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The Middle–Late Permian witnessed an unusual chert accumulation event along the
margin of the Pangea and Paleo-Tethys realms, known as the “Permian Chert Event
(PCE).” The PCE is well recognized in the Permian limestone from South China, in the forms
of nodular and bedded cherts. Previous studies suggested that PCE was caused by
hydrothermal fluids related to the Emeishan large igneous province (ELIP). Meanwhile,
another hypothesis supported the biogenic origin of PCE, i.e., the Permian chert derived
from biosilicification of abundant sponges and radiolarian. Thus, sources of silica from the
Permian chert remain uncertain. To understand linkages among PCE, biosilicification
mechanism, and the ELIP event, this study focused on chert nodules collected from the
Permian Maokou and Wujiaping formations in the Lianziya and Maoertang sections, South
China. We measured germanium/silicon ratios (Ge/Si) and rare earth element (REE)
compositions of chert nodules on the basis of petrographic analysis. Ge/Si ratios
range from 0.14 to 0.63 μmol/mol with an average of 0.33 μmol/mol (n=18) in the
Lianziya section and from 0.02 to 0.75 μmol/mol with an average of 0.18 μmol/mol
(n=45) in the Maoertang section, both of which are close to the seawater value. The
REE pattern is characterized by LREE depleted with a positive Eu anomaly ranging from
0.66 to 2.16 in the Lianziya section and from 1.05 to 9.57 in the Maoertang section. Our
results indicate that the silica of the Permian chert predominantly originated from seawater
with limited contributions from hydrothermal fluids. To further quantify the contributions of
hydrothermal fluids, we applied a binary (seawater and hydrothermal fluid) mixing model
based on two geochemical proxies, i.e., the Ge/Si ratio and Eu anomaly. The modeling
results suggest a mixing of 0.5 vol% to 1 vol% hydrothermal fluids with contemporaneous
seawater, verifying the dominant seawater source of silica in the PCE. Although it has been
widely accepted that positive Eu anomaly points to the hydrothermal fluid origin of silica,
our study demonstrates that positive Eu anomaly could also be present in cherts that was
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predominantly derived from normal seawater. Therefore, the analysis of the Ge/Si ratio or
REE compositions is highly recommended when determining the Si source of cherts.

Keywords: germanium to silicon ratio (Ge/Si), chert nodules, hydrothermal fluids, Eu anomaly, Permian, rare earth
element (REE)

1 INTRODUCTION

Chert nodules and bedded chert are of great geological
significance for their strong weathering resistance and various
silica sources (Maliva et al., 1989; Sugitani, 1992; Racki, 1999;
Beauchamp and Baud, 2002; Kato and Nakamura, 2003). A
remarkable chert accumulation event, the “Permian Chert
Event (PCE)”, occurred in the Middle-Late Permian
(Beauchamp and Baud, 2002; Yao et al., 2013; Gao et al.,
2020; Yu et al., 2020; Zheng et al., 2021). The Permian cherts
were distributed in the margin of the Pangea and the Paleo-
Tethys realm (Beauchamp and Baud, 2002; Yao et al., 2013; Dong
et al., 2020; Yao et al., 2021). One hypothesis attributes chert
formation around the Pangea to the upwelling of cold bottom
seawater. Large amounts of nutrients were carried by the bottom
seawater, facilitating the blooming of siliceous organisms
(Beauchamp and Baud, 2002; Gates et al., 2004). The cold
bottom seawater could be derived from glacier melting or
wind-driven fluxes along the margin of the Pangea (Yu et al.,
2020). It was also suggested that the PCE in the South China
Block (SCB) might be triggered by various factors: 1) biologic
origin, which became one of the most vital Si sources for cherts in
the SCB, with the dramatic evolution of siliceous organisms
(Beauchamp and Baud, 2002; Yao et al., 2013; Gao et al.,
2020; Yu et al., 2020; Zheng et al., 2021); 2) tectonic activities,
which could create extra space for crystal growth, elevate
temperature, and induce silica-rich hydrothermal fluids that
were saturated with respect to silica when moving up and
precipitate as cherts (Dong et al., 2020; Yao et al., 2021); 3)
the Emeishan Large Igneous Province (ELIP), which, evidenced
by intense tectonic events and hydrothermal activities, is dated to
260 ± 3 Ma (Shellnutt, 2014) and might have led to formation of
the PCE cherts (Dong et al., 2020; Zheng et al., 2021). However,
there is no consensus on the Si sources of the PCE cherts.

