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The distribution characteristics and formation of marine anoxic conditions through the Late
Ordovician–Early Silurian (O–S) remain poorly resolved despite their importance in the
preservation of sedimentary organic matter and the formation of black shale. In this study,
the major, trace, and pyrite δ34S (δ34Spy) contents of 36 shale samples at the edge of the
southwest depocenter of the Upper Yangtze Basin (Tianlin and Changhebian sections)
were analyzed to understand the redox conditions, terrigenous clastic inputs, and primary
productivity changes. The iron speciation and enrichment factor of U andMo show that the
range of anoxic conditions gradually expanded from the sedimentation center to the edge
during the late Katian stage, peaked in the early Hirnantian stage followed by a rapid
decrease, and expanded again during the early Rhuddanian stage. Comprehensive index
analysis showed that the increase of terrigenous clastic input and the relative decrease of
primary productivity due to tectonism and sea level change controlled the transformation of
the water column from anoxic, especially euxinic, to suboxic-oxic conditions. This is
reflected in the correlation between paleo-salinity, δ34Spy, chemical index of alteration, and
the organic carbon accumulation rate. This work emphasizes the control of terrigenous
clastic input and sulfate availability on the transformation of marine redox conditions during
the O-S period in semi-restricted basins.

Keywords: redox conditions, paleo-salinity, accumulation rate of organic matter, upper yangtze basin, late
ordovician–early silurian

1 INTRODUCTION

The transition from Late Ordovician to Early Silurian (O–S) was an important event in Earth’s
history. This period witnessed several occurrences, such as the Hirnantian glaciation, biological
extinction and recovery, structural changes, volcanic activities, and marine environmental changes
(Adachi et al., 1986; Brenchley et al., 2003; Yan et al., 2009; Delabroye and Vecoli, 2010; Yan et al.,
2010; Algeo et al., 2016). Among them was the widespread deposition of black shales, which are an
important source of shale gas (Luening et al., 2000; Zou et al., 2016). Such widespread formation of

Edited by:
Dongdong Liu,

China University of Petroleum, Beijing,
China

Reviewed by:
Haichao Wang,

Xinjiang University, China
Jienan Pan,

Henan Polytechnic University, China

*Correspondence:
Chaoyong Wang

wangcy@cumt.edu.cn

Specialty section:
This article was submitted to

Economic Geology,
a section of the journal

Frontiers in Earth Science

Received: 02 May 2022
Accepted: 27 May 2022
Published: 04 July 2022

Citation:
Dong Z, Wang Z, Zhang W, Cheng S,
Fu X and Wang C (2022) Distribution
Characteristics and Genesis of Marine
Anoxic Conditions in the Southwest of
the Upper Yangtze Basin During the

Late Ordovician–Early Silurian,
South China.

Front. Earth Sci. 10:934488.
doi: 10.3389/feart.2022.934488

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9344881

ORIGINAL RESEARCH
published: 04 July 2022

doi: 10.3389/feart.2022.934488

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.934488&domain=pdf&date_stamp=2022-07-04
https://www.frontiersin.org/articles/10.3389/feart.2022.934488/full
https://www.frontiersin.org/articles/10.3389/feart.2022.934488/full
https://www.frontiersin.org/articles/10.3389/feart.2022.934488/full
https://www.frontiersin.org/articles/10.3389/feart.2022.934488/full
https://www.frontiersin.org/articles/10.3389/feart.2022.934488/full
http://creativecommons.org/licenses/by/4.0/
mailto:wangcy@cumt.edu.cn
https://doi.org/10.3389/feart.2022.934488
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.934488


black shales can be attributed to primary productivity and a
marine anoxic environment (namely paleoproductivity and
preservation modes) (Sageman et al., 2003; Gallego-Torres
et al., 2007; Mort et al., 2007; Ge et al., 2020). According to
the productivity model, the advancement and extinction of
glaciers promoted the release of terrestrial nutrients (e.g.,
phosphorus and iron) into the ocean causing numerous
oceanic phytoplankton to flourish (Saltzman and Young,
2005). Higher primary productivity and organic carbon sinks
contributed to the formation of black shale. The preservation
model suggests that anoxic water effectively slowed the
consumption of organic matter (OM), increased its burial flux,
and promoted the formation of black shale (Algeo and Maynard,
2004). Studies have shown that the anoxic water column may be
the main controlling factor in black shale formation and
biological extinction as compared to higher primary
productivity (Hammarlund et al., 2012; Gomes and Hurtgen,
2015; Liu et al., 2016; Zou et al., 2018; Li et al., 2019; Li N. et al.,
2021; Pan et al., 2021; Wang et al., 2021).

The black shales of the Upper Yangtze Basin, South China,
formed between Late Ordovician [Katian, Wufeng Formation,
(WF)] and Silurian [Telychian, Longmaxi Formation, (LMX)].
Existing studies on lithofacies paleogeography show that semi-
limited and limited water environments appeared in the
northeast and southwest Upper Yangtze Basin owing to
tectonism and sea-level fluctuations, respectively, forming two
relatively independent depocenters, which controlled the
transformation of redox conditions in the water column (Liang
et al., 2009). Zou et al. (2018) and Li et al. (2019) emphasized the
controlling effect of sulfate availability on the development of anoxic
water, especially euxinic conditions from different depths and
offshore distances. Li Y. et al. (2021) highlighted the contribution
of volcanism to primary productivity and the preservation of OM.
However, the mechanism of this control is unclear. In addition, the
influence of frequent volcanic activity and extensive glaciers on the
transformation of redox conditions in the water column of the
Upper Yangtze Basin has not been studied comprehensively and
needs further discussion.

To explore the controlling factors of marine redox conditions
and the formation of OM in the Upper Yangtze Basin during the
O–S period, we analyzed the whole-rock major, trace elements,
and sulfur isotopes (δ34Spy). Combined with previously published
data on the Shuanghe section, which is located in the southwest
depocenter, we reconstructed the redox evolution of marine water
in the southwest of the Upper Yangtze Basin and evaluated the
extent of its control on the formation of black shales.

