
Interval Prediction of Building
Foundation Settlement Using Kernel
Extreme Learning Machine
Jiahao Deng1, Ting Zeng2*, Shuang Yuan3, Honghui Fan4 and Wei Xiang4

1College of Computing and Digital Media, DePaul University, Chicago, IL, United States, 2Science and Technology for
Development Research Center of Sichuan Province, Chengdu, China, 3State Key Laboratory of Geo-Hazard Prevention andGeo-
Environment Protection, Chengdu University of Technology, Chengdu, China, 4Department of Plant Engineering, Sichuan College
of Architectural Technology, Deyang, China

Dynamic building foundation settlement subsidence threatens urban businesses and
residential communities. In the temporal domain, building foundation settlement is
often dynamic and requires real-time monitoring. Accurate quantification of the
uncertainty of foundation settlement in the near future is essential to advanced risk
management for buildings. Traditional models for predicting foundation settlement
mostly utilize the point estimates approach, which provides a single value that can be
close or distant from the actual one. However, such an estimation fails to quantify
estimation uncertainties. The interval prediction, as an alternative, can provide a
prediction interval for the ground settlement with high confidence bands. This study,
proposes a lower upper bound estimation approach integrated with a kernel extreme
learning machine to predict ground settlement levels with prediction intervals in the
temporal domain. A revised objective function is proposed to further improve the
interval prediction performance. In this study, the proposed method is compared to
the artificial neural network and classical extreme learning machine. Building settlement
data collected from Fuxing City, Liaoning Province in China was used to validate the
proposed approach. The comparative results show that the proposed approach can
construct superior prediction intervals for foundation settlement.

Keywords: foundation settlement, time-series analysis, prediction interval, kernel based extreme learning machine,
lube

INTRODUCTION

Ground settlement is a common geological phenomenon and poses a risk to local communities. The
major factor that induces ground settlement is soil liquefaction, which softens soil and causes
buildings to settle more than the soil (Feng et al., 2021; Li et al., 2022). Consequently, the shear
stresses and contact pressure imposed by buildings change due to soil softening and impact building
settlement levels (Karimi et al., 2018; Wei et al., 2020). Settlement is an incremental process and is
dynamic in the temporal domain; therefore, settlement prediction is important for managing the
potential risk of structural damage in buildings (Feng et al., 2018; Dong et al., 2019). Hence, it is
necessary to predict foundation settlement in the temporal domain.

In the literature review, soil physics, and numerical simulations have been widely discussed for
modeling ground settlement. Dashti et al. (2010) investigated the mechanism of building foundation
settlement and discovered that it is greatly dependent on the characteristics of earthquake motion,
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liquefiable soil, and buildings. Bullock et al. (2019) developed a
physics-based semi-empirical probabilistic model to assess the
risk of liquefaction-induced permanent building settlement using
50 case studies. According to Peduto et al. (2013), synthetic
aperture radar sensors used in advanced differential
interferometric techniques (generically called “DInSAR”), are
widely applied to compute settlement severity. The “DInSAR”
denotes a remote sensing technique that allows us to analyze
deformation phenomena by exploiting the phase difference
(usually referred to as interferogram) of SAR image pairs
relevant to an area under study. It allows the generation of
mean deformation velocity maps and displacement time series
from a data set of subsequently acquired SAR images (Gabriel
et al., 1989). Ng et al. (2015) performed a series of 3D centrifuge
model tests to investigate the ground settlement caused by
piggyback twin tunneling. Wang et al. (2019) conducted
shake-table tests to analyze the relationship between
foundation settlement and the degree of soil liquefaction.
Zhang et al. (2020) constructed a 3D fluid-solid coupling finite
element model to simulate the ground responses induced by
tunneling crossing the interface of water-bearing mixed ground.
Such approaches can be successfully applied to case-specific
geological conditions. However, ground subsidence is a
complex system with heterogeneous geological and
geomechanical characteristics. Hence, a more comprehensive
approach is needed to model and predict ground settlement
that can be applied to a variety of cases with heterogeneous
conditions.

Machine learning algorithms have demonstrated their
effectiveness and accuracy in modeling ground settlement (Li
et al., 2021b). Santos and Celestino (2008) utilized artificial neural
networks (ANNs) to predict tunnel-induced settlement in the
case study of the Säo Paulo subway construction. Gong et al.
(2014) conducted a site exploration and Monte Carlo simulation
to study tunnel-induced settlement in clays. Wei and Yang (2018)
predicted coal-mining induced ground settlement using an online
sequential extreme learning machine. Moosazadeh et al. (2019)
integrated the particle swarm optimization algorithm and
optimized an artificial neural network to predict the structural
damage of buildings caused by foundation settlement. Liu et al.
(2020) utilized data mining to select important predictor variables
and predict the foundation settlement grout holes in a building
basement. Recent research has demonstrated that machine
learning algorithms have the potential to become a
comprehensive and reliable approach for studying building
foundation settlement. Nevertheless, all machine learning
approaches utilize a point-estimation approach that does not
sufficiently address the uncertainties in the settlement process,
which is largely dynamic. An interval-based prediction approach
is a feasible solution to address this deficiency.

