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Beijing is an international metropolis, that is also an earthquake-prone city. The

aims of this study are detailed quantifying and qualifying soil layer properties for

an accurate seismic safety evaluation in the Beijing area. The time average

shear-wave velocity in the first 30 m of subsoil, Vs30, is an important site

parameter used in site response analysis, site classification, and seismic loss

estimation. Mapping of Vs30 over a city-scaled region is commonly done

through proxy-based methods by correlating Vs30 with geological or

topographic information. In this paper, a geostatistical-based random field

model is presented and applied to mapping Vs30 over extended areas. This

random field model is then coupled with Monte Carlo simulations to obtain an

averaged Vs30 map and its associated uncertainties. Unlike the traditional

deterministic prediction model, this framework accounts for spatial

variations of Vs30 values and uncertainties, which makes the prediction more

reliable. A total of 388 shear wave velocity measurements in the Beijing area are

used to calculate Vs30 values, fromwhich the statistical and spatial properties for

the random field realizations are inferred. New spatially correlated probabilistic

Vs30 maps for the Beijing area are then represented, and the effect of the

maximum number of previously generated elements to correlate to in

estimating Vs30 maps is tested.
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1 Introduction

The time-averaged shear-wave velocity in the upper 30 m (VS30) is an important site

parameter used in estimating site response, classifying sites, and loss estimation (Boore, 2004;

Xie et al., 2016). In the earthquake codes, Vs30 is used with CPT, SPT value and/or the depth

of soil profiles to represent the soil properties. Furthermore, some recent studies, show that

coupling between Vs30 and other site-condition proxies such as resonance frequency and

topographical slope may give efficient results in prediction specified with a reduction of

ground-motion variability (Derras et al., 2017; Derras et al., 2020). A reasonable and accurate

database of Vs30 is the basis for successfully carrying out seismic effect analysis and research

of complex sites and implementing reasonable site classification. However, for large-scale

urban areas, the boreholes with shear wave velocity data and meeting the requirements are

extremely limited (Seed and Idriss, 1981; Raptakis et al., 1995; Wride et al., 2000; Hasancebi
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and Ulusay, 2007), which mainly manifested as follows: 1)

Boreholes have geotechnical description data but no shear wave

velocity data; 2) Because of the different uses of boreholes, the depth

of boreholes are different. For example, the depth of boreholes in

engineering geotechnical investigation is shallow, even less than

30 m; 3) The boreholes for seismic safety evaluation of major

engineering and site control engineering have deep depth and

complete wave velocity data, but the number of boreholes is limited

and the spatial distribution is uneven. Therefore, in order to meet

the needs of urban regional-scale earthquake effect analysis, as well

as the requirement of implementing reasonable site classification, it

is necessary to accurately describe the complex site conditions with

a spatially correlated Vs30 map in urban areas which combines

shear wave velocity measurements and a scientific, reasonable and

efficient prediction model.

At present, deterministic methods are mostly used in site

shear wave velocity predictions. Commonly used deterministic

methods can be roughly divided into two categories: 1)

Interpolation prediction of parameter distribution between

boreholes based on linear interpolation method (Badal et al.,

2004), focusing on prediction between two points, but lacking

extension ability; 2) According to the regression analysis method

in traditional statistical methods, the regression equation

between shear wave velocity and topography, geomorphology,

depth, CPT-N, and other parameters is established (Wald and

Allen, 2007; Chiou and Youngs, 2008; Ancheta et al., 2013;

Stewart et al., 2014; Wills et al., 2015; Xie et al., 2016; Ahdi

et al., 2017; Parker et al., 2017; Chen et al., 2018; Rahman et al.,

2018; Heath et al., 2020). The above deterministic method

determines the spatial distribution pattern and correlation by

analyzing the frequency distribution or mean value and variance

relationship of sample attribute values and their corresponding

rules, but does not consider the difference in spatial orientation.