2 GEOLOGICAL SETTING

Located west of the South China Block, the Upper Yangtze
Basin is a superimposed basin controlled by peripheral
tectonic activity (Zhou et al., 2015). During the O–S
period, the South China Block comprised the Cathaysian
and Yangtze Blocks. These blocks converged to form an
intracontinental orogeny that led to the formation of the
surrounding areas (Kangdian-Qianzhong Uplift, Hanzhong
Uplift, and Chuanzhong Uplift surround the Upper Yangtze

Basin) isolating the Upper Yangtze Basin from the high seas,
and form a semi-restricted shallow-sea basin (Chen et al.,
2004; Mu et al., 2011) (Figure 1A).

The Changhebian (28°44’33″N and 103°26’23″ E) and Tianlin
(27°55’15″N and 105°36’45″ E) sections, located in the southwest
Upper Yangtze Basin and adjacent to the Chuanzhong and
Qianzhong Uplifts on both sides of the depocenter,
respectively, were selected for this study (Figure 1B). The
selected sections were compared with the Shuanghe section,
which is located in the southwest depocenter. The Shuanghe
section has been studied extensively in terms of biostratigraphy,
paleogeography, and chemical stratigraphy (Liu et al., 2016; Lu
et al., 2021). The stratigraphic sequences of the three sections are
similar during the O–S period. TheWF, Guanyinqiao (GYQ), and
LMX Formations are distributed evenly in the Tianlin and
Shuanghe sections (Figure 1C) whereas, only the WF and
LMX Formations are identified in the Changhebian section
(Figure 1C). The WF and LMX Formations comprise organic-
rich black shales and abundant graptolite fossils. The GYQ
Formation mainly comprises carbonaceous limestone, with
abundant fossil shells that record the decline of sea level.
Graptolite strata and regional-global zoning schemes of O–S
have been established in the study area as the biostratigraphic
control (Zhou et al., 2015; Li et al., 2019; Wang et al., 2021).

3 SAMPLES AND METHODS

3.1 Samples
In total, 23 and 13 representative fresh shale samples were
collected from the Tianlin and Changhebian sections,
respectively. All samples were ground to ≤ 200 mesh size
using a tungsten carbide crusher.

3.2 Methods
For total organic carbon (TOC) measurements, all samples were
leached with ≥ 20% HCl to remove the carbonate content and
washed with distilled water before analysis. A LECO CS230
carbon sulfur analyzer at the China University of Mining and
Technology Advanced Analysis and Computation Center was
used to determine the dried residues and unacidified samples.

Major element analyses were conducted at the China
University of Mining and Technology Advanced Analysis and
Computation Center using a Bruker S8 Tiger X-ray fluorescence
spectrometer (XRF). Trace elements were tested at the Jiangsu
Geological and Mineral Resources Design and Research Institute
using a PE Elan600 standard inductively coupled plasma mass
spectrometer (ICP-MS). Sedimentary Fe speciation and S
isotopes of pyrite (δ34Spy) were tested at the State Key
Laboratory of Biogeology and Environmental Geology, China.
The detailed test methods and standards can be found in the
study by Wang et al. (2021).

3.3 Proxies Used in This Study
The chemical index of alteration (CIA) and component
variability index (ICV) can be used to determine the intensity
of chemical weathering and composition of sediments in the
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source area, respectively (Nesbitt and Young, 1982; Cullers and
Podkovyrov, 2000) (Cox et al., 1995). The calculation formulas
are as follows:

CIA � [Al2O3/(Al2O3 + CaOp +Na2O + K2O)] × 100,

ICV � (Fe2O3 + K2O +Na2O + CaO +MgO +MnO + TiO2)/Al2O3.

The principal concentration was calculated in moles. CaO* is
the CaO in silicate, which can be calculated by the formula
CaOresidual = mole CaO—10/3 × mole P2O5 (McLennan,
2001). If CaOresidual < Na2O, CaO* = CaOresidual; otherwise,
CaO* = Na2O. To eliminate the influence of potassium
metasomatism on the CIA value, we used the alternative
formula CIAcorr = [(1 − m) Al2O3 / (Al2O3 + CaO* + Na2O −

FIGURE 1 | (A) Paleogeographic map of the Upper Yangtze Basin (Chen et al., 2004). (B) Locations of the Tianlin, Changhebian, and Shuanghe sections (Liu et al.,
2016). The dotted line in the figure shows the location of the eastern and southern depocenters within the Upper Yangtze Basin (Liang et al., 2009). Line A-A’ represents
the cross-section in Figure 11. (C) Comparison diagram of biostratigraphy in the study sections (graptolite biozones based on Chen et al. (2004)). GYQ, Guanyinqiao
Formation; HF, Hirnantia Fauna; D. com, Dicellograptus complexus; P. pac, Paraorthograptus pacificus; M. ext., Metabolograptus extraordinarius; M.P.,
Metabolograptus persulptus; A. a., Akidograptus ascensus.
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m2Al2O3)] × 100, where m = K2O / (Al2O3 + CaO* + Na2O +
K2O) (Panahi et al., 2000).

By subtracting the contribution of the land source from the
elemental content in the rock, the excess value of an element
can represent its autogenic composition (Tribovillard et al.,
2006; Algeo and Tribovillard, 2009). Therefore, a post-
Archean average shale (PAAS) standardization analysis of
the studied shale samples from the WF–LMX Formation
was carried out to obtain the excess value of element X, and

the formula is XEF = (X / Al)sample /(X / Al)PAAS (Taylor and
McClcnnan, 1985). XEF > 1 indicates its enrichment and
vice versa.

The mass accumulation rate of organic carbon (OCAR) is one of
the effective indicators for evaluating the marine primary
productivity, the formula for which is OCAR = LSR×TOC×ρ,
where LSR is the line sedimentation rate (m/Myr) and ρ means
the density of rock (2.5 g/m3) (Schoepfer et al., 2015) (The value of
the LSR can be found in Supplementary Table S1).