Among popular machine learning algorithms, the extreme
learning machine (ELM) (Huang et al., 2006) has attracted
significant attention in the machine learning community in
recent years (He et al., 2017a; Xu et al., 2019; Li et al., 2020;
Ouyang et al., 2020; Li et al., 2021a; Li 2022a). The ELM algorithm
is a single hidden-layer feedforward network that produces
promising predictive modeling results across various domains in

engineering. For example, Li et al. (2018) integrated Least Absolute
Shrinkage and Selection Operator -ELM with parametric copula
models to model and forecast geological landslide displacement in
the temporal domain. He and Kusiak. (2018) utilized a linear
ensemble of multiple ELMs to forecast wind turbine power
generation in the renewable energy sector. Ouyang et al. (2018)
developed a data-driven framework to automatically classify
mechanical error codes within wind turbines. Wei and Yang
(2018) first proposed using an online sequential ELM to predict
coal-mining induced ground subsidence. The Cox proportional
hazard regression model was used to screen the numerical and
categorical geological features and the OS-ELMwas used to predict
the maximum subsidence by inputting the selected features. The
above research demonstrates that ELMs outperforms both
regression and classification tasks.

Based on the above discussion, this study proposed, a data-
driven approach using a kernel extreme learning machine
(KELM) integrated with lower-upper bound estimation. First,
an interval prediction framework was utilized in the building
foundation settlement study and a lower upper bound estimation
(LUBE) method was adopted. Second, a KELMwas introduced in
this study and the selection of the kernels was optimized using a
cross-validation experiment. A comparative analysis was
performed against state-of-the-art approaches, such as ANNs
and classical ELMs. The computational results demonstrated that
the proposed approach is feasible and outperforms other methods
used for studying building foundation settlement.

The main contribution of this paper is as follows:

• First, it proposed an interval prediction framework to
estimate future foundation settlement with quantified
uncertainties. A LUBE method was applied in the study.

• Second, it utilized a KELM to enhance the predictive
performance of future foundation settlement. A
comparative analysis across multiple kernels was
conducted to select the optimal kernel for the case studies.

To realize this proposed approach, this paper is organized as
follows. Section 2 introduces the data collection process and
mathematically defines the underlying problem. Section 3
provides a detailed description of the methods used in this
study. Section 4 compares the performance of the models on
the geological data collected from the monitoring sites. Finally,
Section 5 concludes the study.

FOUNDATION SETTLEMENT AND
PROBLEM FORMULATION

Foundation Settlement
In northern China, building foundation settlement is a
common event and has resulted in millions of dollars of
economic losses and several casualties. The major cause of
foundation settlement can be attributed to soil liquefaction,
which changes the shear stress in the foundation soil (Dong
et al., 2020; Fan et al., 2022). This results in deviatoric
deformation within the liquefiable soil beneath the building
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foundation and volumetric strains due to localized drainage
during shaking (Lu et al., 2019). Consequently, the building
foundation will be unevenly settled and potentially have
dynamic structural movement as illustrated in Figure 1.

In engineering geology societies, engineers would construct physics
models to compute and forecast foundation settlement, depending on
the effect of gravity on the building (Cui et al., 2021; Zhou et al., 2021).
However, in practice, there is always a difference between the
theoretical settlement and actual settlement curves. As illustrated in
Figure 2, actual settlement monitoring and forecasting is a post-hoc
analysis that can benefit the risk management process of the building
structure.

Our case study area is in Fuxin City, Liaoning Province, China
where many buildings are between 20 and 30 years old, are
located in urbanized areas or suburbs, and experience uneven
foundation settlement. Natural changes in groundwater levels are
exacerbated by anthropogenic activities which have caused and
accelerated soil liquefaction, resulting in foundation settlement
(Fan and Cai 2021). In recent years, several meter-long cracks
have emerged in building foundations and at the lower level of
walls. The location of our study area and photographs of building
foundation settlement are shown in Figure 3.

Data Collection
The dataset was collected by experts from Liaoning Technical
University, School of Geomatics and their working institution is
near our case study area. They have spent several years monitoring
the settlement of multiple buildings in town and local suburb area.

A diagram illustrating the time-series of settlement is shown in
Figure 4. In the four building case studies, a monitoring point was
configured at the edge of the building. The location was set to 4m
above the ground level as the initial setting. Altitude was measured
from the ground level daily, using the absolute difference from the
previous day’s measurement as the incremental settlement change.
For each case study, two to three monitoring points were used to
avoid measurement errors from a single point.

The dataset contains the daily monitored foundation
settlement from January 2013 to April 2013. We selected the
point with the largest cumulative settlement for each case study.
In total, 120 time-series observations were obtained for each
building. The basic information of the dataset is provided in
Table 1, which includes the unit, building type, maximum daily
settlement, maximum cumulative settlement, mean daily
settlement, and standard deviation of the daily settlement.

Problem Formulation
The main objective of this research is to develop a data-driven
framework to predict the interval of possible foundation
settlement values in the temporal domain. For each case
study, the foundation settlement was monitored daily and

FIGURE 1 | Schematic diagram of building foundation settlement.

FIGURE 2 | Vertical diagram of the theoretical and actual settlement.
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FIGURE 3 | Case study area and settlement examples.

FIGURE 4 | Data collection process of foundation settlement.

TABLE 1 | Description of the foundation settlement dataset of the four case study buildings.

