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Microseismic events can be used to analyze the risk of tunnel collapse, rock burst, and
other mine hazards in space and time. In practice, the artificial activities and other signals at
the mining site can seriously interfere with the microseismic waveforms, reducing the
signal-to-noise ratio. In this study, we propose a denoising method based on the threshold
of the cumulative distribution function (CDF) of the wavelet coefficients in the wavelet
domain using synchrosqueezed continuous wavelet transform (SS-CWT). First, the ratio of
microseismic signal variance between two adjacent time windows is used to determine the
range of background noise. Then, the microseismic signal is transformed into a wavelet
domain using SS-CWT, and the threshold of wavelet coefficients at each scale is estimated
based on the cumulative distribution function (CDF) of background noise. At last, a post-
processing step is applied by utilizing an amplitude smoothing function, to further suppress
the noise. The proposed denoising method is tested by both synthetic and filed
microseismic data recorded in a metal mine. The results show that the method is
effective in denoising and can improve the SNR of mine microseismic data with a high
sampling rate.

Keywords: synchrosqueezed continuous wavelet transform (SS-CWT), wavelet coefficient thresholding, seismic
denoising, microseismic detection, metal mine

INTRODUCTION

In order to monitor mine hazards, such as roof fall, collapse, and rockburst, passive microseismic
monitoring technology was introduced in the mining industry (Young et al., 1992; Li et al., 2007;
Hudyma and Potvin, 2010). By detecting and analyzing microseismograms, the location, magnitude,
and source mechanism of microseismic events are calculated. Applying the seismological theories,
the distribution of stress drops, displacements, and radiated energy can be obtained to provide basic
data for the safety evaluation of surrounding environments during mining production (Yabe et al.,
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2015). However, in many conventional seismic methods, the SNR
of microseismic data strongly affects the reliability of data and the
accuracy of waveform parameters’ estimation, such as arrival time
and polarity. As a result, the accuracy of microseismic location
and other source parameters extracted from waveform is also
influenced by the noise content. Especially for mine data, the high
sampling rate and persistent human activities in the monitoring
environment make complex noises being recorded and
superimposed on the microseismic signal. Therefore, it is a
challenging task to accurately separate microseismic signals
from miscellaneous background noise. There is still a great
need for developing suitable procedures that improve SNR
allowing for robust seismic processing.

The noise in seismic data is divided into two categories:
regular noise and random noise. Regular noise refers to the
noise with a certain apparent velocity and frequency, such as
surface wave, acoustic wave, secondary interference wave,
multiple-wave, and 50 Hz alternating current interference.
Spectral filtering is a common method for denoising noise
with the specified frequency band, but it is not effective for
removing noise with the same frequencies as the signal.
Moreover, effective filter bands must be known in advance,
and band-pass filtering inevitably distorts the signal and
generates artifacts to influence the true onset time and
polarity (Douglas, 1997; Scherbaum, 2001).

The microseismic data can also be denoised using
multichannel methods, which are widely used in the active-
source seismic community, such as predictive filtering
methods (Liu et al., 2012; Liu and Chen 2013), singular
spectrum analysis (Huang et al., 2015, 2016a; Zhang et al.,
2016a; Zhang et al., 2016b; Zhang et al., 2016c), low-rank
approximation based methods (Huang et al., 2016b; Xie et al.,
2016; Chen et al., 2017; Zhou and Zhang 2017; Bai et al., 2018),
dictionary learning-based methods (Chen 2017; Siahsar et al.,
2017; Wu and Bai 2018a, b), and morphological filtering based
method (Huang et al., 2017). The multichannel denoising
methods rely on a fairly dense spatial sampling of the data.
For most microseismic monitoring projects, where the number
of spatial sensors is not large enough, the multichannel denoising
methods are inapplicable or cannot give acceptable results.
Especially, the sensors’ number in one microseismic
monitoring system is relatively small, and the spatial layout is
irregular. Therefore, the denoising method based on
multichannel information is not suitable for denoising of
mining microseismic processing.