FIGURE 2 | (A)Radiolarian siliceous shale and (B) calcareous silt shale representing deep-water shelf facies and shallow shelf facies, respectively (Mou et al., 2016);
(C) mud shale representing tidal-flat facies in the WF Formation from the Changhebian section; (D) quartz particles under a scanning electron microscope (SEM); (E)
bioclastic fragments in the Guanyinqiao Formation (Mou et al., 2019); and (F) framboidal pyrite under the SEM.

FIGURE 3 | Chemostratigraphic profiles of (A) TOC and OCAR, (B) FeT and TS, (C) FeHR/FeT and Fepy/FeHR, (D) MoEF and UEF, (E) CIAcorr and δ34Spy, and the
redox summary for the Changhebian section. The vertical dotted line represents the threshold of each proxy. Abbreviations as in Figure 1.
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4 RESULTS

All petrological and geochemical data of the Tianlin and
Changhebian sections are shown in Tables 1, 2 and
Supplementary Table S1. The stratigraphic models of the
key results are shown in Figures 2–4. The test data of the
Shuanghe section can be found in Liu et al. (2016); Li et al.
(2017); Liu et al. (2020); and Lu et al. (2021).

4.1 Petrological Characteristics
Field observation and microscopic studies showed that the
shale samples of the WF–LMX Formations are mainly thin or
massive, dark/black, and fine-grained (Figure 2), and include
clay shale, calcium-rich clay shale, calcareous clay shale,
siliceous clay shale, siliceous biogenic shale, and argillaceous
siliceous shale (Figures 2A–C). Tidal-flat and shallow-water
shelf facies were identified in the Changhebian section, and
shallow and deep-water shelf facies were identified in the
Tianlin section.

Under a polarizing microscope, the studied samples showed
an argillaceous structure, composed of clay minerals and
clastic particles (mainly quartz and feldspar), with a particle
size of <0.0039 mm (Figure 2D). The clay minerals were
parallelly oriented and alternated with black carbonaceous
OM. Calcitic and dolomitic cements exist between the clay
minerals as microcrystalline and rhombic crystals,
respectively. Brachiopod fragments were observed in the
gray-black calcium-bearing mudstone of the GYQ
Formation (Figure 2E). Scanning electron microscope
images showed fine euhedral to subhedral pyrite crystals,
occurring as framboidal aggregates (Figure 2F).

4.2 Geochemical Characteristics
4.2.1 Total Organic Carbon and Total Sulfur Content
The variations in the TOC and total sulfur (TS) differed
between the two sections. The Changhebian section showed
a relatively high TOC content (1.24–6.11%, average 3.31%). It
increased from the late Katian to the early Rhuddanian stage
(Table 1 and Figure 3). The TS content also showed an
increasing trend, ranging from 0.12 to 1.55% (average
0.74%). TOC values in the Tianlin section were relatively
low, ranging from 0.47 to 7.17% (average 2.89%). However,
it showed an opposite trend compared with the Changhebian
section with a trend of first decreasing and then increasing
during the late Katian to the early Rhuddanian (Table 1;
Figure 4). The TS content was relatively high, ranging from
0.04 to 2.85% (average 1.02%), and showed a trend similar to
that of TOC (Figure 4).

4.2.2 Major and Trace Elements Content
The major element composition of the studied shales was similar
in both sections, with high concentrations of SiO2, Al2O3, CaO,
Fe2O3, K2O, and MgO, and relatively low (<1.0%) Na2O, P2O5,
TiO2, and MnO concentrations (Table 1). For the Changhebian
section, the averages of these major elements were 62.33, 10.74,
4.05, 3.82, 3.38, and 2.89%, respectively. For the Tianlin section,
the averages of these major elements were 66.03, 10.86, 4.56, 3.18,
2.99, and 2.94%, respectively.

Variations in the trace element contents were estimated by
calculating their enrichment factors (Figure 5). Compared
with PAAS, both sections were enriched in Mo and U,
marginally enriched in Th, Zr, Ba, La, and Ce, and depleted
in Sc and Sr (Table 2 and Figure 5).

FIGURE 4 | Chemostratigraphic profiles of (A) TOC and OCAR, (B) FeT and TS, (C) FeHR/FeT and Fepy/FeHR, (D)MoEF and UEF, (E) CIAcorr and δ34Spy, and redox
summary for the Tianlin section. The vertical dotted line represents the threshold of each proxy. Abbreviations as in Figure 1.
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TABLE 1 | Results of the TOC and major elements in the Changhebian and Tianlin sections.

Stage Formation Samples Depth
(m)

TOC (%) Major element (wt, %) ICV

SiO2 Al2O3 K2O Na2O Fe2O3 MgO MnO TiO2 CaO P2O5

Changhebian section

Rhuddanian
CH-13 3.98 3.59 69.85 10.17 3.85 0.48 3.53 4.07 0.04 0.24 2.12 0.24 1.41
CH-12 3.52 2.86 67.11 9.17 2.03 0.65 2.37 3.54 0.03 0.12 2.44 0.05 1.24

Longmaxi
Formation

CH-11 3.02 5.42 72.79 9.93 2.01 0.71 3.71 2.77 0.04 0.21 1.17 0.06 1.07

Hirnantian CH-10 2.55 6.11 71.76 10.06 3.15 0.56 6.44 0.52 0.06 0.19 3.18 0.12 1.15
CH-09 1.91 4.35 53.36 11.11 3.89 0.37 6.33 4.16 0.06 0.31 3.49 0.28 1.68
CH-08 1.73 3.58 60.44 12.37 4.44 0.41 3.44 4.12 0.03 0.49 3.33 0.11 1.36
CH-07 1.59 4.01 58.44 7.11 3.88 0.11 4.61 1.13 0.02 0.11 3.88 0.41 1.73
CH-06 1.37 3.27 59.17 10.35 3.87 0.85 4.33 4.15 0.03 0.33 3.11 0.46 1.61
CH-05 1.21 3.11 62.11 11.03 4.33 0.65 2.11 2.11 0.02 0.44 4.12 0.46 1.08

