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The dynamic response of twin circular unlined tunnels is studied by indirect boundary
integral equation method (IBIEM). The twin tunnels are assumed to lie in an unbounded
elastic space subjected to blasting P waves. The influence of incident angle on the
distribution of DSCF around the twin tunnels is analyzed. Besides, the influences of
normalized wave number αa and normalized distance d* (ratio of spacing distance to
tunnel radius) on the reference DSCF, that is, the peak DSCF for different incident angles
with an assurance rate of 95%, are discussed. Results show that 1) the IBIEM is a high-
precision method analyzing the DSCF around twin circular unlined tunnels induced by
blasting P waves; 2) the incident angle θ0, αa, and d* all have significant influences on the
distribution of DSCF; 3) for a constant d*, the peak DSCF around the right tunnel is slightly
greater than the left one; 4) the reference DSCF decreases exponentially with the
increasing of αa or d*, and the corresponding fitting functions are proposed.
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INTRODUCTION

In recent years, underground tunnels have been widely developed due to transportation problems
induced by the dramatic growth of population (Li et al., 2017; Zhang et al., 2021). In many populous
cities, twin tunnels are increasingly constructed to improve transportation capacity (Alielahi and
Adampira, 2016). When the drilling and blasting method is adopted, blasting waves will impose a
potential danger on the adjacent existing tunnels (Xia et al., 2013; Zhou et al., 2016; Dang et al., 2018;
Xue et al., 2019; Peng et al., 2021). Evaluating the dynamic response and proposing a safety criterion
of the existing tunnels subjected to blasting waves are of the utmost importance.

In the past years, extensive studies have been carried out in evaluating the dynamic response of
underground tunnels caused by incident waves. These studies mainly focus on the dynamic response
of the rock or the lining of a single tunnel. Yi et al. (2008) studied the dynamic response of an arch-
with-vertical-wall lining, and concluded that the incidence angle of incident waves has a significant
influence on the critical vibration velocity. Furthermore, Yi et al. (2016) discussed the dynamic
response of a circular lined tunnel with an imperfectly bonded interface under plane P waves, and
found that the interface stiffness has a great influence on the distribution of dynamic stress
concentration factors (DSCF) of the tunnel. Pao and Mow (1973) investigated the dynamic
stress concentration of lined and unlined circular tunnels subjected to plane P and S waves
numerically. Lu et al. (2019a), Lu et al. (2019b), and Lu et al. (2021) studied the DSCF and
peak particle velocity of a circular tunnel subjected to cylindrical P waves theoretically. Wang et al.
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(2014) studied the dynamic responses of the tunnel at various
depths in double-layer rocks by finite element method. Li et al.
(2018) firstly proposed the theoretical formula to evaluate the
DSCF around a circular opening subjected to blasting wave and
studied the dynamic response of deep-buried tunnels under
triangular blasting loads. Liu et al. (2011) and Chen et al.
(2012) discussed the dynamic response of a rock tunnel
subjected to harmonic P, S, and R waves by numerical
simulation method. Xu et al. (2014) investigated the effects of
incident frequency, incident angle, and rock conditions on a
circular lining tunnel subjected to incident plane P waves. Zhang
et al. (2022) explored the stresses and vibrations of a single
circular tunnel under the incidence of cylindrical P waves and
proposed the PPV criterion. Qiu et al. (2022) studied the blasting
dynamic behavior of deep buried tunnels and discussed their
safety. Zlatanović et al. (2021) and Yuan et al. (2020) explored the
influence of new structures on the dynamic responses of existing
tunnels subjected to different incident waves. Although the
study on different factors influencing dynamic response of
underground tunnels subjected to incident waves has made

great progress, the quantitative relationship between different
factors and dynamic response of tunnels subjected to incident
waves is very limited.

