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Landslide hazards are complex nonlinear systems with a highly dynamic nature. Accurate
forecasting of landslide displacement and evolution is crucial for the prevention and
mitigation of landslide hazards. In this study, a probabilistic landslide displacement
forecasting model based on the quantification of epistemic uncertainty is proposed. In
particular, the displacement forecasting problem is cast as a time-series regression
problem with limited training samples and must be solved by statistical inference. The
epistemic uncertainty of the landslide displacement series is depicted by the statistical
properties of the function space constituted by the nonlinear mappings generated by the
sparse Gaussian process regression. Data for our study was collected from the study area
located in northwestern China. Other state-of-the-art probabilistic forecasting models
have also been utilized for comparative analysis. The experimental results confirmed the
superiority of the sparse Gaussian process in the modeling of landslide displacement
series in terms of forecasting accuracy, uncertainty quantification, and robustness to
overfitting.
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1 INTRODUCTION

In southwest China, landslides are among the most devastating natural disasters, causing damage to
life, property, and local infrastructure (Aggarwal et al., 2020; Fan & Cai 2021; Zhou et al., 2021). Over
7,000 landslides occurred in China in 2016 as reported in the annual report provided by the China
Institute of Geo-EnvironmentMonitoring (Tang et al., 2020). The factors that trigger landslides vary,
including heavy rainfall, reservoir water fluctuations, earthquakes, and human activities (Fan et al.,
2022; Li et al., 2022). Reliable early warning systems that accurately quantify future landslide
deformation assist experts in the evaluation of incoming landslide hazards (Tang et al., 2021).
Therefore, landslide displacement time-series forecasting plays an important role in the prevention
of geo-hazards.

According to literature review, landslide displacement forecasting can be categorized into two
major types: deterministic and probabilistic forecasting. Majority of the studies involving
deterministic forecasting approaches were based on statistical models or machine-learning
models in predicting the actual value of incoming landslide displacement. Lewis and Reinsel
(1985) applied autoregressive time-series models to predict landslide displacement. Lu and
Rosenbaum (2003) proposed using the GM (1,1) model to perform a multivariate regression
analysis of landslide displacement. Liu et al. (2012) used an exponential model to conduct time-series
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regression on landslide displacement. With the advancement of
artificial intelligence (AI) technologies, machine learning and
deep learning have become more popular in recent years. For
instance, Lian et al. (2015) trained an artificial neural network
(ANN) to predict short-term landslide displacement. Zhu et al.
(2017) used a least-squares support vector machine optimized by
a genetic algorithm to predict landslide displacement empirically.
Xu et al. (2019) compared multiple data mining algorithms on
their performance in predicting landslide displacement in the
Heifangtai Region, China. Li et al. (2018) proposed using an
extreme learning machine (ELM) integrated with parametric
copula models to forecast the faster seasonal landslide
displacement. The tail correlation is quantified, and the risk
boundaries are computed using value-at-risk and tail-value-at-
risk. Li et al. (2020) applied a deep-learning algorithm called the
deep belief network (DBN) to predict incoming landslide
displacement in the temporal domain. The research utilized
the exponentially weighted moving average (EWMA) model to
set up decision boundaries for identifying faster seasonal
displacement and achieved promising results. All the above
studies were performed under deterministic forecasting and
offered reliable solutions for determining future landslide
research.

Compared with the deterministic forecasting approaches,
probabilistic forecasting estimates the probability distribution
of future landslide displacement and is more complicated in
practice. Using the same input data as the deterministic
forecasting models, the output of probabilistic forecasting
models consists of a prediction interval (PI) with a
probability density function. For a PI, the two independent
quantiles are fitted to the upper and lower bounds, and an
accurate prediction is defined as the actual value that falls
within the PI. Ma et al. (2018) proposed using a bootstrap-
based ELM to construct PIs for landslide incremental
displacement. Xing et al. (2019) revised the structure of long
short-term memory (LSTM) network to generate probabilistic
forecasting of landslide displacement and produced high-
quality PIs for future displacement. Jiang et al. (2021)
proposed a hybrid grey wolf optimizer to optimize the ELM
structure for PI construction and achieved improved
probabilistic prediction performance using field data.
However, there is currently limited studies on probabilistic
forecasting of landslide displacement.

In recent years, Gaussian process regression (GPR) has
demonstrated superior predictive strength in many regression
tasks (He and Kusiak 2017; Schulz et al., 2018; Li et al., 2021a; Li
et al., 2021b; Deringer et al., 2021; Jamei et al., 2021; West et al.,
2021; Fuhg et al., 2022; Tamhidi et al., 2022). Generally, GPR is a
nonlinear, nonparametric regression tool useful for interpolating
data points scattered in a high-dimensional input space. GPR is
based on the Bayesian probability theory and has very close
connections with other regression techniques, such as kernel
ridge regression (KRR) and linear regression with radial basis
functions (Deringer et al., 2021).