Wufeng Formation CH-04 1.05 2.17 61.88 14.01 4.55 0.64 3.22 2.48 0.03 0.68 7.15 0.44 1.34
CH-03 0.83 1.24 64.31 11.77 2.11 0.88 3.21 2.44 0.03 0.39 4.89 0.74 1.27

Late Katian CH-02 0.55 2.03 59.11 12.34 4.11 0.65 3.44 3.07 0.02 0.48 8.99 1.56 1.68
CH-01 0.30 1.34 49.94 10.16 3.14 0.44 2.88 2.98 0.02 0.22 7.45 1.07 1.69

Tianlin section

Rhuddanian
TL-23 12.10 7.17 72.12 7.69 1.58 0.51 5.11 2.14 0.08 0.37 1.77 0.15 1.50
TL-22 11.85 4.91 70.23 10.25 2.37 0.81 4.98 3.61 0.07 0.5 1.88 0.21 1.39

Longmaxi
Formation

TL-21 11.33 4.56 69.98 11.55 3.15 0.21 3.19 3.31 0.05 0.57 1.79 0.33 1.06

TL-20 10.88 3.11 70.76 10.75 3.44 0.13 4.65 3.19 0.07 0.54 1.28 0.25 1.24
TL-19 10.45 3.24 64.31 9.88 4.07 0.24 2.98 3.56 0.04 0.5 1.96 0.38 1.35
TL-18 10.36 0.68 60.34 13.22 2.01 3.22 2.54 2.11 0.01 0.62 9.87 0.08 1.54
TL-17 10.25 0.47 55.33 12.55 3.12 2.98 2.07 1.03 0.01 0.58 10.07 0.42 1.58

GYQ Formation TL-16 10.10 0.59 52.44 14.44 3.11 2.21 2.85 2.93 0.02 0.67 13.22 0.08 1.73
Hirnantian TL-15 9.94 2.15 55.38 12.43 3.22 0.99 3.38 3.3 0.04 0.58 11.37 0.83 1.84

TL-14 9.28 2.08 61.21 12.93 3.46 1.04 3.21 3.37 0.03 0.62 3.34 0.47 1.17
TL-13 8.95 2.31 77.16 7.19 3.65 0.21 1.95 0.77 0.02 0.35 0.45 0.06 1.03
TL-12 7.54 3.66 75.03 7.83 2.84 0.37 2.01 1.88 0.02 0.38 1.75 0.27 1.18
TL-11 6.40 4.99 72.13 9.62 2.66 1.11 2.11 2.32 0.02 0.37 1.11 0.12 1.01
TL-10 5.88 3.78 70.33 11.02 2.48 0.76 2.12 3.33 0.02 0.55 1.76 0.21 1.00
TL-05 5.32 3.71 68.69 10.4 2.45 0.89 3.22 2.04 0.03 0.51 4.89 0.23 1.35

Wufeng Formation TL-05 4.83 3.05 71.64 9.38 2.11 1.07 2.29 2.11 0.02 0.45 1.56 0.18 1.02
TL-05 4.05 3.68 79.88 7.61 2.05 0.32 2.24 2.11 0.02 0.36 1.77 0.09 1.17

Late Katian TL-05 3.30 2.53 71.53 9.65 2.94 0.34 3.07 3.12 0.03 0.44 4.98 0.2 1.55
TL-05 2.45 2.39 64.53 13.33 3.8 0.45 4.71 3.54 0.04 0.64 7.29 0.99 1.54
TL-04 1.90 2.11 59.97 11.33 3.11 0.54 3.77 2.89 0.03 0.56 4.89 0.44 1.39
TL-03 1.35 3.27 58.35 15.44 4.72 0.7 3.89 5.15 0.03 0.71 6.96 0.08 1.44
TL-02 0.84 0.79 65.41 8.77 3.88 0.44 2.15 3.15 0.02 0.41 3.14 0.12 1.50
TL-01 0.30 1.24 51.89 12.52 2.44 0.57 4.55 6.71 0.03 0.59 7.85 0.07 1.82

FIGURE 5 | Enrichment of trace elements in the Changhebian and Tianlin sections.
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4.2.3 Variations of the δ34Spy

The δ34Spy contents of these two sections had similar
characteristics. They increased from the late Katian to the
Hirnantian, followed by a decrease in the early Rhuddanian
(Figures 3, 4). In addition, the average δ34Spy content in the
Changhebian section (−5.02‰) was lower than that in the Tianlin
section (−1.37‰) (Table 2).

5 DISCUSSION

5.1 Sediment Provenance and
Paleoweathering
The geochemical characteristics (major and trace elements) of
fine clastic sedimentary rocks are indicators of source material
compositions and tectonic environments, and provide
information on the tectonic evolution of an area (Hofmann,
2005; Sugitani et al., 2006; Liu et al., 2007; Cottle et al., 2009;
Cawood et al., 2012; Zaid, 2015; Zhang et al., 2018).

Based on the different stabilities of Zr, Th, and Sc in
sedimentary cycles, their ratios can be used to determine
whether the source rocks were a part of the sedimentary cycles
(Cullers and Podkovyrov, 2000; McLennan, 2001). Generally,
unrecycled sediments follow the magmatic evolution trend in the
cross-plots of Th/Sc and Zr/Sc, whereas the recycled sediments
follow the trend of zircon addition because of its continuous
enrichment (Figure 6A). The studied samples followed the
magmatic evolution array and were closer to more felsic end-
members, indicating that the source rocks were unrecycled and
felsic (Figure 6A). The TiO2–Zr cross-plot can also be used to
determine the source rock composition, with values of <55 and
>195 representing felsic and mafic rocks, respectively (Hayashi
et al., 1997). In this work, all shale samples were located in the
area of felsic igneous rocks, which is consistent with the results
obtained by Th/Sc-Zr/Sc, indicating that the source was mainly
felsic (Figure 6B).

The depositional environment of the basin not only controls
the thickness, area, OM type, and maturity of sedimentary shale

TABLE 2 | Results of trace elements and δ34Spy in the Changhebian and Tianlin sections.