The reservoirs of silicon mainly include normal seawater,
hydrothermal fluids, and biological silica sinks (Maliva et al.,
1989; Maliva et al., 2005). A series of geochemical proxies, such as
germanium/silicon ratio (Ge/Si), Eu anomaly (Eu/Eu*), Al/(Al +
Fe + Mn), Fe2O3/TiO2, and Al2O3/(Al2O3 + Fe2O3) diagram, Co/
Ni, Co × Mn, and Cd/Mo diagram have been widely used in
determining Si sources (Murray et al., 1991; Murray, 1994; Shen
et al., 2011; Dong et al., 2015; Shen et al., 2018; Cui et al., 2019). In
this study, two geochemical proxies, Ge/Si ratio and Eu anomaly,
are used to constrain the Si source of the Maokou and Wujiaping
cherts in the SCB.

According to the apparent variations of Ge/Si ratios in
different reservoirs, Ge/Si ratios are widely applied in tracing
the Si source of chert formations (Tribovillard, 2013; Alibert and
Kinsley, 2016; Tatzel et al., 2017; Cui et al., 2019; Guan et al., 2020;
Deng et al., 2022). Germanium (Ge) and silicon (Si) belong to the

same group (IVA) in the periodic table of elements and possess
similar chemical characteristics (Bernstein, 1985). However,
because of its larger atomic radius, Ge performs differently in
low- and high-temperature geological processes compared to Si
(Bernstein, 1985; Bernstein and Waychunas, 1987), leading to
significant variations of Ge/Si (μmol/mol) ratios in various
reservoirs (Bernstein, 1985; Baronas et al., 2017). Ge/Si ratio of
hydrothermal fluids is about 9 μmol/mol, which is one order of
magnitude higher than that of seawater (Ge/Sisw = 0.72 μmol/
mol) and river water (Ge/Sirw = 0.58 μmol/mol) (Froelich et al.,
1992; Mortlock et al., 1993; Escoube et al., 2015). Because
biogenic silica does not fractionate Ge from Si, the Ge/Si
ratios of siliceous organisms are close to those of seawater/
river water. For instance, Ge/Si ratios of diatoms, siliceous
sponges, and radiolarians range between 0.45 and 0.78 μmol/
mol, 0.08–0.38 μmol/mol and 0.62–1.57 μmol/mol, respectively
(Shemesh et al., 1989; Bareille et al., 1998; Tribovillard et al., 2011;
Tribovillard, 2013).

The rare earth elements (REE) of cherts are difficult to
fractionate during diagenetic process and have unique
chemical characteristics in different reservoirs (Elderfield et al.,
1988; Bau, 1991; Sholkovitz, 1992; Sholkovitz et al., 1994).
Therefore, REE patterns and related proxies can be used to
trace Si sources. For example, seawater-sourced chert shows a
light REE-depleted pattern, with a negative Ce anomaly and a
high Y/Ho. In contrast, chert originating from hydrothermal
fluids has a flat REE pattern with a high Eu anomaly. High-
temperature fluids preferentially take in Eu2+ from oceanic crust
by water-rock reaction under acidic conditions (Elderfield et al.,
1988), leading to an enrichment of Eu in hydrothermal fluids
(Bau, 1991; Douville et al., 1999). Positive Eu anomaly of
hydrothermal fluids [with an average of 14.17 (Mills and
Elderfield, 1995)] is higher than that of seawater and river
[1.13 and 0.76, respectively (Alibo and Nozaki, 1999; Soyol-
Erdene and Huh, 2013)].

To constrain the Si source of the PCE chert nodules in the SCB,
we collected chert nodules from two sections and conducted
petrographic and geochemical analyses.