Moreover, the most fatal disadvantage of the deterministic

method is that it can’t take into account the uncertainty of

parameters. It has been well-recognized that the soil profile

and the associated parameters are usually not known with

certainty (Liu et al., 2017a,b; Liu et al., 2021; Zhang et al., 2021;

Stewart and Afshari, 2021; Ching et al., 2018; Phoon et al.,

2022). These uncertainties will eventually be expressed and

propagated in further applications such as the uncertainty of

site response and the degree of earthquake disasters (Liu et al.,

2021). Therefore, other than the accuracy prediction of Vs30

values for a certain region, the uncertainty distribution of Vs30

needs to be evaluated. One thing needs to be noticed, there are

many sources of uncertainty, such as insufficient in-situ

geotechnical survey data, the influence of sample

disturbance and scaling in laboratory tests, and the natural

heterogeneity of soil profiles (Ching and Schweckendiek,

2021; Phoon et al., 2022). It is hard to tell them apart. In

this paper, the uncertainties from different sources are

integrated, and defined as the “uncertainty of Vs30”,

regardless of their sources.

To remedy the above defects, the application of geostatistical

methods in soil properties (Vs30, CPT, SPT, et al.) and site

condition mapping has been greatly promoted, which takes

into account the spatial variability of soil properties and the

obvious interdependence among points. Several works have been

done along this line:

Thompson et al. (2007) use the geostatistical method for

modeling the horizontal variability of near-surface shear wave

velocity of soil in the San Francisco Bay Area. Wald et al. (2011)

and Yong et al. (2013) applied the kriging-with-a-trend method to

mapping Vs30 considering the topographic slope. Liu et al. (2017a,

b) presented a multiscale random field model and applied it to

mapping Vs30 over the Suzhou area, in which areas of high interest

can be able to adaptively refined while maintaining a consistent

description of spatial dependence. Chen et al. (2018) built a 3D

shear wave velocitymodel for the Suzhou area by using the Kriging

method in the horizontal direction. By using the Kriging method,

Foster et al. (2019) developed a geology-based and terrain-based

models VS30 map for New Zealand and compared it with a flexible

multivariate normal approach. Li et al. (2021) developed a Texas-

specific VS30 map by using the geostatistical kriging method which

integrated with a region-specific geologic proxy and field

measurements of VS30. All these works show that by using

geostatistical methods, the spatial variation of shear wave

velocity can be well considered during estimation.

In this paper, a random field-based approach is presented

and adopted to simulate and predict the Vs30 in the study area,

more importantly, the uncertainty distribution of Vs30 is

evaluated. In the meantime, the effect of the maximum

number of previously generated elements to correlate to is

also been tested. The presented approach accounts for the

spatial variability of Vs30 and incorporates the database of

geotechnical measurements. The order of presentation of this

paper goes as follows: Section 2 presents the key components of

the developed geostatistical tools for mapping Vs30; Engineering

geology and field data for the Beijing area are summarized in

Section 3; In Section 4, the statistical and spatial characterizations

of the known Vs30 data are discussed in detail; New Vs30 maps are

represented in Section 5 and the effect of N value in estimating

Vs30 maps will be discussed in Section 6.

2 Geo-statistical approach to
characterize the spatial variability of
Vs30: Random field model

The key component of this section is to present the shear wave

velocity estimation model by using the random field method in

geostatistical theory. Geostatistical theory shows that the

geotechnical or geological characteristics of the regional areas

usually show spatial variability and spatial correlation, which

means the soil parameters measured at each observation point

are correlated with those at adjacent locations, and with the
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increase of distance, the correlation between the parameters

decreases gradually. According to that, this method can be used

to simulate various parameters with time-space variation attributes

in nature, such as soil characteristics in a certain space range, or

groundmotion changes at different times and locations. Therefore,

it is proposed to use this theory to establish a prediction model of

Vs30. With the spatial distribution characteristics of Vs30, the

accuracy of Vs30 estimation at unsampled points can be

improved. Moreover, other than improving the accuracy of the

estimation, one of the strengths of this random field method is the

ability to estimate the associated uncertainties with the maps when

coupled with Monte Carlo simulation.

Semi-variogram is known as a form of covariance and can be

related to other commonly used measures to quantify the spatial

correlation (Baise et al., 2006; DeGroot and Baecher, 1993;

Goovaerts, 1997). Usually, the filed measured data will be

used to fit the best curve of the semi-variogram and expressed

as s linear combination of basic models such as the exponential

model, spherical model, and Gaussian model. The geo-statistics

community is preferred using the semi-variograms to describe

the spatial structure since it only requires the increment of the

random variable at two locations with distance h to be second-

order stationery, which is a weaker requirement. The Hence, in

this study, the spatial structure is characterized by the semi-

variogram model as follows:

γ(h) � 1
2
Var[Z(u) − Z(u + h)] (1)

In which, Z(u) is the random variable at location u, and h is

the distance between any two locations.