Many effective single-channel microseismic signal denoising
methods based on time-frequency transformation have been
developed, such as empirical mode decomposition (EMD)
(Huang et al., 1998), short-time Fourier transform (STFT)
(Mousavi and Langston, 2016a), continuous wavelet transform

FIGURE 1 | Time-frequency Spectrum of a seismic record using STFT, CWT, and SSWT. (A) Field mine microseismic signal with high SNR, the sampling rate is
6000 Hz. (B) (C), and (D) shows the STFT, CWT, and SS-CWT of the time series in (A), respectively, where CWT and SS-CWT are both based on the Morlet wavelet.
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(CWT) (Goupillaud et al., 1984; Mousavi and Langston, 2016b), S
transform (ST) (Stockwell et al., 1996; Askari and Siahkoohi,
2008; Wang et al., 2010), and general S transform (GST) (Wang
et al., 2015). Recently, a new signal decomposition algorithm
called synchrosqueezing transform (SST) was introduced by
Daubechies et al. (2011) as an alternative to EMD. The SST
can produce a sparse time-frequency representation for the
modulated oscillation signal. More importantly, it has better
mathematical support and more adaptive performance than
EMD. Synchrosqueezed continuous wavelet transform (SS-
CWT) combines wavelet analysis and SST to obtain time-
frequency maps with significantly improved resolution.
Mousavi et al. (2016c); Mousavi and Langston (2017) applied
the SS-CWT to denoise single-channel microseismic data based
on a custom thresholding strategy.

Donoho and Johnstone. (1997); Donoho and Johnstone
(1995) showed that the universal threshold can be obtained
for Gaussian noise in the time-frequency domain, which
provides a reliable basis for subsequent denoising methods in
the time-frequency domain. In this article, we introduce an
effective denoising method based on cumulative distribution
function (CDF) thresholding in the SS-CWT domain,
including the range determination of pure background noise
for noise level estimation, denoising noise based on CDF
thresholding, and post-processing of weight suppression. Then,
we use synthetic and field data examples to test and confirm the
effectiveness of the proposed algorithm. Finally, we draw some
key conclusions at the end of the article.

THEORETICAL BACKGROUND

Synchrosqueezed Continuous Wavelet
Transform
Basically, the seismic data s(t) recorded by geophones contains
both microseismic signal and environmental noise, which can be
expressed as

s(t) � s0(t) + η(t), (1)
where s0(t) is a microseismic signal, η(t) is environmental
noises.

The continuous wavelet transform (CWT) of s(t) with a given
mother wavelet ψ is (Daubechies, 1988; Heil and Walnut, 1989;
Farge, 1992)

Ws(a, τ) � 1��
a

√ ∫+∞

−∞
s(t)ψp(t − τ

a
)dt, (2)

where ψ* represents the complex conjugate of a mother wavelet, a
and τ are the scale variable and time shift, respectively.

With a flexible trade-off between time and frequency achieved
by the variable length of the mother wavelet, the signal can be
presented in the time-frequency domain. However, due to signal
windowing and spectral leakage, the energy is spread out on a
time-scale plane in the actual application, which leads to a blurred
time-frequency spectrum. Hence, the synchrosqueezed transform
is used here to squeeze the energy into the real instantaneous
frequency of the signal, which improves the accuracy of wavelet-
based transforms for frequency content estimation.