In this article, the dynamic response of twin circular unlined
tunnels subjected to blasting P waves is studied by indirect
boundary integral equation method (IBIEM). The influence of
the incident angle on DSCF of the twin tunnels is analyzed.
Furthermore, the influences of normalized wave number and
normalized distance (ratio of spacing distance to tunnel radius)
on the reference DSCF, that is, the peak DSCF for different
incident angles with an assurance rate of 95%, are discussed. The
fitting functions determining the reference DSCF are proposed.

INTERACTION OF BLASTING P WAVES
AND TWIN CIRCULAR UNLINED TUNNELS

Assume two circular unlined tunnels with a distance d lie in an
unbounded space, centering at O1 and O2, respectively. The radii
are denoted by a1 on the left side and a2 on the right side. A right-
handed Cartesian coordinate system O1xy is established, as
shown in Figure 1. The virtual sources are represented by S1
and S2 with less radii b1 and b2 to simulate the outgoing waves and
avoid singularity on the tunnel boundaries. The displacement
potential function of incident P wave can be expressed as:

φ(i) � φ0e
iα(x cos θ0+y sin θ0)−iωt (1)

where φ0 is the amplitude of incident wave, α is the wave number
of P waves and α=ω/cp, ω is the circular frequency of incident
wave, cp is the phase velocity of incident wave, θ0 is the incident
angle, and i is the unit of complex number.

Let φ denote the linear sum of the potentials of the incident
and diffracted P waves, ψ denote the linear sum of the potential of
the incident and diffracted S wave, then

φ � φ(i) +∑M
i�1
φ(d)
i + ∑M+N

i�M+1
φ(d)
i

ψ � ∑M
i�1
ψ(d)
i + ∑M+N

i�M+1
ψ(d)
i

(2)

FIGURE 1 | Incident wave and its interaction with two circular unlined
tunnels.

TABLE 1 | Relative errors for different numbers of source and observation points.

αa Number
of Source Points

Number
of Observation Points

Err

θ0 = 0° θ0 = 30° θ0 = 45° θ0 = 60° θ0 = 90°

0.1 10 20 8.958 × 10−1 1.260 3.097 × 10−1 5.360 × 10−1 6.252 × 10−1

20 30 4.692 × 10−1 6.720 × 10−1 8.279 × 10−2 1.867 × 10−1 2.347 × 10−1

30 50 2.937 × 10−1 3.730 × 10−1 1.460 × 10−1 2.114 × 10−1 2.052 × 10−1

40 60 1.020 × 10−1 1.318 × 10−1 8.113 × 10−2 5.402 × 10−2 3.604 × 10−2

60 80 8.896 × 10−5 1.014 × 10−4 4.142 × 10−5 3.550 × 10−5 1.701 × 10−5

80 100 2.142 × 10−8 2.433 × 10−8 9.958 × 10−9 8.544 × 10−9 4.068 × 10−9

2 10 20 3.306 × 10−1 3.381 × 10−1 4.959 × 10−1 4.245 × 10−1 5.203 × 10−1

20 30 4.255 × 10−2 2.517 × 10−2 2.323 × 10−2 4.000 × 10−3 2.544 × 10−2

30 50 2.432 × 10−2 3.205 × 10−2 3.644 × 10−2 5.567 × 10−2 3.085 × 10−2

40 60 3.872 × 10−4 8.382 × 10−4 2.205 × 10−3 1.270 × 10−2 4.009 × 10−3

60 80 3.627 × 10−5 9.693 × 10−5 5.418 × 10−4 1.542 × 10−3 7.193 × 10−4

80 100 5.410 × 10−8 3.082 × 10−7 9.357 × 10−7 2.328 × 10−6 1.236 × 10−6
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whereM and N are the numbers of virtual sources in the left and
right tunnels, φ(d)

i and ψ(d)
i are the potential functions of

diffracted P and SV waves generated by the i-th virtual source.
The diffracted waves generated by the i-th virtual source can

be expressed in terms of 0-th Hankel functions as:

φ(d)
i � AiH

(1)
0 (αRi)e−iωt (3)

ψ(d)
i � BiH

(1)
0 (βRi)e−iωt (4)

where Ri is the distance between an arbitrary point in the
surrounding rock and the i-th virtual source, defined by

Ri �
�����������������
(x − xi)2 + (y − yi)2

√
, β is the wave number of S waves.