Stage Formation Samples Depth
(m)

δ34Spy

(‰)
Trace elements (ppm)

Mo U Th Sc Zr Sr Ba La Ce

Changhebian section

Rhuddanian
Longmaxi
Formation

CH-13 3.98 −6.2 50.6 14.6 25 10 330 354 684 41.79 74.64
CH-12 3.52 −3.6 37.2 18.2 24 9 315 255 511 39.78 77.99
CH-11 3.02 −4.5 109.4 23.0 22 7 308 233 699 36.44 66.92

Hirnantian CH-10 2.55 −6.5 17.7 16.4 23 9 396 254 896 34.83 76.32
CH-09 1.91 −9.8 21.5 12.6 15 10 410 174 851 29.96 61.03
CH-08 1.73 −7.4 8.2 10.1 12 5 231 77 489 31.45 61.20
CH-07 1.59 4.6 2.2 3.0 8 6 216 84 437 50.33 99.43

Wufeng Formation CH-06 1.37 1.7 9.4 12.1 15 9 288 47 325 52.17 102.29
CH-05 1.21 −5.4 50.0 19.0 10 7 217 98 458 39.07 82.16

Late Katian CH-04 1.05 −5.8 2.3 4.6 5 3 133 77 298 44.15 96.75
CH-03 0.83 −7.9 3.3 4.9 21 10 310 83 345 39.96 80.78
CH-02 0.55 −6.4 1.2 3.3 23 12 396 74 338 47.69 100.29
CH-01 0.30 −8.1 1.2 3.8 15 11 385 34 217 34.98 74.77

Tianlin section

Rhuddanian
Longmaxi
Formation

TL-23 12.10 −5.5 83.1 11.1 17 3 264 328 630 36.94 67.46
TL-22 11.85 −6.4 105.6 16.5 17 7 245 112 175 33.94 71.60
TL-21 11.33 −1.5 65.3 16.3 16 8 261 334 822 54.33 100.05

Hirnantian TL-20 10.88 −7.4 57.5 38.0 12 8 192 141 278 38.99 76.22
TL-19 10.45 −4.4 75.2 35.0 18 7 357 234 886 37.69 89.75

GYQ Formation TL-18 10.36 11.7 8.7 5.1 10 7 168 62 334 46.33 98.22
TL-17 10.25 6.8 19.6 7.3 9 6 162 51 469 34.56 74.29
TL-16 10.10 5.9 17.9 6.4 9 6 138 35 311 37.82 76.87

Wufeng Formation TL-15 9.94 2.3 71.9 34.9 6 4 125 77 448 41.82 88.59
TL-14 9.28 1.1 50.4 24.8 8 5 171 69 355 38.46 75.58
TL-13 8.95 −0.9 11.2 4.6 14 9 234 113 409 26.44 46.84
TL-12 7.54 −4.2 12.7 6.6 14 9 243 242 1108 29.19 57.66
TL-11 6.40 1.1 6.4 7.9 7 6 210 121 297 33.14 60.81

Late Katian TL-10 5.88 −2.9 15.3 7.6 9 6 196 128 357 45.88 100.54
TL-05 5.32 −3.8 30.1 14.4 7 4 147 126 337 35.54 80.59
TL-05 4.83 −5.9 35.9 17.5 10 6 184 200 916 35.41 69.65
TL-05 4.05 1.7 6.5 9.7 9 6 192 95 369 28.24 47.88
TL-05 3.30 −3.1 13.0 8.1 11 7 182 122 377 43.55 79.97
TL-05 2.45 −5.5 25.6 13.3 14 9 260 165 544 74.16 134.26
TL-04 1.90 1.8 5.5 4.0 20 13 364 121 368 35.69 75.66
TL-03 1.35 2.4 4.4 2.9 14 8 297 88 248 40.39 70.92
TL-02 0.84 −9.6 0.9 1.8 17 10 288 95 211 43.33 84.32
TL-01 0.30 −5.4 1.3 3.2 14 9 299 56 246 39.54 89.66
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but it also affects the type and mineral composition of the
sedimentary rocks (McLennan, 2001). Based on their variable
Ce anomalies, the sedimentary environment can be classified into
expanding ridge, pelagic, and continental margins (Murray,
1994). The Al2O3/(Al2O3+Fe2O3)-LaN/CeN intersection
diagram suggests a continental margin environment for the
studied samples (Figure 6C) (Murray, 1994). In addition,
depending on the tectonic setting, the sedimentary basin can
be divided into the active continental margin, oceanic island arc,
continental island arc, and passive continental margin (PM),
which can be identified from the Th-Sc-Zr/10 ternary plot
(Bhatia and Crook, 1986). The samples from the Changhebian
and Tianlin sections were located in or near the PM field, which
further supports that the sedimentary environment was a passive
margin (Figure 6D).

Before determining the paleoclimate and its intensity, it is
necessary to determine whether the provenance of the parent
rock was affected by sedimentary differentiation and recycling.
The ICV is usually used to determine whether the source rock
composition is a primary deposition (ICV>1) or recycled
sediment (ICV<1) (Cullers and Podkovyrov, 2000, 2002). The
ICV values of the studied shale samples were >1 (Table 1),
suggesting immature deposits. The CIA value can be used to
estimate the degree of weathering of the source area (Cox et al.,
1995). From the vertical variation trend of CIA, we infer that the
Changhebian and Tianlin sections experienced similar

weathering intensities during the O–S period (Figures 3, 4).
The sections experienced moderate weathering in the late
Katian stage (CIA = 75), and relatively weak weathering in the
Hirnantian stage (CIA = 72 for the Changhebian section and CIA
= 70 for the Tianlin section). Weathering conditions gradually
becamemoderate in the early Rhuddanian stage (CIA = 74 for the
Changhebian section, and CIA = 77 for the Tianlin section)
(Figures 3, 4; Supplementary Table S1).

5.2 Water Restriction
The degree of restriction of the water column affects the
enrichment and preservation of sedimentary OM and limits
the biogeochemical cycle of elements (Algeo and Rowe, 2012).
Mo and U show different adsorption rates and trends in restricted
and unrestricted environments, and the covariant relationship
between UEF and MoEF is often used to determine the restriction
degree of the water column and the local depositional
environment (Algeo and Tribovillard, 2009; Tribovillard et al.,
2012).