FIGURE 2 | The range of background noise estimation via ROV curve. (A) The waveform of the original seismic signal. (B) Synthetic seismic signal with noise. (C)
ROV curve of the synthetic noisy signal, where a black circle indicates the minimum of ROV.
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The instantaneous frequency can be estimated by the
derivative of the wavelet coefficient (Auger et al., 2013):

ω(a, τ) � −iWs(a, τ)−1zWs(a, τ)
2πzτ

, forWs(a, τ) ≠ 0. (3)

This allows us to convert the time-scale plane (a, τ) into the
time-frequency plane (w(a, τ), τ). Also, the synchrosqueezed
wavelet transform of s(t) is (Daubechies et al., 2011)

Ts(ωl, τ) � 1
Δω ∑

ak : |w(ak ,τ)−ωl|≤ Δω
2

Ws(ak, τ)a
−3
2
k (Δa)k, (4)

where ωl is the lth discrete frequency and the center of the interval
[ωl - 1/2Δω, ωl + 1/2Δω]. ak is the kth scale, and Δω = ωk - ωk-1.
The individual component sk from the Ts can be reconstructed by
integrating the coefficients over frequencies ωl that corresponds
to the kth component (Thakur et al., 2013).

The inverse transform of the SS-CWT is (Herrera et al., 2014)

s(t) � 2C−1
ψ Re⎛⎝∑

l

Ts(ωl, t)⎞⎠, (5)

where Cψ is a constant, which is given in Thakur et al. (2013)
depending on the mother wavelet. As an example, Figure 1 shows
the transform results of a field seismic signal using SS-CWT and
other classic time-frequency analyses. Compared with STFT
(Figure 1B) and CWT (Figure 1C), the SS-CWT (Figure 1D)
exhibits higher energy concentration in the time-frequency plane,
which brings advantages in threshold-based denoising.

METHODS

Estimation of Background Noise Range
The threshold function for denoising is determined based on the
statistics of the noise. Therefore, it is important to estimate the
pure background noise range accurately to obtain the threshold of
each wavelet scale precisely. In the first step, the ratio of the
microseismic signal variance between two adjacent time windows
is proposed to determine the range of background noise. The core
idea is from the conventional short-term-average (STA)/long-
term-average (LTA) (Withers et al., 1998) algorithm for picking
up arrival time, which utilizes the variance change of amplitude in

FIGURE 3 | Results of each step on denoising. (A) Synthetic original signal’s waveform and SS-CWT spectrogram. (B) Synthetic noisy signal waveform and SSWT
spectrogram. (C) Denoising waveform and SS-CWT spectrogram after CDF thresholding. (D) Denoising waveform and SS-CWT spectrogram after post-processing.
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two windows to indicate whether the presence or absence of a
signal. The ratio of variance (ROV) is defined by

ROV(i) � var(s0,i)
var(si,N), (6)

where ROV(i) is the ratio of signal amplitude variance in two-
time windows before and after the time i, var(s0, i) and var(si, N)
are the signal amplitude variance in two adjacent time
windows, respectively. N is the length of the input data. The
pure background noise range is determined according to the
minimum point of ROV. Figure 2 shows an example of
background noise estimation using the ROV curve. The
result suggests that the ROV method can provide reliable
and real-time pure background noise data, which is
essential to the accurate determination of wavelet threshold
for denoising in the subsequent step.

Wavelet Threshold Determination Based on
Cumulative Distribution Function
If the background noise obeys Gaussian distribution, the
threshold function can be computed using the mean and
standard deviation of the absolute value of the wavelet
coefficients at each scale (Langston and Mousavi, 2019):

β(a) � mean(|W(a, τ)|) + c p st.dev.(|W(a, τ)|), (7)
where mean(|W(a, τ)|) and st.dev.(|W(a, τ)|) are the mean and
standard deviation of wavelet coefficients at each scale a.
Parameter c determines the value of wavelet coefficients
threshold. It needs to be emphasized that β(a) is computed
using the pure background noise obtained in the previous step

rather than the entire seismic data because the seismic signal
would bias the statistic values in Eq. 7.