In this study, a novel landslide displacement probabilistic
forecasting model integrated with a sparse Gaussian process
(SGP) is proposed. The SGP is a nonparametric approach

based on Bayesian theory and has the advantage of requiring
fewer training samples compared with other over-parametrized
regression models. Compared with the original Gaussian process,
SGP adopts inducing variable points and variational inference to
approximate the model parameters. Gradient descent
optimization was utilized to optimize the SGP for predicting
probabilistic landslide displacement.

The main contributions of this paper can be concluded as
follows:

• A new probabilistic landslide displacement model via the
quantification of epistemic uncertainty is proposed.

• The SGP is incorporated within the probabilistic forecasting
framework to tackle the interference complexity.

The remainder of this paper is organized as follows; Section 2
introduces the basics of the Gaussian process and the sparse
Gaussian process, Section 3 describes the case study area and the
data collection process, Section 4 summarizes the experimental
results and Section 5 concludes the paper.

2 METHODOLOGY

2.1 Gaussian Process
The Gaussian process (GP) has been widely applied in
probabilistic forecasting (Li et al., 2022a). A typical GP defines
distribution over functions such that, if we pick any two or more
points in a function, the observations of the outputs follow a joint
multivariate Gaussian distribution (Schulz et al., 2018; Wen et al.,
2022). In general, a Gaussian process states that in a multivariate
dataset, any finite number of variables follows a joint Gaussian
distribution.

In a regression type of a problem, a GP combined with a
Gaussian likelihood generates a posterior GP over the model
output.With a given input x, and output y of a functionf(), a GP
model can be written as (1):

y � f(x) + ϵ (1)
where f(x) is the latent variable; E follows E ~ E(0, σ2ϵ) and σ2ϵ is
the variance of the noise. Here, epistemic uncertainty is caused by
the limited representation capability of displacements. Thus, we
can specify the distribution of latent variable f � f(x) as
f ~ E(0, C(x, x)) where C() is the covariance function.

In the GP, suppose ŷi is the predicted value for a new input xi,
the combination of f and ŷi should follow a joint Gaussian
distribution expressed as (2):

p(f , ŷi) � N([ 0
0
],[ C Cp

CT
p

~C
]) (2)

where C � C(x, x); C* � C(xi, x); and ~C � C(xi, xi). According
to Bayesian inference, the posterior distribution of the target
prediction ŷi conditioned on the training set y is expressed
as (3)–(5).

p(ŷi|y) � N (μp, σ2
p) (3)
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μp � CpK
−1y (4)

σ2
p � ~C − CT

pK
−1Cp (5)

where K � C + σ2ϵIn and In denotes the identity matrix of n × n.

2.2 Sparse Approximation of the Gaussian
Process
In practice, with a higher-dimensional dataset, the GP often faces
the challenge of high computational cost (Li, 2022b). Sparse
approximation offers a reliable solution to overcome the
computational limitations of the GP model. Here, the
principle behind sparse approximation is using a subset of the
dataset to train the GPmodel.Within the SGP, the selection of the
subset is performed repeatedly using greedy algorithms.

The scheme of GP approximation using a subset m of GP
regression models with n data points can be achieved
using (6)–(7):

fSR(xi) � ∑m

j�1αjC(xi, x) (6)
αm ~ N (0,K−1

mm) (7)
where the associated mean and variance of fSR(xi) can be
obtained using (8)–(9):

μSR(fSR(xi)) � CT
m(xi)(CmnCnm + σ2nCmm)−1Cmny (8)

σSR(fSR(xi)) � σ2nC
T
m(xi)(CmnCnm + σ2

nCmm)−1Cm(xi) (9)

and the posterior mean of αm can be computed by (10):

αm � (CmnCnm + σ2nCmm)−1Cmny (10)

2.3 Objective Function
To train the SGPmodel, a covariance functionmust be selected to
define the similarity of any two sets of input points, giving rise to
the covariance matrix. A popular selection of the covariance
function is the squared exponential (SE) function, which is
written by (11):

C(xi, xj) � η2exp⎡⎣ − 1
2
∑d

k�1(xi − xj

lk
)2⎤⎦ (11)

where η2 is the signal variance, and l is the characteristic length
scale. Thus, to estimate the parameters Θ � {η, l}, the objective
function of SGP is to maximize the likelihood function expressed
in (12):

L(Θ) � 1
2
yTK−1y + 1

2
log|K | + n

2
log|2π| (12)

2.4 State-Of-The-Art Probabilistic
Forecasting Models
To demonstrate the outperformance of the proposed probabilistic
forecasting approach using SGP, three popular state-of-the-art
approaches were selected to perform a comparative analysis,
including the quantile regression gradient boosting machine

FIGURE 1 | Cracks measured by the GPS points on the front part of the slope.
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(QRGBM), the kernel density estimation (KDE), and the
k-nearest neighbor (KNN). These state-of-the-art approaches
are presented below.