Under the condition of second-order stationarity, the spatial

correlation ρ(h) can be defined as related to the semi-variogram by:

ρ(h) � 1 − γ(h)
cov(0) (2)

where COV(0) is the covariance at h = 0.

With the correlation between the two elements, the

covariance matrix Σ consists of the covariance (COV) between

any two points/elements (Zi and Zj) within the random field t can

be calculated as:

COV[Zi, Zj] � ρZi,Zj
σZiσZj (3)

where ρZi,Zj
is the correlation between the two elements, σZi and

σZj are the corresponding standard deviations respectively.

Once the covariance between any two elements in the

random field is determined, a conditional sequential

simulation procedure is taken for the simulation. In this work,

it is assumed that the Vs30 obeys lognormal distributions, which

can be converted into normal distributions using statistical

transformations. Based on the conditional random field

theory, the random variable Zn can be characterized by a

joint normal distribution as

[Zn

Zp
] ~ N(μ,Σ) � N([ μn

μp
],[ Σnn Σnp

Σpn Σpp
]) (4)

The process simulates each value individually, conditional

upon all known data and previously generated values. Using such

a process, the conditional distribution of the next value to be

simulated in the random field, denoted as Zn, is given by a

univariate normal distribution with the updated mean and the

variance as:

(Zn

∣∣∣∣Zp) ~ N(Σnp · Σ−1
np · Zp, σ

2
n − Σnp · Σ−1

np · Σpn) (5)

where Zp is a vector of all known or previously simulated points;

the subscription “p” means “previous” simulated points and “n”

refers to the “next” point to be simulated. Once Zn is generated, it

is inserted into the “previous” vector, upon which the “next”

unknown value at another unsampled location will be generated.

Such a process is repeated until all the values in the field are

simulated, and then, a map of Vs30 is generated for the region of

interest. The flowchart of the random field implementation is

shown in Figure 1.

3 The Beijing site: Engineering
geology and field data

Beijing is an international metropolis and is also one of the

capitals of three countries in the world that have suffered

earthquakes of magnitude eight or above in history (Peng et al.,

2011; Yuan et al., 2019; Peng et al., 2020). Beijing is located at the

intersection of the Yanshan seismic zone and the central seismic

zone of North China Plain and is close to Fenwei seismic zone and

Tanlu deep fault seismic zone (Peng et al., 2020). Many earthquake

fault zones are passing through the urban area, which makes

Beijing an earthquake-prone city. It has been damaged and affected

by many strong earthquakes in history, among which the Mafang

earthquake in 1,679 and the Xijiao earthquake in 1,730 have the

greatest impact (Min et al., 1995; Wang et al., 1999). More than

600 earthquakes have been felt in the Beijing area and more than

5,000 earthquakes have been recorded by instrumentation since

records of earthquakes began (Peng et al., 2011).

3.1 Engineering geology

For engineering geology, the southeast terrain of the

Beijing area is low and flat, and the terrain gradually rises

to the west and north. Hebei Plain and the Bohai Sea are in the

southeast of the region, and Taihang Mountain and Yanshan

Mountain are located in the northwest part of the region. Due

to the influence of regional neotectonic movement and active

faults, different geomorphic tectonic units have been formed

in the region, mainly including uplifted mountains,
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intermountain subsidence basins, and sedimentary plains

(Peng et al., 2020). The soil mass in the Beijing area is

mainly silty clay mixed with fine sand and medium sand,

and the lower bedrock is mainly round gravel. Quaternary

sediments are widely distributed in the plain area, followed by

the foothills. Sedimentary types are different in different

structural areas and geomorphic areas (Beijing Institute of

Hydrogeology and Engineering Geology, 1979). Alluvial and

alluvial-proluvial facies are mainly developed in western

mountainous areas, and flood-alluvial facies and cave

accumulation are developed in western mountainous areas.