Donoho and Johnstone (1997) proposed a mild criterion to set
the parameter c, and a widely used “universal threshold” is
obtained:

c �
�������
2log10N

√
, (8)

where parameter c is related to the number of noise samples N at
each scale and its value is close to 3 from this relation if N has an
order of 104. The threshold function will yield a confidence
interval of about 99.7% for the number of noise samples N.
Under such a threshold, most of the noise will be removed and
about 0.3% of the noise is retained. To obtain the threshold more
flexible, we take the approach of estimating the cumulative
distribution function of Gaussian distribution for noise in the
time window at each scale and calculating the confidence value
for the distribution. The threshold function becomes

β(a) � CDF−1
Gauss(a) (P � THRE), (9)

in which CDF−1
Gauss(a) is the inverse cumulative distribution

function at the scale a using Gaussian distribution, and parameter
THRE is the confidence value that needs to be set. Once the
wavelet coefficient threshold β(a) on each scale a is obtained, we
can apply the hard thresholding method to remove noise in the
time-frequency domain.

Hard thresholding is a nonlinear process. It keeps the wavelet
coefficients if they are greater than a threshold criterion β(a);
otherwise, they are set to zero (Donoho and Johnstone, 1995).
The denoising scheme can be expressed as follows:

~W(a, τ) � {W(a, τ) if |W(a, τ)|≥ β(a)
0 otherwise

. (10)

FIGURE 4 | (A) Denoised seismogram and its associated SS-CWT. (B) Extracted noise and its associated SS-CWT.
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Hard thresholding is known to yield abrupt artifacts in the
denoised signal (Chang et al., 2000). Therefore, many scholars
have developed soft thresholding functions (Weaver et al., 1991;
Yoon and Vaidyanathan., 2004; Shuchong and Xun, 2014). Soft

thresholding produces smaller errors but often results in
oversmoothing of the denoised signal. In the next step, we add a
post-processing step to smooth residual noise andminimize damage
to the amplitude of the microseismic signal as much as possible.

FIGURE 5 | (A) The original seismic data and its SS-CWT spectrogram. (B) The synthetic noisy data and its SS-CWT spectrogram. (C) Waveform and
SS-CWT spectrogram of denoised data after band-pass filtering (100–500 Hz). (D) Waveform and SS-CWT spectrogram after hard thresholding.
(E) Waveform and SS-CWT spectrogram of denoised data after soft thresholding. (F) Waveform and SS-CWT spectrogram after CDF thresholding and
post-processing.
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Post-Processing
After hard thresholding in the previous step, most wavelet
coefficients of noise are removed, while the wavelet coefficients of
the seismic signal are almost retained. The energy of the seismic
signal in the time-frequency domain exhibits higher connectivity
and is numerically larger than the remaining noise. Therefore, to
further suppress the noise, we construct a smoothing function, which
comprehensively considers the continuity and intensity of wavelet
coefficients on the time axis. To do this, the functionDF is calculated
by stacking the amplitude of wavelet coefficients using all scales:

DF(τ) � ∑na
a�1

∣∣∣∣ ~W(a, τ)∣∣∣∣ for τ � 1,/,N , (11)

where na is the number of scales. Then, the smoothing function
SF is calculated using DF:

SF(τ) � 1 − [1 − exp( − λ|τ − τm|
N

)]αDF(τ)DFm

, (12)

where DFm is the maximum of the function DF, and τm is the
time position of DFm on the time series with length N.
Parameters α and λ are nonnegative and used to adjust the
importance of time distance |τ − τm| and the ratio of the
wavelet coefficient energy DF(τ)/DFm. If α is close to 0, the
smoothing function mainly is dependent on the |τ − τm| value; If
λ is close to 0, the valueDF(τ)/DFm plays a dominant role in the
smoothing function. The value of parameters α and λ should not
be large so that the amplitude of the arrival waveform will be
retained as much as possible. Notice that the smoothing function
SF(τ) is only relative to time τ and independent of scale a.
Therefore, the smoothing function is used to uniformly suppress
the wavelet coefficients of the residual noise on all scales. An
advantage of the proposed smoothing method is that the
maximum amplitude of the microseismic event signal is not
affected, which can improve the accuracy of mine local
magnitude (ML) calibration that utilizes the maximum
amplitude information of the seismic signal.