The degree of water restriction showed a similar trend for both
sections during the O–S period. From the late Katian to the
Hirnantian, the EF of Mo and U in shale samples gradually
increased, thereby increasing the MoEF/UEF ratio from 0.1×SW to
0.3×SW (Figures 7A,B). In addition, the reducibility of the water
column gradually increased from suboxic to anoxic conditions
(Figures 7A,B), which continued during the Hirnantian to the

FIGURE 6 | Sedimentary provenance for the Changhebian and Tianlin sections: (A) Zr/Sc versus Th/Sc, (B) Zr versus TiO2, (C) Al2O3/(Al2O3+Fe2O3) versus LaN/
CeN, and (D) Th-Sc-Ze/10 ternary diagram. CA, continental island arc; ACM, active continental margin; OIA, oceanic island arc; PM, passive margin.
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early Rhuddanian stage, and reached euxinic conditions (MoEF/
UEF = ~1×SW). This feature is similar to the variation pattern of
Mo–U in the Black Sea, which represents a strongly restricted
water environment.

In addition, the water column of the Changhebian section was
more restrictive than that of the Tianlin section (Figures 7A,B),
which may be related to the different paleowater depths and
locations of the section during this period. The deeper the
paleowater depth, the stronger the reduction of the water
column will be, and the higher values of the MoEF and UEF.
Under the influence of the ocean current, the Tianlin section
located on the east bank of the paleo-uplift (paleomagnetic
direction) receives more Mo and U supplies than that of the
Changhebian section, showing a relatively weak water restriction.

5.3 Paleowater Depth and Paleosalinity
The paleo-water depth determines the hydrodynamic and redox
conditions, paleosalinity and paleoproductivity of sediment
formation, and is an important indicator for the restoration
and study of the sedimentary paleo-environment (Wang et al.,
2020). In-depth research methods for the quantitative restoration
of paleo-water depth in marine fine-grained sediments are not
available. In this study, the value of Fe/Mn was used to
characterize the variation trend of paleo-water depth in the
study area during the O–S period, where a higher ratio was
attributed to a water column (Wersin et al., 1991; Katz and Lin,
2014). This is because, during the Fe–Mn migration, Fe is easily
oxidized to precipitate, whereas Mn is relatively stable and can be
transported to deep-water areas far from the coast.

FIGURE 7 |Covariant relationship between UEF andMoEF for the (A)Changhebian section and (B) Tianlin section. The solid line represents the molar concentration
ratio of Mo/U in seawater (SW = 7.9).

FIGURE 8 |Comparison of paleo-water depth and paleosalinity for the study sections. The data on the Shuanghe section are from Li et al. (2017). Abbreviations as
in Figure 1. Red and black vertical dashed lines represent thresholds for proxies, as shown in the text.
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From the late Katian to the Hirnantian stage, and then to the
early Rhuddanian stage, the paleo-water depth of the
Changhebian and Tianlin sections had a similar change trend:
shallow-deep-shallow-deep (Figure 8). Considering the Fe/Mn
values of the Shuanghe section, the distribution of the paleo-water
depth from deep to shallow was in the order of Shuanghe section
(average 57.4) > Tianlin section (average 102.7) > Changhebian
section (average 111.1) (Supplementary Table S1). This
inference is consistent with the observed lithofacies
characteristics representing the different water depths (see
Section 4.1).

Paleosalinity is also an important indicator of the
paleoenvironment and paleoecology and affects the
enrichment of sedimentary OM (Arz et al., 2003; Hu et al.,
2018). Paleosalinity also indirectly reflects the influence of
coastal rivers on the sedimentary area, where a lower salinity
denotes a stronger freshwater supply, and higher input of
terrigenous clastic materials, and vice versa (Arz et al., 2003).
Here, we used strontium/barium (Sr/Ba) and total sulfur/total
organic carbon (S/TOC) ratios to restore the paleosalinity of the
O–S period in the study area (Wei and Algeo, 2020). The values of
Sr/Ba are <0.2 in fresh water, 0.2–0.5 in brackish, and >0.5 in
seawater. The values of S/TOC are <0.1 in fresh water, >0.1 in
brackish, and seawater (Wei and Algeo, 2020).

From the late Katian to the early Rhuddanian stage, the
paleosalinity in the Changhebian and Tianlin sections first
decreased and then increased (Figure 8). Specifically, the
water column of the Changhebian section was brackish (Sr/Ba
= 0.22, TS/TOC = 0.33) during the late Katian period, and in the
transition zone from fresh water to brackish (Sr/Ba = 0.20, TS/
TOC = 0.15) during the Hirnantian period. In the early
Rhuddanian period, it returned to brackish conditions (Sr/Ba
= 0.45, TS/TOC = 0.31). For the Tianlin section, the water column
was brackish (Sr/Ba = 0.32, TS/TOC = 0.34), brackish (Sr/Ba =
0.24, TS/TOC = 0.28), and seawater (Sr/Ba = 0.52, S/TOC = 0.36)
in the aforementioned three stages, respectively. The paleosalinity
of the water column in the Tianlin section was greater than that in
the Changhebian section, which was similar to the change in the
paleo-water depth. (Figure 8). For the Shuanghe section, the
water column was brackish and seawater during the O–S period,
and its salinity showed an increasing trend during the Hirnantian
stage, which may be related to the fall in sea level and increase in
water restriction during this stage (see section 5.5 for a specific
discussion).

5.4 Redox Conditions and its Heterogeneity
5.4.1 Reconstruction of Redox Conditions
Fe speciation and its ratio has been widely used to determine the
redox conditions in sedimentary water columns (Poulton and
Canfield, 2011; Li et al., 2015; Jin et al., 2016). Under FeT > 0.5%,
the ratio of highly active iron (FeHR) to total iron (FeT) is used to
distinguish oxic conditions (FeHR/FeT < 0.38) and anoxic
conditions (FeHR/FeT > 0.38). Furthermore, under anoxic
conditions, the ratio of pyrite (Fepy) to FeHR is used to
distinguish between ferruginous (Fepy/FeHR < 0.7–0.8) and
euxinic (Fepy/FeHR > 0.7–0.8) conditions (Poulton and
Canfield, 2011; Clarkson et al., 2014). The FeT values of the 36

studied samples were all ≥ 0.5%, which could be used to
determine the redox conditions of the water column
(Supplementary Table S1). In addition, we used the UEF-
MoEF covariance diagram to further infer the redox conditions
of the water column.