Sand, gravel, and loess accumulation of residual slope facies

and flood-slope facies are the main deposits in the piedmont,

forming alluvial fans or platforms. The south part of the plain

is dominated by lacustrine facies and fluvial facies, while the

north part is mostly alluvial sand and gravel deposits (Cai

et al., 2016). The thickness of Quaternary sediments varies

greatly, from several meters to several hundred meters from

the western piedmont to the eastern plain (Wang and Han,

2012). An example of a borehole joint profile in the Beijing

area is shown in Figure 2, from the profile, it can be seen that

there are approximately 10 layers of soil, which are:

①Miscellaneous fill; ②Yellow-brown silty fine sand;

③Yellow-brown silty clay; ④Grey fine sand; ⑤Gray-brown

silty clay with sand; ⑥Silty fine sand with horizontal clay

strip; ⑦Gray-brown silty sand mixed with silty clay; ⑧Gray

silty fine sand is mixed with silty clay, and horizontal bedding

is developed; ⑨Gray-brown, yellow-brown silty clay; ⑨-1

Gray silty clay; ⑨-2 Yellow-brown silty clay; ⑩Dark gray

silty clay. Also, a potential fault crossing several soil layers

can be found here and the maximum stratum drop

reached 10 m.

3.2 Field data

For this study, a total number of 418 borehole data

were collected. Information including project name, location,

FIGURE 1
Flowchart of the random field model implementation.
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FIGURE 2
An example borehole joint profile in the Beijing area.
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date, shear wave velocity along with the depth, depth of soil

layers, descriptions of soil, Vs15, Vs20, and Vs30. The shear-wave

velocity data are obtained from the suspension P-S velocity

logging method. The original study area is relatively wide with

latitude boundaries ranging from 39.3° to 40.5° and longitude

boundaries ranging from 115.7° to 117.3°. Ignoring the

projection error of the curved surface, it is transformed into

spherical coordinates as a rectangular zone, with a width of

136.5 km and a height of 133.4 km. The original data uses

latitude (Beijing, 1979) and longitude as coordinates to

represent the positioning of points. Because latitude and

longitude are inconvenient to be directly computed as

horizontal and vertical coordinates, it is necessary to convert

them to plane coordinates in kilometers. For easy calculation in

this study, the point (115.7°, 39.3°) is set as the origin. Through

simple mathematical calculation, It can be known that

longitude corresponds to 85.3125 km per degree (e.g., 136.5/

(117.5–115.7) =85.3125) and latitude corresponds to

111.1667 km per degree (e.g., 133.4/(40.5–39.3)=111.1667).

Hence, the coordinate points can be transformed into XY

coordinates as follows:

X � (x − 115.7) × 85.3125 (6)
Y � (y − 39.3) × 111.1667 (7)

where x is the longitude of the data point and y is the latitude of

the data point. X and Y are the transverse and ordinate values of

the converted data points (X and Y are in the unit of km). Since

the measured data points are unevenly distributed in the original

study area, with dense data points in some areas and scattered

data points distributed around them. Therefore, in order to

facilitate the smooth implementation of the project, as well as

the accuracy of the prediction, the scope of the study area is

narrowed. After adjustment, the study area has a latitude

boundary of 39.6778°–40.2895° and a longitude boundary of

116.1923°–116.7081°. The range of study area and distribution

of measured data points is shown in Figure 3.

Therefore, according to Eqs 6, 7, the boundary of the study

area can be transformed into XY coordinate system, where the

range in the X direction is 42.5–85.7 km and the range in the Y

direction is 42.2–109.6 km, which constitutes a rectangular range

with a width of 44 km and a height of 68 km.

Given the shear wave velocity - depth measurement data, a

time-averaged shear wave velocity to a profile depth z, denoted as

Vsz, can be calculated at each measurement location as

Vsz � z
Δtz

(8)

Δtz � ∫z

0

dz
Vs(z) (9)

where Δtz is the travel time for shear waves from depth z to the

ground surface;Vs(z) is the shear wave velocity at depth z. In this
work, z is taken as 30m.

4 Data inference - Statistical and
spatial characterizations of the Vs30
data

The data set was randomly divided into two groups: training

data (388 measurements) and testing data (30 measurements).