According to the relations between stress and displacement,
the stress can be expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ux � zφ

zx
+ zψ

zy

uy � zφ

zy
− zψ

zx

σxx
μ

� (β2
α2 − 2)∇2φ + 2(z2φ

zx2 +
z2ψ

zxzy
)

σyy
μ

� (β2
α2

− 2)∇2φ + 2(z2φ
zy2 −

z2ψ

zxzy
)

σxy
μ

� 2
z2φ

zxzy
+ z2ψ

zy2 −
z2ψ

zx2

(5)

FIGURE 2 | Distribution of DSCF around twin tunnels. (A) θ0 = 0°; (B) θ0 = 30°; (C) θ0 = 60°; (D) θ0 = 90°.
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Then substituting Eqs 1–4 into Eq. 5, the displacements and
stresses can be written as follows:

ux � iαφ0 cos θ0e
iα(x cos θ0+y sin θ0) − ∑M+N

i�1

αAi(x − xi)H(1)
1 (αRi)

Ri

− ∑M+N

i�1

βBi(y − yi)H(1)
1 (βRi)

Ri
(6a)

uy � iαφ0 sin θ0e
iα(x cos θ0+y sin θ0) − ∑M+N

i�1

αAi(y − yi)H(1)
1 (αRi)

Ri

+ ∑M+N

i�1

βBi(x − xi)H(1)
1 (βRi)

Ri
(6b)

σxx

μ
� (2α2 sin2θ0 −β2)φ0e

iα(xcosθ0+ysinθ0)

+ ∑M+N

i�1
Ai{[2α2(y−yi)2

R2
i

−β2]H(1)
0 (αRi)+2α[2(x−xi)2

R3
i

− 1
Ri
]H(1)

1 (αRi)}+
∑M+N

i�1
Bi{4β(x−xi)(y−yi)

R3
i

H(1)
1 (βRi)−2β2(x−xi)(y−yi)

R2
i

H(1)
0 (βRi)}

(6c)
σyy

μ
� (2α2 cos2θ0 −β2)φ0e

iα(xcosθ0+ysinθ0)

+ ∑M+N

i�1
Ai{[2α2(x−xi)2

R2
i

−β2]H(1)
0 (αRi)+2α[2(y−yi)2

R3
i

− 1
Ri
]H(1)

1 (αRi)}
− ∑M+N

i�1
Bi{4β(x−xi)(y−yi)

R3
i

H(1)
1 (βRi)−2β2(x−xi)(y−yi)

R2
i

H(1)
0 (βRi)}

(6d)

FIGURE 2 | (Continued.)
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FIGURE 3 | Variation of the reference DSCF with αa. (A) d* = 4; (B) d* = 10; (C) d* = 20.
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FIGURE 4 | Variation of DSCF with d*. (A) αa = 0.1; (B) αa = 1; (C) αa = 2.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9410706

Lu et al. Dynamic Response of Twin Tunnels

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


σxy
μ

� −α2 sin 2θ0φ0e
iα(x cos θ0+y sin θ0)

+ ∑M+N

i�1
Ai{4α (x − xi)(y − yi)

R3
i

H(1)
1 (αRi) − 2α2

(x − xi)(y − yi)
R2
i

H(1)
0 (αRi)}

− ∑M+N

i�1
Bi{2β (x − xi)2 − (y − yi)2

R3
i

H(1)
1 (βRi) − β2

(x − xi)2 − (y − yi)2
R2
i

H(1)
0 (βRi)}

(6e)

The stress components in Cartesian coordinate system can be
transformed to those in polar coordinate system by the following
equations.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ur � ux cos θ + uy sin θ
uθ � −ux sin θ + uy cos θ

σrr � σxx cos
2 θ + σyysin

2 θ + σxy sin 2θ
σθθ � σxxsin

2 θ + σyycos
2 θ − σxy sin 2θ

σrθ � (σyy − σxx) sin θ cos θ + σxy cos 2θ

(7)

The traction-free boundary conditions are given by

σrr � σrθ � 0 for {x � a1 cos θ
y � a1 sin θ

and {x � d + a2 cos θ
y � a2 sin θ

(8)
Substituting Eqs 6a–6e and 7 into Eq. 8, the boundary

conditions can be rewritten in the matrix form.