Dataset Unit Type Max daily
settlement

Cumulative
settlement

Mean daily
settlement

STD daily
settlement

Building A mm/
day

Hotel 0.043 3.235 0.025 0.009

Building B mm/
day

Residential 0.041 3.295 0.026 0.008

Building C mm/
day

Residential 0.019 1.728 0.014 0.010

Building D mm/
day

Commercial 0.047 3.405 0.028 0.006
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the target was to predict the incoming daily settlement value.
The underlying problem is formulated in Eq. 1:

xt � f(xt−1, xt−2, . . . , xt−k) (1)
Where xt represents the instant settlement in the future at
time t and xt−k denotes the historic lagged settlement based on
the actual measurement. To predict the settlement for a
period, this study adopted the sequential prediction
strategy introduced in Section 3.5.

MATERIALS AND METHODS

Auto-Correlation Analysis
The daily foundation settlement is a time-series data format in the
temporal domain. In many cases, the daily settlement always
reflects strong statistical patterns including seasonality and
autocorrelation (Zhou et al., 2018). The identification of such
patterns is essential to the construction of time-series prediction
models as it determines the optimal input size. Here, two
fundamental statistical indices are adopted to discover the
statistical autocorrelation patterns: the autocorrelation function
(ACF) and the partial autocorrelation function (PACF).

The ACF measures Pearson’s correlation coefficient
between the current settlement and its k-lagged historic
settlement series. Meanwhile, the PACF computes the
additional contribution from the lag-k series to the current
settlement, which is nonzero in most cases. The ACF and
PACF are computed using Eqs. 2, 3 (Ouyang et al., 2017):

ρk �
Cov(xt, xt−k)���������������

Var(xt)Var(xt−k)
√ (2)

∅k � corr(xt, xt−k|xt, xt−1, . . . , xt−k−1) (3)
where xt and xt−k are the current and k-lagged settlement series,
respectively, ρk is the ACF, and∅k is the PACF, which computes
the conditional correlation between xt and xt−k.

Kernel Extreme Learning Machine
An ELM (Huang et al., 2006) is a single hidden-layer feedforward
neural network. Compared with classical artificial neural
networks, it contains only three components: an input layer, a
single hidden layer, and an output layer. Given a pair of input/
output data samples (xi, yi), the classical ELM can be formulated
in Eq. 4 (Wei and Yang 2018):

∑N
i�1
βih(xi) � yi (4)

Where βi represents the weight vector that connects the jth
hidden neuron to the output neuron. The h(xi) serves as a
general mapping function that maps the input features into
latent space (He and Kusiak. 2018). Hence, a compact form of
an ELM can be written as Eq. 5:

Hβ � y (5)
Where H and β are expressed as follows:

H � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h1(x1) / hL(x1)

..

.
1 ..

.

h1(xN) / hL(xN)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

β � [β1, β2, . . . , βN] (7)
To obtain the optimal solution for the ELM, the least-squares

solution can be computed using Eq. 8 as follows:

~β � H†y (8)
Where † denotes the Moore-Penrose generalized inverse.
Figure 5A depicts the classical structure of the ELM algorithm.

In addition to the classical ELM, owing to unknown/
unspecified feature mapping, we cannot calculate the Moore-
Penrose inverse in Eq. 8. Hence, a kernel version of ELM can be
obtained by defining the kernel matrix as follows:

K � HHT (9)
Kij � h(xi)h(xj)T � k(xi, xj) (10)

WhereK is the kernel matrix. The output function of KELM for a
new testing observation can be computed using Eq. 11 as follows:

S � h(x̂)~β � h(x̂)HT(HHT)−1y �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k(~x, x1)

..

.

k(~x, xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

K†y (11)

FIGURE 5 | Schematic diagram of kernel extreme learning machine.
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In this study, we examined the effectiveness of two popular
kernels, the Gaussian kernel Eq. 12 and polynomial kernel Eq. 13,
which are expressed as:

k1(xi, xj) � exp( − ||xi − xj||
2σ2

) (12)

k2(xi, xj) � (xTi xj)d (13)
Where σ is the kernel width and d denote the polynomial degree.
An explicit interpretation of the effect of the kernel function is
presented in Figure 5B.

Prediction Interval Formulation Using the
Lower Upper Bound Estimation Method
Prediction intervals (PIs) are widely used to quantify the
uncertainty in prediction models (Li 2022b). Given an input
feature vector xi, a PI with a confidence level of 100% (1-α)
constructed for the prediction target yi, can be expressed in (14)
as follows:

Î
(α)(xi) � [L̂(α)(xi), Û(α)(xi)] (14)

Where α denotes the quantile of the standard normal distribution
and L̂

(α)(xi) and Û
(α)(xi) are the lower and upper bounds of the

ith PI, respectively, as illustrated in Figure 5A. The predicted
target settlement is expected to be covered by Î

(α)(xi) with a
coverage probability expressed by Eq. 15:

P(L̂(α)(xi)≤yi ≤ Û
(α)(xi) � 100(1 − α)% (15)

In this study, the LUBE method was adopted to customize the
KELMmodel as presented in Section 3.2. PIs were constructed as
outputs for the KELM algorithm. As shown in Figure 5 the
proposed KELM contains two output neurons. The upper and
lower bounds can be formulated in Eqs. 16, 17 as follows:

Û
(α)(xi) � max{oj1, oj2} (16)

L̂
(α)(xi) � min{oj1, oj2} (17)

Where xj denotes the jth input and oj1 and oj2 are the lower and
upper outputs for the jth input sample, respectively, as shown in
Figure 6.