Among them, the testing data will not participate in random field

simulation but only be used to evaluate the accuracy of

prediction. Figure 4 plots the histogram of the selected

388 Vs30 measurements, and it fit the lognormal distribution.

These values are only available at locations with measured shear

wave velocity profiles. And these measured data will be used as

input information in random field estimation of Vs30 in this study

area. A more detailed value can be seen in Table 1. It summarizes

the statistical characteristics (e.g., mean, variance, maximum,

median, minimum) of the 388 Vs30 values.

The empirical semi-variogram of Vs30 measurements is also

computed to infer their spatial structure in the studied region.

According to Goovaerts (1997), the empirical semi-variogram

can be calculated as follow:

FIGURE 3
Distribution of selected measured data, red dots represent
the borehole locations.
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γ(h) � 1
2N(h) ∑

N(h)
α�1 [Z(uα) − Z(uα + h)]2 (10)

In which,N(h)is the number of pairs of data with a distance of h.

To facilitate the incorporation of the semi-variogram into

random field models, the empirical semi-variogram has to be

fitted by a basic semi-variogrammodel or a linear combination of

several basic semi-variogram models that are permissible. The

three most commonly used models for fitting semi-variogram are

the Exponential model, the Spherical model, and the Gaussian

model (Liu et al., 2017a). Figure 5 plots the empirical semi-

variogram model as well as the fitted exponential model of the

form:

γ(h) � ω[1 − exp (−3h
a
)] + τ (11)

In which, h is the separation distance between any two points;

a is the range, representing the distance at which the semi-

variogram levels off. The fitted range of this study site is

19.67 km, and the nugget effect is neglected here for a better

fit of the exponential model.

5 Random field realization of the
Beijing area

With the statistical distribution of Vs30 values and the spatial

structure of Vs30 at different locations, random field models are

used to generate Vs30 maps of the Beijing area. A grid with the

element size of 1 km*1 km is used, since the size of the study area

is rectangular with a width of 44 km and a height of 68 km, so

2,992 elements are generated. The grid can be refined if it is

necessary for future studies. Random field realization will be

carried out based on this grid form, and finally, the

FIGURE 4
Histogram of selected 388 Vs30 values calculated from shear wave velocity measurements.

TABLE 1 Statistical characteristics of the known Vs30.

Statistical parameter Study area

Data count 388

Mean 268 m/s

Standard deviation 37.85

Maximum 388 m/s

Minimum 185 m/s

Median 263 m/s

FIGURE 5
Empirical and fitted semi-variogram based on known Vs30 at
measurement locations.
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FIGURE 6
One-time random field realization of Vs30 in the Beijing area.(A) Map of Vs30 realization; (B) Histogram of Vs30.

FIGURE 7
Expected Vs30 values and associated uncertainties (coefficient of variations) in the Beijing area. (A)Map of average Vs30; (B)Map of COV of Vs30.
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corresponding Vs30 estimation value will be obtained in each

element, which will be finally displayed in the form of a digital

Vs30 map. The new map accounts for and preserves the site-

specific shear wave velocity measurements and the soil spatial

structure.

One time of Vs30 realization and its corresponding histogram

is shown in Figure 6. The histogram shows that the simulation

preserves the statistical characterizations of Vs30 inferred from

the known Vs30 data.

A single random field simulation is only a random sampling

based on a given distribution, and the result can not represent the

true Vs30 value. Therefore, random field realization and the

Monte Carlo sampling method are combined to carry out a

large number of independent simulations. Coupling the random

field model with Monte Carlo simulations, the expected Vs30

value across the Beijing area can be obtained, as well as its

uncertainty distribution. Here, 1,000 times Monte Carlo

simulations are operated and 1,000 independent maps can be

generated. In other words, for the VS30 of each 1 km*1 km

element, 1,000 simulation calculations have been carried out.

According to the simulation results of 1,000 times realizations,

the mean value and coefficient of variation of the Vs30 prediction

value can be obtained statistically for each element. Among them,

the mean value of 1,000 simulations of each element represents

the expected value of Vs30 of the element, and the variance and

coefficient of variation represent the uncertainty of the shear

wave (Crespo MariaJ. et al., 2022) velocity value at this point. By

combining 2,992 elements, the Vs30 distribution and uncertainty

distribution in the study area can be obtained. The expected Vs30

map is shown in Figure 7A. And it is averaged from these

1,000 times independent Monte Carlo simulations. An

obvious trend in this map is that the overall soil quality in the

study area is normal, ranging from 217.1623 m/s to 346.9406 m/

s, the west-south part of this area has a relatively higher Vs30

value, which represents the Fang Shan hilly area. And the

northeast corner also has high Vs30 values, which can be seen

from the geology map as a hilly area too.