HA � S (9)
where H is the Green’s influence matrix, A is the undermined
coefficients representing the source density, and S is the vector of
stresses induced by the incident wave.

In general, Eq. 9 is overdetermined, and only the approximate
solution can be obtained by the least square method.

A � [H′H]−1H′S (10)
The relative error is always determined as follows:

Err � |HA − S|/|S| (11)
where || is the Euclidean norm of a vector.

DSCF is an important parameter to evaluate structural
stability (Fan et al., 2019; Ming et al., 2019; Jang et al., 2020;
Li et al., 2020), which is defined as follows:

DSCF �
∣∣∣∣∣∣∣σθθσ0

∣∣∣∣∣∣∣ (12)

where σ0 is the stress intensity of the incident wave in the
direction of propagation, defined by σ0=μβ

2φ0, μ is the shear
modulus.

In order to get some general results, we need to define the
following dimensionless parameter: the normalized distance as
d*=d/a, where a is the maximum of a1 and a2. αa is another quite
important index, generally called the dimensionless wave

TABLE 2 | Summation of fitting functions with respect to αa.

d* Fitting Functions

Left Tunnel Right Tunnel

4 DSCF � 1.8993 exp(0.0427/αa) DSCF � 2.3377 exp(0.0276/αa)
10 DSCF � 1.7156 exp(0.0512/αa) DSCF � 1.9052 exp(0.0433/αa)
20 DSCF � 1.5824 exp(0.0604/αa) DSCF � 1.7350 exp(0.0513/αa)

TABLE 3 | Summation of fitting functions with respect to d*.

αa Fitting Functions

Left Tunnel Right Tunnel

0.1 DSCF � 2.7464 exp(0.4296/dp) DSCF � 3.0467 exp(0.4240/dp)
1 DSCF � 1.5929 exp(0.7684/dp) DSCF � 1.6944 exp(1.1368/dp)
2 DSCF � 1.5853 exp(0.9018/dp) DSCF � 1.7767 exp(1.0441/dp)

FIGURE 5 | DSCF fitting surfaces. (A) Left tunnel; (B) right tunnel.
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number, which equals 2π times the ratio of a to the wave length of
the incident wave.

ACCURACY ANALYSIS

In order to determine the calculation accuracy, we choose the case
of d*=4 for analysis. Table 1 shows the relative errors determined
by Eq. 11 for different θ0 when αa = 0.1 and 2. The numbers of
source points and observation points are generally different and
the previous is less.

It is found that the relative error decreases with the increasing
numbers of source and observation points. When the numbers of
source and observation points equal to 60 and 80, the maximum
relative errors are 1.014 × 10−4 for αa = 0.1 and 1.542 × 10−3 for αa
= 2, which are sufficiently accurate. When the numbers of source
and observation points equal to 80 and 100, the maximum
relative errors are 2.433 × 10−8 for αa = 0.1 and 2.328 × 10−6

for αa = 2, which become far smaller. Therefore, we believe that
80 source points and 100 observation points are suitable in the
following analysis.

RESULTS AND DISCUSSIONS

The distribution of DSCF around the twin tunnels under different
αa and θ0 is shown in Figure 2, where d* = 4.