Training and Testing Strategies
In this study, the historic lagged settlement values were selected as
inputs and the future settlement value as the output. We collected
120 settlement observations from January 2013 to April 2013
from each case study. Ninety observations between January and
March 2013 were used as the training/validation set and the
remaining 30 observations in April 2013 were used as the testing
dataset.

To predict the settlement, a sequential prediction strategy was
adopted to predict the periodic foundation settlement, as shown
in Figure 6.

As shown in Figure 6, the inputs and outputs are defined in
the time-series prediction model. The k historic values of the
settlements were used as inputs in the prediction model. The
optimal value of k is determined by the autocorrelation analysis
considering the computed ACFs and PACFs. A single settlement
at time t is the output of the prediction model. To predict the
settlement at time t+1, the predicted settlement at time t and its
k-lagged historic settlement values were selected as the new
inputs. The output was the settlement at time t+1. After
training it repeatedly in a sequential manner, the periodic
incoming settlement was predicted and compared with ground
truth data for model evaluation.

Evaluation Metric and Loss Function
In this study, two widely used metrics, namely prediction interval
coverage probability (PICP) and prediction interval normalized
average width (PINAW) (Ouyang et al., 2019) were used to
measure the performance of prediction intervals. The PICP
and PINAW can be computed using Eqs 18, 19:

PICP � ∑N
i�1ci
N

(18)

PINAW � ∑N
i�1[L̂(α)(xi), Û(α)(xi)]

ymax − ymin
(19)

Where N represents the number of observations and ymax and
ymin are the minimum and maximum values of the true target,
respectively. Variable ci is a binary indicator function that
determines whether the target falls into the limit of PI which
can be expressed in Eq. 20 as follows:

ci � { 1 yi ∈ [L̂(α)(xi), Û(α)(xi)]
0 yi ∉ [L̂(α)(xi), Û(α)(xi)] (20)

In general, the PICP evaluates the probability that the
prediction target falls within the bound between the upper and
lower limits. The value of PICP ranges between 0 and 1. The
PINAW denotes the mean width of the PIs. In most cases, high

FIGURE 6 | Sequential prediction strategy.
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PICP values and low PINAW values indicate high-quality PIs
(Sun et al., 2017).

The PICP and PINAW are two conflicting properties. To
maintain a comprehensive balance between the two metrics, a
cost function, namely the coverage width-based criterion (CWC),
was used in this study. The CWC can be computed using Eq. 21.

CWC � PINAW(1 + γ(PICP)e−η(PICP−μ)) (21)

Where the parameters η and μ are used to define the penalty
term e−η(PICP−μ) to maintain the balance between PINAW and
PICP and γ() is used to reduce the risk of the PI constraint
violation during the training process. When predicting
building foundation settlement, it is difficult to adjust the
optimal balance between the coverage of the forecast
interval and the interval width under different settlement
speeds through η. Thus, a revised version of the CWC is
proposed in this study to increase the power of the penalty
parameter, as expressed in Eq. 22:

CWCproposed � (α + β pPINAW)(1 + γ(PICP)e−η(PICP−μ))
(22)

Where parameter β linearly amplifies the PINAW and parameter
α is used to avoid disappearance if CWCproposed is too small. In
this research, the CWCproposed is used as the objective function to
train the KELM following the LUBE approach.

FIGURE 7 | Computed ACFs and PACFs for the four cases study time-series.

TABLE 2 | List of hyperparameters tested for ANN, ELM, and KELM.

Algorithm Hyperparameter settings

ANN Hidden layer = 1, 2, 3, 4, 5
Hidden neuron = 5, 10, 15, 20, 25, 30, 35, 40

ELM Hidden neuron = 5, 10, 15, 20, 25, 30, 35, 40
KELM Kernel = gaussian, polynomial, hyperbolic tangent, wavelet

Hidden neuron = 5, 10, 15, 20, 25, 30, 35, 40
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Benchmarking Methods
In this research, the ANN and classical ELM were selected as
benchmarking algorithms for the comparative analysis. The
classical ELM is described in detail in Section 3.2, where the
only difference compared with the KELM is the kernel function
utilized for feature mapping.

The ANN is a non-parametric algorithm developed based on
cognitive learning processes and is capable of accurately
predicting patterns that are not part of the training dataset.
The structure of the ANN algorithm permits accurate
mapping between the input and output in a highly nonlinear
system (He et al., 2017b).

The neuron is the most essential element that functions within
an ANN. With multiple neurons stacked in the hidden layers,
nonlinear mapping between the input features and output can be
expressed as Eq. 23:

y � φ⎛⎝∑n

i�1wixi + b⎞⎠ (23)

Where xj represents the jth input feature, wj is the weight
associated with the jth input, b is the bias, and φ is the
activation function. In this study, the ANN was also
customized using the LUBE method and the sigmoid
activation function.

RESULTS

Auto-Correlation Analysis
The selection of the optimal input feature set affect the
performance of the data-driven models. Inspired by the
ARIMA model, the ACF and PACF are computed between the
current settlement and its k-lagged historic settlement to
investigate the autocorrelation and seasonality within the
dataset. The combination of the ACF and PACF results
determines the final input feature sets.