Unlike the deterministic method, one of the strengths of the

random field method is its ability to estimate the uncertainty

distribution associated with the generated Vs30 map. Here, the

coefficient of variation (COV) calculate from 1,000 independent

Monte Carlo simulations at each location is calculated to quantify

the uncertainties. The COV map is plotted in Figure 7B. As

shown in the figure, the COVs are generally very small (ranging

from 0.023 to 0.1102) and approach zero around locations with

measurement data. And for the location without measured data,

the COV value will be higher but still acceptable. It is worth

noting that, in the (Crespo MJ. et al., 2022) simulation of this

random field model, the study area is divided into 2,992 square

elements, and the center point of each element is focused, the

simulated Vs30 value of the center point is assigned to the whole

square element. Hence, if the center point happens to be the

measured data point, the COV of the cell is 0. If there are

measured data points in the cell, but the measured data points

are not exactly at the center point of the element, the simulated

value of the cell will not be completely equal to the measured data

value. But it will be very close, and the COV value of this cell will

be very small (shown in dark blue in Figure 7B).

Since the Vs30 map has been generated, the accuracy of the

prediction can be verified by using the testing data

(30 measurements). According to the location of 30 testing

data points, the corresponding element in the map can be

found. Obtaining the corresponding Vs30 value of each

element, cross-validation can be operated. The comparison

FIGURE 8
Cross-validation result of Vs30 realizations. (A) Comparison between random field realizations and measurements; (B) Differences of random
field realizations and measurements.
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FIGURE 9
Comparison between IDW and Random field model: (A) Vs30 realizations calculated by IDW; (B) Comparison of results between two methods.

A B C D E

FIGURE 10
Expected Vs30 values and associated uncertainties in the Beijing area with different values of N. (A) N=10; (B) N=20; (C) N=40; (D) N=60;
(E) N=80.
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results are shown in Figure 8. As can be seen from the figure, the

prediction results are reasonable.

Also, the inverse distance weighted method (IDW) is

operated here to verify the result. Because both methods

consider the variation of parameter values with spatial

distance, hence, the two methods get similar results with an

average difference of 13.95 m/s (Figure 9). The random field

method describes spatial correlation by semi-variogram, which is

more accurate than the inverse distance difference method.

Moreover, the random field Vs30 map could provide both the

expectation and uncertainty of a site parameter, which could be

further integrated into the reliability analysis of the site response

or earthquake disaster degree evaluation.

6 Effects of N

As described in Section 2, the unknown value Zn at an

unmeasured location can be drawn from the conditional normal

distribution. Once Zn is generated, it is inserted into the “previous”

vector, upon which the “next” unknown value at another

unsampled location will be generated. Hence, the “previous”

vector is getting bigger during the simulation, it is unnecessary

to use all of them to do the estimation. Therefore, it is necessary to

define the “N” value (maximum number of previously generated

elements to correlate to) when predicting value at unsampled

locations, which will have a noticeable influence on the

calculation results. After we set the value of N at the beginning

of the estimation (e.g., 40), this value will keep constant for the

whole simulation. This means when generating each unknown

value at the unsampled location, only 40 “previous” data closest to

this point will participate in the prediction, the nearest 40 data

points are included in the covariance matrix calculation. And the

values of other pointswill not have a direct impact on the prediction

of this point. The principle behind this is that in geostatistical

theory, the geotechnical or geological characteristics of the regional

areas usually show spatial variability and spatial correlation, which

means the soil parameters measured at each observation point are

correlated with those at adjacent locations, and with the increase of

distance, the correlation between the parameters decreases

gradually. Therefore, five different values of N are selected,

namely, 10, 20, 40, 60, and 80, and the simulation results are

used to evaluate the influence of N.

Similar to Section 3, for each N value, the random field model

is coupled with 1,000 times independent Monte Carlo simulations.

So five sets of expected Vs30 values and their uncertainty

distribution across the Beijing area are obtained (Figure 10).