QRGBM is a meta-algorithm technique that combines an
ensemble of weak regression trees as a weighted sum to reduce

both bias and variance (Landry et al., 2016). Similar to the
traditional gradient boosting tree, it combines the advantages
of both the regression and gradient boosting algorithms, which
enables it to model complex nonlinear relationships that may
include interactions among predictors.

FIGURE 2 | Convergence curves of loss functions during the training process.

FIGURE 3 | Histograms of the scaled test dataset for all GPS points.
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KDE is a classic nonparametric estimation method used in a
wide variety of probabilistic forecasting tasks (Botev et al., 2010;
Kim & Scott 2012). It does not require a priori assumption that
the data should follow a certain distribution, which is the key
difference between the KDE and other parametric approaches.

KNN is a probabilistic forecasting approach that computes the
probability distribution of the mean multiple nearest neighbors
(Keller et al., 1985; Abu Alfeilat et al., 2019). The main advantage
of KNN is that it does not assume the smoothness of the functions
in forecasting tasks. It has been widely applied as a state-of-the-
art forecasting algorithm in various engineering applications.

2.5 Measurement Metrics
To assess the quality of the tested algorithms in terms of
probabilistic forecasting of landslide instant displacement, the
evaluation metric namely Continuous Ranked Probability Score
(CRPS) was utilized in this study. The CRPS was designed to
quantify the difference between a continuous forecasted

probability distribution (i.e., prediction) and a deterministic
observation value (i.e., the ground truth value). The CRPS can
be computed using (13)–(14) (Ton et al., 2018):

F̂(yi) � ∫yi

−∞
p(ŷi

∣∣∣∣∣∣xi)dxi (13)

H(yi − ŷi) � { 1 if yi ≥ ŷi

0 otherwise
(14)

where xi represents the input data, yi is the actual value of the
ground truth, ŷi is the predicted mean value, F̂(yi) represents the
cumulative density function (CDF) of the ŷi; andH() denotes the
binary step function with the observed sample at the step point.
We can then compute the CRPS using (15) as follows:

CRPS � 1
N

∑N

i�1 ∫
+∞

−∞
[F̂(yi) −H(yi − ŷi)]2dyi (15)

whereN represents total number of data points in the test dataset.

FIGURE 4 | Constructed PIs and actual target instant displacement of the test dataset.
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3 DATASET COLLECTION

In this study, time-series displacement data were collected from
our case study area, in southwest China. The case study area had
landslide occurrences with a wide spatial distribution (Cui et al.,

2021). The main material on the case study area slope were
enormous deposits of silty clay and fragmented rubble, which are
often loose and chaotic. The underlying bedrock of the case study
landslide consisted of siltstones and mudstones. The major
triggering factors of the landslide were heavy rainfall.

To obtain the displacement data, global positioning system
(GPS) technology was used to monitor the landslides surface
displacement, which is a useful and straightforward method for
landslide evolution analysis. The GPS points recorded the
cumulative displacement of the target landslide. In this study, a
total of six GPS points were configured on the slide slope since the
first reported initiation of slope failure. Continuous monitoring of
the cumulative displacement was then conducted using the GPS
points. The locations of the GPS points were relatively stable,
enabling continuous and reliable acquisition of displacement data
in the temporal domain. The six GPS points are shown in Figure 1.

As shown in Figure 1, the datasets contain multiple GPS time-
series data monitoring the landslide deformation process. Within
the figure, the label LF stands for the cracks measured by the GPS

FIGURE 5 | Actual value versus predicted mean value for all algorithms tested.

TABLE 1 | Summary of CRPS for all probabilistic algorithms tested.

GPS point Algorithm

SGP QRGBM KDE KNN

1 6.73 9.51 8.97 9.04
2 7.24 8.32 9.19 12.06
3 4.95 5.32 6.86 10.87
4 9.26 9.33 9.31 9.79
5 8.84 8.96 10.11 9.57
6 7.21 7.25 8.11 9.34
Mean 7.37 8.12 8.76 10.11
Standard deviation 1.42 1.46 1.03 1.04
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points. The evolution of the crack is the key indicator for quantify
the landslide displacement on-site. The datasets display the
cumulative displacement since the activation of slope failure. All
data were recorded on a monthly basis, and the unit for the points
was millimeters. In total, 6 years of data were provided by field
experts for training and testing the probabilistic forecasting models.