As illustrated in Figure 7, the ACFs and PACFs were
computed for the four time-series datasets for the four case
study buildings listed in Table 1. The Ljung-Box test statistic
was used to measure the statistical significance of the
correlation coefficients. As shown in Figure 7, the blue
lines serve as the threshold of the Ljung-Box test statistic
and any lagged series with coefficients outside the band
region are considered significant and thus, statistically
impact the current settlement.

Based on the computational results of the ACFs and PACFs,
the optimal number of lagged series that can be selected as inputs
for the time-series model for building A’s settlement data is 13.
For buildings B and C, the optimal numbers of lagged series are 7
and 19, respectively. In addition, the number of lagged series
selected as inputs was 16 for building D.

FIGURE 8 | Training KELM on the four case study buildings using original CWC.

FIGURE 9 | Training KELM on the four case study buildings using proposed CWC.
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Hyper-Parameter Optimization
After the selection of the optimal input series, three algorithms,
including the ANN, classical ELM, and KELM were selected for
training and validating the time-series prediction model. Tuning
the hyperparameters is an essential component of the process to
ensure that the models can achieve optimal prediction
performance.

Table 2 lists the number of hyperparameters for the three
algorithms and the various initial settings of the parameters. For
the ANN algorithm, two hyperparameters required optimization:
the number of hidden layers and the number of hidden neurons
in each layer. In the classical ELM algorithm, the number of
hidden neurons within the hidden layer was the only
hyperparameter that required optimization. The
hyperparameters of the KELM included the number of hidden
neurons in the hidden layer and the selection of kernel functions

for feature mapping. The PICP was selected as the measurement
metric for the selection of optimal hyperparameter settings for the
three algorithms listed above.

According to the computational results, the ANN algorithm
with two hidden layers and 10 hidden neurons in each layer, had
the smallest PICP value. For the classical ELM, the optimal
number of hidden neurons was 15. For the KELM algorithm,
the best performing kernel function was the Gaussian kernel and
the optimal number of hidden neurons was 15. The training of the
optimal setting of the KELM for the building settlement time-
series data of all four cases is presented in Figures 8, 9.

As shown in Figure 8, the original CWC decreased as the
number of training epochs increased. For the four case studies,
convergence of the original CWC occurred between 50 and 100
epochs. In comparison, as illustrated in Figure 9, the proposed
CWC converged faster with a sharper gradient. This

FIGURE 10 | Prediction intervals constructed for the testing dataset using KELM.

TABLE 3 | PICP and PINAW of ANN, ELM, and KELM on the testing dataset.

Algorithm Building A Building B Building C Building D

PICP (%) PINAW (%) PICP (%) PINAW (%) PICP (%) PINAW (%) PICP (%) PINAW (%)

ANN 76.7 50.1 86.7 27.7 73.3 26.7 93.3 25.1
ELM 80.0 49.7 90.0 30.8 83.3 30.3 100.0 25.6
KELM 86.7 27.9 90.0 21.5 93.3 19.2 100.0 24.9
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phenomenon can be attributed to parameter β linearly amplifying
the PINAW and thus accelerating the convergence process. For
all four buildings, the convergence of the proposed CWC
occurred around the 50th epoch, which was comparatively
faster than the original CWC, displayed in Figure 8. The
experimental results confirm the superiority of the proposed
CWC over the original CWC in training the KELM using the
LUBE approach.

Foundation Settlement Prediction
Based on the obtained optimal settings for the hyperparameters,
the prediction of the testing data for the four time-series
settlements in April 2013 was performed. In this research, the
prediction of the testing dataset was not evident, therefore, we
adopted the sequential prediction strategy, as illustrated in
Figure 6, to predict the daily incremental settlement of the
four buildings. The prediction intervals were then overlaid
with the actual measured incremental settlement as shown in
Figure 10.

As illustrated in Figure 10, prediction errors existed between
the actual measured settlement and the predicted settlement. If
we consider the systematic uncertainty in the prediction process,
PIs can be constructed and the majority of the actual settlements
fall within the 95% confidence level PIs according to the
prediction outcome. However, since a few outliers fell outside
the PIs, we used the overall measurement metrics (i.e., PICP and
PINAW) to compute the overall prediction performance, as
presented in Table 3.

As listed in Table 3, the PICP of the KELM integrated with the
LUBE method was computed for the ANN, ELM, and KELM. In
the settlement time-series of the four buildings, the KELM
outperformed all the algorithms that were tested and produced
the highest mean PICPs and lowest mean PINAWs. Based on the
intrinsic formulation of these two metrics, the higher values of
PICP and lower values of PINAW indicate more accurate and
reliable interval prediction results. Hence, the effectiveness and
robustness of the prediction power of the KELM with respect to
interval prediction was demonstrated.

CONCLUSION

To predict building foundation settlement, a novel data-driven
framework for interval prediction of time-series settlement
prediction was presented in this study. First, the LUBE
approach was applied to construct prediction intervals.

Second, a kernel extreme learning machine was customized for
the interval prediction task and predicted future settlement.
Third, a revised version of the CWC was proposed to further
improve the interval prediction performance. Four case studies in
Liaoning Province were selected for this study and the daily
settlement was monitored in the temporal domain. The
computational results validated the superiority of the proposed
algorithm by comparing it with benchmarking methods,
including ANN and classical ELM.