It can be seen from Figure 10 that with the increase of the N

value (from 10 to 80), the prediction results gradually tend to be

stable, and the change in the Vs30 map becomes invisible. Among

them, for N changes from 10 to 40, the Vs30 distribution map has

obvious changes, and in COV maps, the blue area expanded and

the red area turns orange, which means the COV values turn

smaller. And for N changes from 60 to 80, the predicted Vs30

distribution map is almost no different, similar to the COVmaps.

Detailed statistical results are listed in Table 2. It can be seen that

the coefficient of variation (COV) is gradually decreasing with

the increase of N, indicating that its prediction reliability is also

gradually increasing. It is worth noting that for N changes from

10 to 60, the decreasing rate is large, and whenN is larger than 60,

the average COV value continues to decline, but the rate of

decline is likely to remain steady.

The above observation shows that in the simulation process,

the more “known values” are considered, the more accurate the

results are (the lower the COV value is), and the improvement

rate of its accuracy is gradually stable after reaching the peak with

the increase of N. However, with the increase of the N value, the

calculation matrix also increases, which increases the calculation

workload and storage space required for calculation. Therefore, it

is necessary to comprehensively consider the calculation

efficiency and accuracy, and cannot blindly increase the N

value. The appropriate N value can give us an appropriate

result with a high calculation efficiency. So in this case, 60 is

appropriate for this case study.

7 Conclusion

In this work, a random field prediction model of Vs30 is

presented. And this prediction model is applied to map Vs30

TABLE 2 Variability of Vs30 realizations under different N values.

Vs30 COV

Average Maximum Minimum Average Maximum Minimum

N=10 271.2419 344.2349 219.5146 0.0744 0.1129 0.0251

N=20 267.0315 345.2037 217.2584 0.0739 0.1136 0.0238

N=40 265.7826 345.8909 217.6856 0.0732 0.1102 0.0237

N=60 265.0711 345.9406 217.1623 0.0714 0.1102 0.0230

N=80 264.6746 346.6608 216.9359 0.0702 0.1117 0.0227
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and its uncertainty over the Beijing area. By operating

statistical and geostatistical analysis of 388 measured bore

data, the distribution and spatial variation of Vs30 are studied.

Combining conditional sequence simulation technology and

the Monte Carlo sampling method, the random field

simulation of Vs30 at the city scale is carried out, and the

two-dimensional Vs30 map and uncertainty distribution for

the Beijing area are established. This new map can be applied

to site classification and amplification factor characterization

in the studied region in the future. Also, the effect of random

filed model parameter N is tested. All the calculations and

simulations in this paper are realized by self-made MATLAB

code. In summary, it is found that:

1) Vs30 estimates over the entire studied region can be obtained

using the random field model. The resulting map can give a

detailed and reliable estimation of Vs30 at the unsampled

location, meanwhile, the local measurement data are

incorporated and preserved to make the new map

consistent with the actual situation.

2) Coupled with the Monte Carlo simulation, the coefficient of

variation (COV) can be easily obtained and is used to quantify

the uncertainty distribution of Vs30 in the Beijing area. In

general, COV is close to zero around locations with measured

data, while COV gradually increases in areas without any

measured Vs30 values.

3) The model parameter N (maximum number of previously

generated elements to correlate to) will have a noticeable

influence on the estimating Vs30 value at un-measured

locations. The results show that with the increase of the N

value, the prediction results gradually tend to be stable and

the prediction reliability is gradually enhanced. However, the

increase in the N value may cause an increase in the

calculation workload and storage space required for

calculation. Therefore, it is necessary to consider the

calculation efficiency and accuracy comprehensively, and

cannot blindly increase the N value.

4) Random field model and IDW method get similar results

since both methods consider the variation of parameter

values with spatial distance. However, the random field

method describes spatial correlation by semi-variogram,

which is more accurate than the inverse distance difference

method. The presented methods are directly applicable to

the site involving more complex property conditions.

Moreover, the random field approach could provide

both the expectation and uncertainty of a site

parameter, which could be further integrated into the

reliability analysis of the site response or earthquake

disaster degree evaluation.

5) It is realized that estimation errors will be obtained when the

geological conditions change abruptly (for example, from

mountain to plain). So, it is necessary to use geological

conditions to constrain the Vs30 estimation. And this will

be the next step to improve this random field model by

combining geological data and geotechnical data in Vs30

estimation.
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