In the Changhebian section, during the late Katian stage (from
the D. complexus zone to the P. pacificus zone), the redox
conditions of the water column changed from oxic-suboxic
(FeHR/FeT = 0.21) to anoxic conditions (FeHR/FeT = 0.60),
especially ferruginous (Fepy/FeHR = 0.62). During the early
Hirnantian stage (M. extraordinarius), the water conditions
gradually leaned toward suboxic (FeHR/FeT = 0.38), but in the
late Hirnantian, they returned to ferruginous (FeHR/FeT = 0.56,
Fepy/FeHR = 0.61), and these conditions lasted until the early
Rhuddanian stage (Supplementary Table S1 and Figure 9).

In the Tianlin section, in the early late Katian stage (D.
complexus zone), the redox conditions of the water column
changed from oxic-suboxic (FeHR/FeT = 0.33) to anoxic (FeHR/
FeT = 0.51), especially ferruginous (Fepy/FeHR = 0.64), which
lasted for the middle Hirnantian stage (before the GYQ
Formation in the Hirnantia Fauna zone). During the
deposition of the GYQ Formation, the water column gradually
changed to suboxic (FeHR/FeT = 0.25), then returned to a
ferruginous condition (FeHR/FeT = 0.79, Fepy/FeHR = 0.63) in
the late Hirnantian (M. persulptus zone), and lasted until the early
Rhuddanian stage (FeHR/FeT = 0.71, Fepy/FeHR = 0.64).

In summary, the Changhebian and Tianlin sections
accumulated under oxic-suboxic conditions during the early
late Katian (early D. complexus zone) and the middle
Hirnantian (Hirnantia Faun), but shifted to anoxic conditions
(especially ferruginous) during the other stage. This change is
consistent with the results of the MoEF-UEF plot (Figure 7,
Section 5.2).

5.4.2 Redox Heterogeneity in the Southwest
Depocenter
To confirm the heterogeneous redox conditions in the Upper
Yangtze Basin, we compared and discussed the values of FeHR/
FeT and Fepy/FeHR from the Changhebian and Tianlin sections
with those of the Shuanghe section [Figure 9 (Liu et al., 2016)].
In the early late Katian, the marine water column of the
Changhebian and Tianlin sections (located in the nearshore
area) maintained oxic-dysoxic conditions, whereas the
Shuanghe section (located in the offshore area) showed
ferruginous conditions, which confirms the deepest paleo-
water of the Shuanghe section. During the early Hirnantian
stage, ferruginous conditions in the basin expanded further,
covering almost the entire southwest depocenter of the Upper
Yangtze Basin. During the Hirnantian stage, under the
influence of glaciation, the redox condition of the water
column in the nearshore area gradually changed to oxic-
dysoxic, while the reducibility of the anoxic condition in
the Shuanghe section was further enhanced, with the
appearance of the euxinic condition (Figure 9) (Liu et al.,
2016; Li et al., 2019). In the late Hirnantian to the early
Rhuddanian stage, the ferruginous condition of the water
column was re-established in the southwest depocenter.
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5.5 Control Factors of the Marine Redox
Condition
Under a similar tectonic background and water restriction, the
redox conditions of the water column in the southwest
depocenter of the Upper Yangtze Basin still showed prominent
spatiotemporal heterogeneity. Especially during the Hirnantian
stage, euxinic appeared offshore when oxic-suboxic conditions
appeared in the nearshore.

The mechanism of the formation of the euxinic condition has
been widely studied: under anoxic conditions, microorganisms
breathe by reducing sulfate to produce H2S, which is combined
with FeHR in water to form pyrite in a ratio of 2:1. When FeHR is
depleted, H2S accumulates in the water column and it finally
forms the euxinic condition. Therefore, the effectiveness of sulfate
and the input of FeHR jointly control euxinic acid production
(Johnston et al., 2010; Raiswell and Canfield, 2012). In addition,
under the influence of a limited sulfate supply, the S isotope value
of sulfide generated by the microbial reduction of sulfate
increases, resulting in a positive deviation of δ34Spy (Leavitt
et al., 2013; Bradley et al., 2016).

In this study, we classified the late Katian and early
Rhuddanian stages into pre-glacial and postglacial periods,
with the Hirnantian stage as the boundary, to explore the
control factors of water redox conditions in the southwest
depocenter of the Upper Yangtze Basin during the O–S period.

5.5.1 Pre-glacial and Postglacial Periods
Duringmost of the pre-glacial and postglacial periods, the southwest
depocenter of the Upper Yangtze Basin was in an anoxic ferruginous
condition (Figure 9). The prevalence of ferruginous conditions is
related to sufficient FeHR input and limited sulfate supply, and under

high availability of OM and anoxic conditions, H2S, which is
produced by microorganisms, is eliminated by FeHR (Poulton and
Canfield, 2011). For the Changhebian and Tianlin sections, the FeU
values of the samples measured under the ferruginous conditions
were higher (0.48–1.60%, average: 0.93% for the Changhebian
section, and 0.46–2.11%, average 1.01% for the Tianlin section,
Supplementary Table S1), suggesting a large input from terrestrial
clay minerals and other silicates providing abundant detrital Fe flux.
However, the FeU values of the samples were relatively small (FeU <
0.4%, Supplementary Table S1) in the Shuanghe section under the
same ferruginous conditions, representing a limited detrital Fe flux.
The input difference of FeU is also reflected in FeT. The highest value
of FeT is observed in the Tianlin section (1.48–3.58%, average:
2.44%), followed by the Changhebian section (1.66–2.60%,
average: 2.24%), and the Shuanghe section (0.60–3.00%,
average: 1.33%).