4 EXPERIMENTAL RESULTS

To achieve accurate probabilistic forecasting of landslide
displacement, field data from six single GPS points from the
study area were utilized in this study. In total, 6-year monthly
data from 2014 to 2019 were considered for training and testing the
proposed SGPmodel. All displacement data were transformed from
cumulative displacement into instant displacement, whichmeasures
the absolute increment between the two-time stamps. For each GPS
point, data collected between 2014 and 2018 were used to train the
SGP, and the data collected in 2019 were used as the test dataset.

In our experiment, the training epochs for all GPS-collected
displacement time series were set to 150. The loss function
utilized for training was based on maximum likelihood, as
described in Section 2.3. The average training time for all
GPS points was 20 s. The average PI production time was less
than 1 s. The convergence curves of the loss functions during the
training process are shown in Figure 2.

As illustrated in Figure 2, the loss curves of all six GPS
monitoring points exhibit similar patterns. The loss function is
based on the objective function expressed in (2) in Section 2.3
above. The starting value of the loss function varied depending on
the random initialization of the experiment. The loss values
converged at approximately 50 epochs on average, and the
variance significantly reduced thereafter. This phenomenon
confirms the reliability of the SGP in effectively learning
patterns from the displacement time series.

Prior to the performance evaluation of the proposed approach,
the heterogeneity and sharpness of the test dataset were
investigated. The test dataset contained the instant monthly
displacement data collected in 2019. All test data per GPS point
were rescaled between 0 and 1 via min-max scaling, and the
histograms for the GPS points are presented in Figure 3. The
vertical axis represents the scaled frequency and the horizontal axis
denotes the scaled instant displacement between 0 and 1. Evidently,
all instant displacements followed a right-skewed distribution,
which confirms the field experts’ opinion that the majority of
the displacements were under the mode of slow motion. However,
occasional heavy rainfall or over-irrigation could trigger faster
seasonal displacements on the slope over a few months, which
contributes to occurrences above the median value.

Figure 4 displays the six selected timestamps within the test
dataset for each GPS point. The predicted probability density
function (PDF) was the probabilistic forecast output generated by
the SGP model. The vertical red line denotes the actual scaled
value that corresponds to its intersection on the horizontal axis.
For GPS points 1, 3, and 6, the selected instant displacement was
from the mode of faster seasonal displacement. Correspondingly,
the actual value were within the region with a high probability

density. For the other three GPS points, the timestamps were
selected from the mode of slow displacement. The actual value of
the displacement was smaller than the group median value but
was still within the region of high probability density. This
demonstrates the reliability of SGP in probabilistic forecasting.

For comparative analysis, we merged all test data collected
from the six GPS points and transformed the data into a Gaussian
distribution that follows E(0, 1). The mean value of the predicted
probability distribution per point was considered as the point estimate
of the displacement. The mean predicted values generated by all
probabilistic prediction algorithms versus the actual measured instant
displacement are shown in Figure 5. It is notable that majority of the
mean predicted values provided by SGP fall within a narrow band
with respect to the diagonal red dashed line, which represents the
corresponding actual value. In comparison, more outlier points were
generated outside the narrow band provided by the other state-of-the-
art algorithms, including, QRGMB, KDE, and KNN. This confirms
that the SGP is outstanding in terms of probabilistic forecasting of
landslide displacement (see Figure 5).

For a quantitative performance comparison, CRPS (see Section
2.5, Eq. 15) was adopted as themeasurementmetric to evaluate the
quality of the estimated probability density. Table 1 presents the
CRPS computed by all algorithms tested and in terms of all six GPS
points. The proposed SGP model had the smallest CRPS score
compared to the other state-of-the-art algorithms, which confirms
the superiority of the proposed approach.

5 CONCLUSION

In this study, the uncertainties of future landslide displacements
were quantified and formulated using Bayesian theory. The sparse
Gaussian process was adopted to derive the inducing variable,
variational inference, and variational distribution of the future
displacement, while significantly reducing the computational
cost. Compared with other state-of-the-art probabilistic
forecasting models, the proposed SGP approach demonstrated
outstanding performance in terms of accuracy, reliability, and
computational efficiency. The probabilistic forecasting of future
displacement has improved remarkably. The proposed approach
can provide practical assistance to field engineering geologists in
the hazard estimation of future landslide occurrences.
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