TABLE 1 | Comparison of RMS, SNR, CC, and time cost among different
denoising approaches.

Method RMS SNR CC Time (s) TFT

Noisy data 0.1076 2.9072 0.6277 —— ——

Band-pass filtering 0.0593 4.7277 0.8336 0.03 ——

Hard thresholding 0.0473 8.7472 0.8962 0.56 SS-CWT
Soft thresholding 0.0578 15.2117 0.9331 0.65 SS-CWT
CDF thresholding 0.0326 79.1576 0.9731 1.58 SS-CWT

FIGURE 6 | Ametal mine microseismic monitoring network in Xinjiang, China, shown in one horizontal (XY) and two vertical depth sections (XZ and ZY) views. Dark
inverted triangles are triggered-based seismometers.
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RESULTS

We first apply the method to synthetic data. In this way, the shape
of the whole output signal can be compared with the theoretical
signal. Then, the algorithm will be applied to observed
microseismograms in a metal mine. In the synthetic data test,
we will show the denoising performance of this method by
comparing the information of phase-arrival shapes, root-
mean-square error (RMS), SNR, and cross-correlation
coefficients (CC) between the denoised and original signal.
The SNR is measured as the ratio of the root-mean-square
amplitude in a time window around the signal to that in the
same length window of preceding noise. On the other hand,
because the theoretical signal of the observed data in the mine is
not known, we will compare the sensitivity of the onset pick-up
threshold setting before and after signal denoising using a 2D
microseismic event signal detector composed of STA/LTA and
kurtosis algorithms. The lower the sensitivity of the microseismic
event recognition threshold, the less likely it is to be misidentified.

Synthetic Data Test
The denoising algorithm is applied to a known synthetic signal
and the original signal is from the field data with high SNR
(Figure 2A). Then, the complex noise including the random and
a fixed frequency of 50 Hz is added to the original signal to yield
the resulting noisy signal with an SNR of 2.9072 (Figure 2B).
According to the previous description of the denoising process,
the pure background noise range should be estimated at first.
Figure 3B shows that the ROV curve of the noisy signal and the
range of pure background noise in a noisy signal is accurately
obtained according to the minimum position of the curve, which
indicates that the pure background noise estimation method we
proposed is highly feasible. Then, the noisy signal is
transformed into the time-frequency domain using SS-CWT
and the wavelet coefficients at all scales are estimated using the
hard thresholding rule of Eq. 10, scale-by-scale. In this step, the
threshold function β(a) is determined using Eq. 9, where the
parameter THER is set to 99.9%, meaning the 99.9% confidence
value for the distribution in the time window at each scale. The
hard thresholding denoised result is shown in Figure 3C.

Compared with the denoising result using the universal
threshold of Donoho and Johnstone (1997) (Figure 5D), it
can be seen that the wavelet coefficients of residual noise in the
time-frequency spectrum of Figure 3C are less. Finally, the
smoothing function of Eq. 12 is applied to smooth the CDF
thresholding signal to yield the final denoising signal as shown
in Figure 3D. For the waveform after denoising, the SNR is
significantly improved because the noise before and after the
microseismic signal is effectively removed. In the denoising
time-frequency spectrum, the isolated noisy coefficients
remaining after the previous steps are cleaned up and the
wavelet coefficients of the signal are retained completely.

The goal of the denoising algorithm is to observe the effects of
the denoised process on the polarity, the onset time, and
smoothing of very small emergent arrivals at the very
beginning of the signal buried under the background noise
and track the change in other parts more easily. We compare
the denoised waveform with the original waveform as shown in
Figure 4A. The denoised and synthetic signals match very well
over the entire waveform, especially the onset and polarity are
preserved very well. The arrival time that was buried under the
noise became clear after denoising, which improves arrival time
picking and further benefits the source location estimation. This
is greatly significant to the mining microseismic monitoring
which needs a high-precision location. Comparing SS-CWT
spectrums in Figures 4A,B, the noise energy is completely
extracted without destroying the signal energy, which can
provide reliable noise information for background noise
imaging research.