Although the availability of OM was a major factor in
controlling the redox conditions of the water column,
especially for the development of the euxinic environment,
euxinic conditions did not occur in the study area during this
period (Figure 9). In addition, there was no significant positive
correlation between OCAR and Fepy/FeHR in the Changhebian (r
= 0.25, p > 0.10) and Tianlin (r = 0.30, p > 0.10) sections
(Figure 10A). Especially in the Shuanghe section, a
ferruginous condition was still developed under low FeT input
and high OCAR (18.30–45.00, average: 30.11 mg cm−2 myr−1)
(Supplementary Table S1, Figure 9), probably because of the
effectiveness of sulfate.

Under moderate to strong hydrological restriction, when
terrigenous clastic sulfate is input from the uplift to the
depocenter, the sulfate concentration is high in the near-source
region (i.e., the estuary), and low in the far-source region (i.e., the

FIGURE 9 | Comparison of the redox condition, δ34Spy, and OCAR for the three sections. The data of the Shuanghe section are from Liu et al. (2016) and Li et al.
(2017). Red and black vertical dashed lines represent thresholds for proxies, as shown in the text.
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sedimentary center) (Li et al., 2019). The closer it is to the estuary, the
lower will be the δ34S value of the sulfide generated in the water
column. This conclusion is supported by the significant negative
relationships between δ34Spy and CIAcorr (r = −0.73 for the
Changhebian section, and r = −0.63 for the Tianlin section, with
p < 0.01) (Figure 10B). During the pre-glacial and postglacial
periods, the δ34Spy value was the lowest in the Changhebian
section (−7.05‰ for the late Katian, and −4.8‰ for the early
Rhuddanian), followed by that in the Tianlin section (−3.03‰
for the late Katian, and −4.50‰ for the early Rhuddanian). The
highest values were observed in the Shuanghe section (0.25‰ for the
late Katian, and 6.55‰ for the early Rhuddanian) (Figure 9). This

distribution trend of δ34Spy was consistent with the change in the
paleowater depth and paleosalinity.

Therefore, it is inferred that in the pre-glacial and
postglacial periods, detrital sulfate was mainly derived
from the Chuangzhong and the Qianzhong Uplifts and
precipitated in the shallow paleo-water of the Changhebian
and Tianlin areas, respectively, as sulfides by microbial
processes, to generate low δ34S authigenic pyrite
(Figure 11A,C). The Shuanghe section, located in the
sedimentary depocenter, is far away from the source,
limiting the supply of sulfate and resulting in ferruginous
conditions (Figure 11A,C).

FIGURE 10 | Relationship between (A) OCAR and Fepy/FeHR, (B) CIAcorr and δ34Spy.

FIGURE 11 | Depositional model of A-A’ (Figure 1C) during the Late Ordovician to Early Silurian. (A) Pre-glacial period; (B) Hirnantian glaciation period; and (C)
postglacial period in the southwest depocenter of the Upper Yangtze Basin.
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5.5.2 Hirnantian Glaciation
In the early Hirnantian (M. extraordinarius zone) stage,
obvious euxinic water appeared in the Shuanghe section,
but not in the Changhebian and Tianlin sections (Figures
9, 11B). As mentioned previously, euxinic acid formed because
of the increased availability of sulfate. Although the glacial
period may reduce the intensity of chemical weathering, the
sea-level fall forces continental shelf sediments rich in pyrite to
be exposed to water and undergo weathering, thereby
increasing the sulfate input in the local area of the
depocenter. This speculation is supported by a reduction in
the Changhebian section in the M. extraordinarius zone and
the absence of the GYQ Formation (Figure 9). With rising
temperatures, melting of glaciers, and rising sea levels at the
end of the Hirnantian stage, the source area of exposed water
was reduced and far away from the depocenter, thereby
reducing the sulfate input and reconverting water to
ferruginous conditions (Figure 11B).

Significant indigenous δ34Spy gradient changes occurred
during the glaciation: δ34Spy in the Changhebian, Tianlin, and
Shuanghe sections were −3.8‰, 1.2‰, and 9.81‰ (Tables 2),
respectively. This change cannot be attributed to the chemical
jump that sediments undergo, which results in the limitation of
sulfate in pore water, especially in the M. extraordinarius zone,
and euxinic conditions occur in the depocenter.We speculate that
the increase in δ34Spy during the glacial period represents an
increase in the sulfate isotope input to the depocenter. This
inference is supported by the correlation of paleosalinity
between the three sections. In the Hirnantian stage, the
paleosalinity of the Changhebian and Tianlin sections
decreased due to the glacier and sea-level fall, but the
paleosalinity of the Shuanghe section increased gradually and
reached the maximum in theM. extraordinarius zone (Figure 8).
This indicates that during the glacial period, the main provenance
area in the region changed from the Qianzhong Uplift to the
Chuangzhong Uplift. More specifically, it changed to the area
represented by the Changhebian section that was briefly exposed
to the surface due to the decrease in the sea level. Sulfate from the
Changhebian section was re-weathered and transported to the
Shuanghe section, thereby increasing the sulfate flux and
promoting the formation of euxinic acid (Figure 11B).

Collectively, climate change and terrigenous debris input
control the effectiveness of sulfate, which is the main
controlling factor for the change in redox conditions of
marine water before and after the Hirnantian glacial period.

6 CONCLUSION

Lithology and concentrations of major elements, trace elements,
and sulfur isotope of the Changhebian and Tianlin sections
located in the southwest of the Upper Yangtze Basin were
analyzed and compared with the Shuanghe section in the
depocenter. The main influencing factors of the
spatiotemporal distribution in the redox conditions were
discussed. Comprehensive indicators show that the activity of
sedimentary OM and the availability of sulfate are the main
factors that controlled the redox conditions of the water column,
especially euxinic changes during the glacial period. This
inference is based on a similar tectonic background, water
sealing degree, paleosalinity, and paleowater depth of the two
studied sections. Our work reveals the complex control of
terrestrial clastic inputs on the transformation of redox
conditions in semi-confined basins.
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