The proposed approach is feasible to use this approach to
monitor and assess building structural risks. The engineers can
embed the proposed algorithm into the chip of the monitoring
equipment and the predictions can be made in real-time. The
settlement can be estimated in-advance and the risk analysis can
be conducted by field engineers.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

JD conceptualized the study, contributed to the study
methodology, and wrote the original draft. TZ contributed to
the study methodology, data curation and investigation and data
analysis. JD and SY contributed to software and formal analysis.
HF and WX contributed to investigation. All authors have read
and agreed to the published version of the manuscript.

FUNDING

The study was supported by the Key Program of Science and
Technology Planning Project of Deyang, China (Grant
No.2018SZY108).

ACKNOWLEDGMENTS

We are also immensely grateful to the data collection from R. Sun
from Sai Ding Engineering Co., Ltd. (formerly The Second Design
Institute of the Ministry of Chemical Industry).

REFERENCES

Bullock, Z., Karimi, Z., Dashti, S., Porter, K., Liel, A. B., and Franke, K.W. (2019). A
Physics-Informed Semi-empirical Probabilistic Model for the Settlement of
Shallow-Founded Structures on Liquefiable Ground. Géotechnique 69 (5),
406–419. doi:10.1680/jgeot.17.p.174

Cui, S., Pei, X., Jiang, Y., Wang, G., Fan, X., Yang, Q., et al. (2021). Liquefaction
within a Bedding Fault: Understanding the Initiation and Movement of the
Daguangbao Landslide Triggered by the 2008 Wenchuan Earthquake (Ms =
8.0). Eng. Geol. 295, 106455. doi:10.1016/j.enggeo.2021.106455

Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., andWilson, D. (2010). Centrifuge
Testing to Evaluate and Mitigate Liquefaction-Induced Building Settlement
Mechanisms. J. Geotech. Geoenviron. Eng. 136 (7), 918–929. doi:10.1061/(asce)
gt.1943-5606.0000306

Dong, S., Feng, W., Yin, Y., Hu, R., Dai, H., and Zhang, G. (2020).
Calculating the Permanent Displacement of a Rock Slope Based on
the Shear Characteristics of a Structural Plane under Cyclic Loading.
Rock Mech. Rock Eng. 53 (10), 4583–4598. doi:10.1007/s00603-020-
02188-y

Dong, S., Yi, X., and Feng, W. (2019). Quantitative Evaluation and Classification
Method of the Cataclastic Texture Rock Mass Based on the Structural Plane

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 93977210

Deng et al. Interval Prediction of Foundation Settlement

https://doi.org/10.1680/jgeot.17.p.174
https://doi.org/10.1016/j.enggeo.2021.106455
https://doi.org/10.1061/(asce)gt.1943-5606.0000306
https://doi.org/10.1061/(asce)gt.1943-5606.0000306
https://doi.org/10.1007/s00603-020-02188-y
https://doi.org/10.1007/s00603-020-02188-y
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Network Simulation. Rock Mech. Rock Eng. 52 (6), 1767–1780. doi:10.1007/
s00603-018-1635-6

Fan, Z., and Cai, J. (2021). Effects of Unidirectional In Situ Stress on Crack
Propagation of a Jointed Rock Mass Subjected to Stress Wave. Shock Vib. 2021,
1. doi:10.1155/2021/5529540

Fan, Z., Zhang, J., Xu, H., and Wang, X. (2022). Transmission and Application of a
P-Wave across Joints Based on a Modified G-λ Model. Int. J. Rock Mech. Min.
Sci. 150, 104991. doi:10.1016/j.ijrmms.2021.104991

Feng, W., Dong, S., Wang, Q., Yi, X., Liu, Z., and Bai, H. (2018). Improving the
Hoek-Brown Criterion Based on the Disturbance Factor and Geological
Strength Index Quantification. Int. J. Rock Mech. Min. Sci. 108, 96–104.
doi:10.1016/j.ijrmms.2018.06.004

Feng, W., Lu, Z., Yi, X., and Dong, S. (2021). A Dynamic Method to Predict the
Earthquake-Triggered Sliding Displacement of Slopes. Math. Problems Eng.
2021, 1. doi:10.1155/2021/4872987

Gabriel, A. K., Goldstein, R. M., and Zebker, H. A. (1989). Mapping Small Elevation
Changes over Large Areas: Differential Radar Interferometry. J. Geophys. Res.
94 (B7), 9183–9191. doi:10.1029/jb094ib07p09183

Gong, C., Zeng, G., Ge, L., Tang, X., and Tan, C. (2014). MinimumDetectable Activity for
NaI(Tl) Airborne γ-ray Spectrometry Based on Monte Carlo Simulation. Sci. China
Technol. Sci. 57, 1840–1845. doi:10.1007/s11431-014-5553-x

He, Y., Deng, J., and Li, H. (2017a). Short-term Power Load Forecasting with Deep
Belief Network and Copula Models. 9th Int. Conf. intelligent human-machine
Syst. Cybern. (IHMSC), 1, 191–194. doi:10.1109/ihmsc.2017.50

He, Y., Kusiak, A., Ouyang, T., and Teng, W. (2017b). Data-driven Modeling of
Truck Engine Exhaust Valve Failures: a Case Study. J. Mech. Sci. Technol. 31 (6),
2747–2757. doi:10.1007/s12206-017-0518-1

He, Y., and Kusiak, A. (2018). Performance Assessment of Wind Turbines: Data-
DerivedQuantitativeMetrics. IEEE Trans. Sustain. Energy 9 (1), 65–73. doi:10.1109/
tste.2017.2715061