The DSCF of the tunnels is approximately symmetrically
distributed about the incident direction for αa = 0.1, and it
becomes more complex with the increase of αa. It is obvious
that the distribution of DSCF around the twin tunnels changes
obviously with the variation of θ0. For the left tunnel, the peak
DSCF around the left tunnel at θ0 = 0° is smaller than that at others
for a fixed αa. For the right tunnel, the peak DSCF around the right
tunnel occurs at θ0 = 0° for αa = 0.1, while at others for αa = 0.5, 1,
and 2. This suggests that the incident angle θ0 of blasting P waves
has a significant influence on the distribution of DSCF.

For a fixed θ0, the peak DSCF at αa = 0.1 is obviously greater
than other cases, but the values at αa = 0.5, 1, and 2 do not change
apparently, which indicates that the peak DSCF decreases quickly
at first, then varies slower and slower, eventually tends to a
steady value.

Although the left tunnel is located at the incident side, the
DSCF of the right tunnel is larger under the same αa, which may
result from that the left tunnel deflects and focuses stress on, just
like a convex lens.

According to the above analysis, the DSCF of tunnels changes
with θ0. In a practical project, θ0 may be unknown and the upper
bound of DSCF for different θ0 has a critical reference value for
engineers. Figure 3 and Figure 4 show the variation of the
reference DSCF (i.e., 95% of peak DSCF values are less than the
given value) with αa and d* ,respectively.

It is found from Figure 3 that the peak DSCF around the left
tunnel is more discrete than the right tunnel and its decreasing

rate with αa for θ0 = 0o is obviously greater. The discreteness
reduces with the increasing value of d*. By using the least square
method, we found the variation of the reference DSCF can be well
fitted exponential functions. According to the fitting functions,
the attenuation of peak DSCF around the left tunnel is faster than
the right tunnel for a same d*.

The summation of fitting functions in Figure 3 is listed in
Table 2.

It is observed from Figure 4 that the peak DSCF for the left
tunnel fluctuates obviously at αa = 0.1, the variation tendency
becomes clearer at αa = 1 and 2. Besides, the smallest DSCF
occurs at θ0 = 90° for αa =0.1 while at θ0 = 0° for αa = 1 and 2. For
the right tunnel, the peak DSCF shows a wave-like change at αa =
0.1. When αa = 1 and 2, the variation trends of DSCF with d* are
similar, the peak value of DSCF occurs at θ0 = 30° or 45°.
Compared with the left tunnel, the distribution of peak DSCF
of the right tunnel is more concentrated.

It is also found that the variation of the reference DSCF can be
well fitted exponential functions. According to the fitting functions,
the attenuation of peak DSCF around the right tunnel is faster for a
constant αa while slower for a constant d* compared with that
around the left tunnel.

The summation of fitting functions in Figure 4 is listed in
Table 3.

Based on the above analysis, the attenuation of the reference
DSCFwith αa or d* can bewell expressed by exponential functions.
Considering the joint impact of αa and d*, the DSCF changing with
both αa and d* of the twin tunnels is shown in Figure 5.

The fitting surfaces for both tunnels are expressed in Eq. 13.

DSCF � { 1.5902 exp(0.6324/dp + 0.0533/αa) for the left tunnel
1.7241 exp(1.0277/dp + 0.0423/αa) for the right tunnel

(13)
It is found that the fitting function can well reflect the previous

results and αa has a greater influence on DSCF than d*. Eq. 13 can
be proposed as the reference function and engineers can quickly
obtain the critical value to prevent damage to such underground
structures.

CONCLUSION

In this article, the dynamic response of twin circular unlined
tunnels in an unbounded space subjected to blasting P waves is
studied. According to the research results, the following
conclusions can be obtained:

(1) The DSCF around twin circular unlined tunnels subjected to
blasting P waves is calculated by indirect boundary integral
equation method, which is of high precision.

(2) The incident angle θ0, normalized wave number αa, and
normalized distance d* all have a significant influence on the
distribution of DSCF around the twin tunnels.
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(3) For a constant d*, the peak DSCF around the right tunnel is
slightly greater than the left one.

(4) The referenceDSCF decreases exponentially with the increase of
αa or d*, and the corresponding fitting functions are proposed.
Compared with d*, the influence of αa is more distinct.
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