.85 0.81 0.76 0.89 0.77

ANN MSE 0.26 0.18 0.16 0.35 0.19 0.21
MAPE 16.64% 11.57% 10.82% 19.91% 17.18% 24.93%
R2 0.74 0.82 0.81 0.71 0.86 0.75

LSTM-RNN MSE 0.17 0.11 0.14 0.21 0.12 0.14
MAPE 12.36% 9.92% 10.25% 14.86% 10.87% 16.25%
R2 0.84 0.89 0.81 0.79 0.89 0.83

GRU MSE 0.13 0.09 0.13 0.19 0.09 0.11
MAPE 11.54% 9.01% 10.01% 13.99% 9.24% 12.77%
R2 0.86 0.89 0.82 0.83 0.91 0.85
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Furthermore, we compared the spatial-temporal modeling
approach with the conventional time-series autoregression
modeling approach. Here, the case number corresponds to
the GPS point number. Unlike the spatial-temporal modeling
approach, the conventional time-series approach only
considers self-autocorrelation in the temporal domain for a
single GPS-collected displacement series. The displacements
collected from neighboring GPS points were not considered
in the prediction model. As illustrated in Figure 5, the
distributions of the absolute error from both the spatial-
temporal and time-series approaches were compared at six
selected GPS monitoring sites. All absolute errors
compute the absolute difference between the
predicted and actual values, and are then scaled between 0
and 1.

As shown in Figure 5, the scaled absolute errors for both
modeling approaches are skewed to the right with a long fat tail
on the right-hand side. Same as Figure 4, the case numbers above
refer to the same GPS number in our dataset. In the comparison
between the two modeling approaches, the spatial-temporal
approach is further skewed to the right with smaller mean and
median values. This can be attributed to the spatial-temporal
correlation among neighboring GPS points considered in the
input of the proposed GRU model, whereas the conventional
time-series model considers only autocorrelation and seasonality
within a single GPS point. This confirms the outperformance of

applying the spatial-temporal modeling approach in predicting
landslide displacement.

CONCLUSION

In this study, we explored the possibility of using spatial-temporal
correlation to enhance the prediction performance of landslide
displacement at slope failure locations. GRU was applied as a
time-series prediction algorithm to generate future landslide
displacement. Comparative analysis against other benchmark
algorithms, such as KELM, ANN, and LSTM-RNN, was
performed in case studies for both traditional time-series
forecasting and spatial-temporal forecasting. The experimental
results support the conclusion that superior performance is
achieved with the GRU and spatial-temporal modeling
approach in the short-term landslide displacement prediction
task. The utilization of the proposed approach can benefit field
engineers in their landslide geohazard estimation tasks.
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