Huang, G. B., Zhu, Q. Y., and Siew, C. K. (2006). Extreme LearningMachine: Theory and
Applications. Neurocomputing 70 (1-3), 489–501. doi:10.1016/j.neucom.2005.12.126

Karimi, Z., Dashti, S., Bullock, Z., Porter, K., and Liel, A. (2018). Key Predictors of
Structure Settlement on Liquefiable Ground: a Numerical Parametric Study.
Soil Dyn. Earthq. Eng. 113, 286–308. doi:10.1016/j.soildyn.2018.03.001

Li, H., Deng, J., Feng, P., Pu, C., Arachchige, D. D. K., and Cheng, Q. (2021a). Short-Term
Nacelle Orientation Forecasting Using Bilinear Transformation and ICEEMDAN
Framework. Front. Energy Res. 9, 780928. doi:10.3389/fenrg.2021.780928

Li, H., Deng, J., Yuan, S., Feng, P., and Arachchige, D. D. K. (2021b). Monitoring and
Identifying Wind Turbine Generator Bearing Faults Using Deep Belief Network and
EWMA Control Charts. Front. Energy Res. 9, 799039. doi:10.3389/fenrg.2021.799039

Li, H., He, Y., Xu, Q., Deng, j., Li, W., and Wei, Y. (2022). Detection and
Segmentation of Loess Landslides via Satellite Images: a Two-phase
Framework. Landslides 19, 673–686. doi:10.1007/s10346-021-01789-0

Li, H. (2022b). SCADA Data Based Wind Power Interval Prediction Using LUBE-
Based Deep Residual Networks. Front. Energy Res. 10, 920837. doi:10.3389/
fenrg.2022.920837

Li,H. (2022a). Short-termWindPowerPrediction via Spatial TemporalAnalysis andDeep
Residual Networks. Front. Energy Res. 10, 920407. doi:10.3389/fenrg.2022.920407

Li, H., Xu, Q., He, Y., and Deng, J. (2018). Prediction of Landslide Displacement
with an Ensemble-Based Extreme Learning Machine and Copula Models.
Landslides 15 (10), 2047–2059. doi:10.1007/s10346-018-1020-2

Li, H., Xu, Q., He, Y., Fan, X., and Li, S. (2020). Modeling and Predicting Reservoir
Landslide Displacement with Deep Belief Network and EWMAControl Charts:
a Case Study in Three Gorges Reservoir. Landslides 17 (3), 693–707. doi:10.
1007/s10346-019-01312-6

Liu, Q., Xiao, F., and Zhao, Z. (2020). Grouting Knowledge Discovery Based on
Data Mining. Tunn. Undergr. Space Technol. 95, 103093. doi:10.1016/j.tust.
2019.103093

Lu, Z., Yao, A., Su, A., Ren, X., Liu, Q., and Dong, S. (2019). Re-recognizing the
Impact of Particle Shape on Physical and Mechanical Properties of Sandy Soils:
a Numerical Study. Eng. Geol. 253, 36–46. doi:10.1016/j.enggeo.2019.03.011

Moosazadeh, S., Namazi, E., Aghababaei, H., Marto, A., Mohamad, H., and
Hajihassani, M. (2019). Prediction of Building Damage Induced by
Tunnelling through an Optimized Artificial Neural Network. Eng. Comput.
35, 579–591. doi:10.1007/s00366-018-0615-5

Ng, C. W. W., Hong, Y., and Soomro, M. A. (2015). Effects of Piggyback Twin
Tunnelling on a Pile Group: 3D Centrifuge Tests and Numerical Modelling.
Géotechnique 65 (1), 38–51. doi:10.1680/geot.14.p.105

Ouyang, T., He, Y., and Huang, H. (2018). MonitoringWind Turbines’Unhealthy Status:
A Data-Driven Approach. IEEE Trans. Emerg. Top. Comput. Intell. 3 (2), 163

Ouyang, T., He, Y., Li, H., Sun, Z., and Baek, S. (2019). Modeling and Forecasting Short-
Term Power Load with Copula Model and Deep Belief Network. IEEE Trans. Emerg.
Top. Comput. Intell. 3 (2), 127–136. doi:10.1109/tetci.2018.2880511

Ouyang, T., Huang, H., He, Y., and Tang, Z. (2020). Chaotic Wind Power Time
Series Prediction via Switching Data-Driven Modes. Renew. Energy 145,
270–281. doi:10.1016/j.renene.2019.06.047

Ouyang, T., Kusiak, A., andHe, Y. (2017). PredictiveModel of Yaw Error in aWind
Turbine. Energy 123, 119–130. doi:10.1016/j.energy.2017.01.150

Peduto, D., Arena, L., Calvello, M., Anzalone, R., and Cascini, L. (2013). Evaluating
the state of activity of slow-moving landslides by means of DInSAR data and
statistical analyses L’évaluation de l’état de l’activité de lents glissements de
terrain par l’intermédiaire des données DInSAR et des analyses statistiques. XVI
Ecsmge Geotechnical Engineering for Infrastructure & Development

Santos, O. J., Jr, and Celestino, T. B. (2008). Artificial Neural Networks Analysis of
São Paulo Subway Tunnel Settlement Data. Tunn. Undergr. space Technol. 23
(5), 481–491. doi:10.1016/j.tust.2007.07.002

Sun, Z., He, Y., Gritsenko, A., Lendasse, A., and Baek, S. (2017). Deep Spectral
Descriptors: Learning the Point-wise Correspondence Metric via Siamese Deep
Neural Networks. arXiv preprint arXiv:1710.06368.