2 GEOLOGICAL SETTING

The South China Block (SCB) is composed of the Yangtze
Platform to the northwest and the Cathaysia Old Land to the
southeast, separated by the Jiangnan Orogen (Wang and Jin,
2000; Shen et al., 2019). In the SCB, the Permian successions,
consisting of the Liangshan member, Qixia, Maokou, Longtan/
Wujiaping, and Changxing formations in ascending order, vary
from 120 to 1,200 m thick, and are well constrained by
biostratigraphic framework. The Yunan movement in the Late
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Carboniferous caused a big unconformity, the Permian
successions began with the Liangshan Member (Shen et al.,
2019; Shen et al., 2021). The Maokou Formation, with a
thickness of 120–300 m, conformably overlies the Qixia
Formation. It is composed of light gray limestone with bedded
cherts and nodular cherts (Liu et al., 2020). There is a widespread
parallel unconformity between the Maokou and Wujiaping
formations, which is caused by the Dongwu movement (Shen
et al., 2019). TheWujiaping Formation consists of 60–90 m-thick
gray limestone intercalated with bedded/nodular cherts and coals.
Emeishan large igneous province (ELIP) event occurred around
260 Ma (Shellnutt, 2014), leading to intense basalt weathering.
The overlying upper Permian Changxing Formation is mainly
composed of thick limestone intercalated with minor dolomitic
limestone.

This study focuses on the Maoertang and Lianziya sections.
The Maoertang section (105°25′3″N, 32°16′23″E) is located in
Jiange County, Guangyuan City, Sichuan Province, which is in
the transition zone between Songpan-Ganzi fold belt and
southern part of Hannan-Micang Mountain uplift (Regional
Geology of Sichuan Province, 1991). The Lianziya Section
(110°47′20″N, 30°56′21″E) located in Zigui County, Yichang
City, Hubei Province (Figure 1A). Carbonates and nodular
cherts from these two sections were deposited in a shallow-
water carbonate platform, which yielded abundant fossils,
including bryozoans, brachiopods, fusulinids, and corals. Chert
nodules in this study were collected from the Maokou Formation
in the Lianziya section and the Maokou and Wujiaping
formations in the Maoertang section.

3 MATERIALS AND METHODS

3.1 Sample Preparation
Fresh chert nodules were collected from the Maoertang and
Lianziya sections. Thin sections were prepared for
petrographic observation. Chert nodules were crushed into 200
mesh powder for geochemical analysis.

3.2 Petrographic Observation
Thin sections were observed by using a polarizing microscope
(Nikon Eclipse LV100N POL). Petrographic observations were
focused on the crystallization of silica and the contact between
carbonates and chert nodules. Alizarin Red-S solution was applied in
staining thin sections to distinguish calcite from dolomite.

3.3 Major and Trace Elemental Analyses
An aliquot of 100 mg sample powder was first leached with 10 ml
of 0.5N HAc to dissolve calcareous materials. After
centrifugation, the residues were washed with 5 ml of 1N HCl
to completely remove the carbonate content. To completely
remove Cl− from residues, samples were washed with
deionized (DI) water five times. After being dried down in an
oven at 65°C, about 50 mg of sample powder was weighed and
dissolved in a Teflon beaker (7 ml) by 1 ml of concentrated HNO3

and 3 ml of concentrated HF for 24 h on a hotplate at 120°C. The
solutions were dried down on a hotplate, and then the residues

were dissolved by 5 ml of concentrated HNO3 at 120°C for 24 h.
After complete dissolution of samples, the solutions were dried
down on a hotplate to expel excessive HNO3. Finally, the residues
were dissolved in 5 ml of 2% HNO3 for the analysis of elemental
compositions.

Major element concentrations, including 27Al, 137Ba, 40Ca,
56Fe, 39K, 24Mg, 23Na, and 55Mn, were determined by a Spectra
Blue Sop inductively coupled plasma optical emission
spectrometer (ICP-OES) at Peking University. Rare Earth
Elements and other trace elements were analyzed by an
inductively coupled plasma mass spectrometry (ICP-MS) at
Chinese Academy of Geological Sciences, including 139La,
140Ce, 141Pr, 144Nd, 150Sm, 152Eu, 157Gd, 159Tb, 163Dy, 89Y,
165Ho, 167Er, 169Tm, 173Yb, 175Lu, and 74Ge contents. SiO2

content was calculated by summing the weight of oxides of all
major elements (Al2O3, CaO, Fe2O3, K2O, MgO, and Na2O) and
minor elements to 100%. The analytical precision is better than
5% for all major elements and 10% for trace elements. Two
standard materials, GSR-5 (shale) and GSR-13 (calcite), were
measured to calibrate the accuracy of the determination.

4 RESULTS

4.1 Petrological Observations
The Maokou and Wujiaping formations are composed of gray
limestone and bioclastic limestone/packstone in the Lianziya and
Maoertang sections. Dark gray chert nodules are randomly
distributed in carbonates. Chert nodules show a variety of
morphologies and sizes. Most chert nodules are irregular,
discontinuous, and are distributed roughly parallel to the
bedding (Figures 2A,B). The abundance of chert nodules
varies through layers (Figure 1B).