The superior performance of the CDF thresholding compared
with other methods commonly used is clearly shown in Figure 5.
A detailed observation of the useful information of the first
arriving waveform (arrival time and polarity direction of the
onset) illustrates the good performance of the proposed denoising
method when compared with the band-pass filtering, hard and
soft thresholding. Band-pass filtering removes noise with
frequencies higher and lower than the signal’s frequency range
but noise within the frequency range of the signal is untouched
(Figure 5C). Soft and hard thresholding preserve the structure of
the signal, whereas they were much less effective in noise removal
(Figures 5D,E).

The good performance of the CDF thresholding method can
be further confirmed by quantitative comparative analysis of the
RMS, SNR, and cross-correlation values between the denoised
and original waveforms presented in Table 1. In this table, the
CDF thresholding method has the smallest RMS (0.0326), the
highest SNR (79.1576), and the maximal CC (0.9731) compared
with the band-pass filtering and hard and soft thresholding. In
terms of computational time, the CDF thresholding method takes
more time to work, but it is acceptable.

Mine Microseismic Data
Complex background noise removal is a challenging task
encountered in microseismic monitoring, especially in mine.
The main reason is that the monitoring scope is small relative
to the mine, so it’s necessary to accurately identify and pick up the
arrival time of the microseismic signal to get the accurate source

FIGURE 7 | Amplitude-frequency response curve of the seismometer
utilized in the metal mine microseismic monitoring network in Xinjiang, China.
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location for seismicity analysis. Therefore, the sampling rate of
the microseismic record needs to be high enough to capture the
microseismicity. However, the high sampling rate simultaneously
makes the microseismic event more susceptible to burry in
diverse environmental noise. We apply the CDF thresholding
to passively recorded, complex noise minemicroseismic data with
different SNR to test the performance of this method in denoising
and automatic detection.

Field microseismic data was recorded by seismometers of high
sampling rate (6 kHz) trigger-based network operation located at
a metal mine in Xinjiang, China (Figure 6). The amplitude-
frequency response curve of the seismometer is shown in
Figure 7. The denoising frequency band is chosen as

10–1000 Hz because the amplitude-frequency response is
stable in this frequency range.

The denoising results of microseismic signals with different
SNRs using the CDF thresholding are shown in Figure 8. The
comparison of microseismic signals before and after denoising
are from time, time-frequency, and Fourier amplitude domains.
For the waveform in the time domain, the SNR of the denoised
microseismic signals has been significantly improved. This can
facilitate the picking of the first arrival times and their polarity
which has special importance for the source location and fracture
imaging. Thus, denoising microearthquakes can help to improve
the detection, location, and understanding of wave propagation,
which are crucial steps in microseismic processing. Comparing

FIGURE 8 | Denoised results for mining-induced microseismic records of (A) high (B) moderate, and (C) low SNR using the proposed method.
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the signals before and after denoising in the time-frequency
domain, the frequency band of the noise is almost consistent
with the signal, which leads to the failure of the frequency band
filtering method. The CDF thresholding method does not only
cleanly remove the noise in the same frequency band as the signal,
but also cleans the current interference noise of 50 Hz
(Figure 8A) and the strong interference noise with multiples
of 50 Hz (Figures 8B,C).

To further demonstrate the effectiveness of denoising, the
performance of automatic detection is investigated. The STA/LTA
(Withers et al., 1998) and kurtosis characterization function (Saragiotis

et al., 2002) are combined, forming a 2D detector, which allows
identifying time windows that potentially contain signals
corresponding to microseismic events (Palgunadi et al., 2020). We
used the training data set of 66 seismic events and 66 pure noise
records to determine threshold values for this 2D detector. We
recorded the maximum values of STA/LTA and kurtosis
characterization functions in each event and each pure background
noise time window, respectively. The result of the training data set
before and after denoising is presented in Figure 9. The optimal
threshold values of the original data set are around 2 and 5 for STA/
LTA and kurtosis characterization function before denoising,

FIGURE 8 | (Continued).