Wang, X., Ye, A., Shang, Y., and Zhou, L. (2019). Shake-table Investigation of
Scoured RC Pile-group-supported Bridges in Liquefiable and Nonliquefiable
Soils. Earthq. Engng Struct. Dyn. 48 (11), 1217–1237. doi:10.1002/eqe.3186

Wei, Y., Xu, Q., Yang, H., Li, H., and Kou, P. (2020). Dynamic Behavior and
Deposit Features of Debris Avalanche in Model Tests Using High Speed
Photogrammetry. Sustainability 12, 6578. doi:10.3390/su12166578

Wei, Y., and Yang, C. (2018). PredictiveModeling ofMining InducedGround Subsidence
with Survival Analysis and Online Sequential Extreme Learning Machine. Geotech.
Geol. Eng. 36 (6), 3573–3581. doi:10.1007/s10706-018-0558-z

Xu, Q., Li, H., He, Y., Liu, F., and Peng, D. (2019). Comparison of Data-Driven
Models of Loess Landslide Runout Distance Estimation. Bull. Eng. Geol.
Environ. 78 (2), 1281–1294. doi:10.1007/s10064-017-1176-3

Zhang, Z., Huang, M., Zhang, C., Jiang, K., and Bai, Q. (2020). Analytical
Prediction of Tunneling-Induced Ground Movements and Liner
Deformation in Saturated Soils Considering Influences of Shield Air
Pressure. Appl. Math. Model. 78, 749–772. doi:10.1016/j.apm.2019.10.025

Zhou, C., Ding, L., Zhou, Y., and Luo, H. (2018). Topological Mapping and
Assessment of Multiple Settlement Time Series in Deep Excavation: a
Complex Network Perspective. Adv. Eng. Inf. 36, 1–19. doi:10.1016/j.aei.
2018.02.005

Zhou, J., Wei, J., Yang, T., Zhang, P., Liu, F., and Chen, J. (2021). Seepage
Channel Development in the Crown Pillar: Insights from Induced
Microseismicity. Int. J. Rock Mech. Min. Sci. 145, 104851. doi:10.1016/j.
ijrmms.2021.104851

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Deng, Zeng, Yuan, Fan and Xiang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 93977211

Deng et al. Interval Prediction of Foundation Settlement

https://doi.org/10.1007/s00603-018-1635-6
https://doi.org/10.1007/s00603-018-1635-6
https://doi.org/10.1155/2021/5529540
https://doi.org/10.1016/j.ijrmms.2021.104991
https://doi.org/10.1016/j.ijrmms.2018.06.004
https://doi.org/10.1155/2021/4872987
https://doi.org/10.1029/jb094ib07p09183
https://doi.org/10.1007/s11431-014-5553-x
https://doi.org/10.1109/ihmsc.2017.50
https://doi.org/10.1007/s12206-017-0518-1
https://doi.org/10.1109/tste.2017.2715061
https://doi.org/10.1109/tste.2017.2715061
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.soildyn.2018.03.001
https://doi.org/10.3389/fenrg.2021.780928
https://doi.org/10.3389/fenrg.2021.799039
https://doi.org/10.1007/s10346-021-01789-0
https://doi.org/10.3389/fenrg.2022.920837
https://doi.org/10.3389/fenrg.2022.920837
https://doi.org/10.3389/fenrg.2022.920407
https://doi.org/10.1007/s10346-018-1020-2
https://doi.org/10.1007/s10346-019-01312-6
https://doi.org/10.1007/s10346-019-01312-6
https://doi.org/10.1016/j.tust.2019.103093
https://doi.org/10.1016/j.tust.2019.103093
https://doi.org/10.1016/j.enggeo.2019.03.011
https://doi.org/10.1007/s00366-018-0615-5
https://doi.org/10.1680/geot.14.p.105
https://doi.org/10.1109/tetci.2018.2880511
https://doi.org/10.1016/j.renene.2019.06.047
https://doi.org/10.1016/j.energy.2017.01.150
https://doi.org/10.1016/j.tust.2007.07.002
https://doi.org/10.1002/eqe.3186
https://doi.org/10.3390/su12166578
https://doi.org/10.1007/s10706-018-0558-z
https://doi.org/10.1007/s10064-017-1176-3
https://doi.org/10.1016/j.apm.2019.10.025
https://doi.org/10.1016/j.aei.2018.02.005
https://doi.org/10.1016/j.aei.2018.02.005
https://doi.org/10.1016/j.ijrmms.2021.104851
https://doi.org/10.1016/j.ijrmms.2021.104851
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

	Interval Prediction of Building Foundation Settlement Using Kernel Extreme Learning Machine
	Introduction
	Foundation Settlement and Problem Formulation
	Foundation Settlement
	Data Collection
	Problem Formulation

	Materials and Methods
	Auto-Correlation Analysis
	Kernel Extreme Learning Machine
	Prediction Interval Formulation Using the Lower Upper Bound Estimation Method
	Training and Testing Strategies
	Evaluation Metric and Loss Function
	Benchmarking Methods

	Results
	Auto-Correlation Analysis
	Hyper-Parameter Optimization
	Foundation Settlement Prediction

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