FIGURE 9 | Comparison of the robustness of automatic microseismic event detection before and after denoising. White dots indicate noise measurements, blue
dots correspond to microseismic events. (A) Results of Original training data set, dark dashed lines indicate the selected optimal threshold level of maximum kurtosis
(Kopt=5), and maximum STA/LTA (STA/LTAopt=2), and red dashed lines indicate the selected optimal threshold level range of kurtosis (Kopt ± 1) and STA/LTA (STA/
LTAopt - 0.2 and STA/LTAopt + 0.5). (B) Results of denoising data set, dark dashed lines indicate the selected optimal threshold level of maximum kurtosis
(Kopt=100), and maximum STA/LTA (STA/LTAopt = 6.5), red dashed lines indicate the selected optimal threshold level range of kurtosis (Kopt ± 20) and STA/LTA (STA/
LTAopt ± 1.5).
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respectively. For the denoised data set, the optimal threshold values are
around 6.5 and 100. In the automatic detection procedure, any time
window with values of STA/LTA and kurtosis characterization
function above the two thresholds is taken as containing a
microseismic event (gray rectangle in Figures 9A,B). As shown in
Figure 9A, the adjustable threshold range of the original data set is
narrower, implying that the automatic detection results in Figure 9A
aremuchmore sensitive to the thresholds than that in Figure 9B. This
suggests that the proposed denoising method could improve the
robustness of the automatic detection of microseismic events.

DISCUSSION

The first step in the denoising process is to estimate the pure
background noise range, which is extremely important to the
entire denoising process, as the universal threshold is related to
the statistical characteristics of the background noise. In practice,
the noise and seismic signals mix up with each other, and it is very
difficult to accurately tell when the seismic signal arrives before
denoising. The proposed ROV method can be used to obtain the
pure background noise closest to the microseismic signal,
providing a real-time noise estimation. This theoretically
enables a more precise threshold estimation of noise and
increases the denoising efficiency in the following step.

The smoothing function in the post-processing step has two
nonnegative parameters. Parameter λ adjusts the weights of time
distance |τ − τm| and parameter α modulates the decay rates
according to the ratio of the wavelet coefficient energy
DF(τ)/DFm. SF increases with λ and decreases with α. The two
parameters are trained by a group of the synthetic data set, and their
values are between 1 and 10. The denoising results are not sensitive to
the values of the two parameters, suggesting the robustness of the
proposed smoothing function. Our denoising method cannot
preserve the amplitude of the entire seismic signal. However, the
smoothing value is equal to 1 when τ � τm, where τm represents the
position of the maximum amplitude of the microseismic signal. The
smoothing function can preserve the maximum amplitude of the
microseismic signal. Because local magnitude (ML) calibration utilizes
the maximum amplitude information of seismic signal, the preserved
maximum amplitude after denoising benefits improves the accuracy
of ML. This is crucial for subsequent seismic risk assessment.

As shown in Figure 4, wavelet coefficients of the seismic signal
can be accurately separated from the noisy data without changing
the time-frequency structure of the background noise using the
proposed method. This provides a useful way for extracting
background noise, which is crucial to dispersion curve
measurement and surface wave inversion from ambient noise
(Bensen et al., 2007; Wang et al., 2019).

CONCLUSION

We propose a new denoising framework for complex noise
removal based on CDF thresholding in the SS-CWT domain.
The denoising method includes the estimation of pure
background noise range, determination of thresholding
function based on CDF, coefficient thresholding process for
wavelet coefficient, and post-processing with smooth function.
Performance on both synthetic and field data demonstrates the
effectiveness of the denoising method. After denoising by the
proposedmethod, the automatic seismic detection results become
less sensitive to the detector threshold, suggesting the practical
value of the denoising method in handling microseismic data
with a high sampling rate.
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