According to microscopic observations, the Maokou
Formation in the Lianziya section is dominantly composed of
limestone and bioclastic limestone/packstone (Figures 2C,D).
Chert nodules predominantly consist of microquartz in both
sections. Biological fabrics, including brachiopods, ostracods,
bivalves, and sponges, could also be identified in the carbonate
matrix and nodular cherts in both sections (Figure 2).

4.2 Geochemical Results
4.2.1 Major Elemental Compositions and Ge/Si Ratios
Major and trace elemental compositions of chert nodules in the
Lianziya and Maoertang sections are presented in Supplementary
Data S1, S2, respectively. In the Lianziya section, the SiO2 content of
the chert nodules ranges from 89.04% to 99.43%, with an average of
96.70%. Al2O3 and Fe2O3 contents range from 0.27% to 5.56% with
an average of 1.77%, and 0.12%–3.11% with an average of 0.78,
respectively. Germanium to silicon ratios (Ge/Si) in the Lianziya
section range from 0.14 to 0.63 μmol/mol. The average Ge/Si ratio is
0.33 μmol/mol. In the Maoertang section, SiO2 concentrations of
chert nodules range from 96.42% to 99.76%, with an average of
98.80%. Al2O3 and Fe2O3 contents range from 0.10% to 2.03% with
an average of 0.56% and from 0.03% to 1.39% with an average of
0.34%, respectively (Figures 3, 4). Ge/Si ratios vary between 0.02 and
0.75 μmol/mol, with an average of 0.18 μmol/mol (Figure 5).

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9322633

Li et al. Eu Anomaly in Chert

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


4.2.2 Rare Earth Element Compositions
In the Lianziya section, total rare earth element contents of chert
samples range from 1.60 to 14.11 ppm, with an average of 5.90 ppm.
The Post-Archean Australian shale (PAAS) normalized REE data
display a consistent light REE (LREE) depleted pattern. Chert
samples also yield low La/Yb ratios (0.24–0.84, mean = 0.55, n =
18). In addition, most samples are characterized by light negative Ce
anomalies (Ce/Ce*, 0.72–0.98, mean = 0.92, n = 18), Y/Ho >1
(0.98–1.37, mean = 1.13, n = 18), and medium Eu anomalies (Eu/
Eu*, 0.66–2.16, mean = 1.30, n = 18).

In the Maoertang section, the total REE contents vary within a
relatively wider range, from 0.34 to 15.49 ppm, with an average of
4.21 ppm. The La/Yb ratios (0.57–2.23, mean = 1.22, n = 45) are
also low, similar to those in the Lianziya section. Chert nodules in
the Maoertang section also present negative Ce anomalies
(0.62–1.38, mean = 0.82, n = 45). Y/Ho ratios are mostly
higher than 1, ranging from 0.74 to 2.25, with an average of
1.12 (n = 45). Eu anomalies vary between 1.05 and 9.57 (mean =
2.43, n = 45), relatively higher than those of the Lianziya section
(Figure 6), (Supplementary Data S2).

5 DISCUSSION

5.1 Ge/Si Ratios of Cherts in the Maokou
and Wujiaping Formations
Before interpreting Ge/Si ratios of chert nodules in the Maokou
andWujiaping formations, influences from terrigenous clays and
other potential contaminations should be addressed. In this
study, in order to completely remove carbonate content, bulk

samples were first leached by 10 ml of 0.5N HAc and 5 ml of 1N
HCl. Apart from carbonaceous components, Ge can be chelated
with organic matter in seawater with high DOC concentrations
(Pokrovski and Schott, 1998; Pokrovski et al., 2000). Meanwhile,
clay minerals can further adsorb organic matter, and thus, clay
minerals typically have high Ge/Si ratios. Besides, the Ge/Si ratio
of iron oxides can also reach up to 189.4 μmol/mol (Bernstein,
1985; Escoube et al., 2015). As a result, mixing with clay minerals
and iron oxides would elevate Ge concentrations and Ge/Si ratios
in samples.

In the Lianziya section, chert nodules are dominantly
composed of SiO2, ranging from 89.04% to 99.43% with an
average of 96.70% (Supplementary Data S1, Figure 4). Al2O3

and Fe2O3 contents are relatively negligible, varying from 0.27%
to 5.56% with an average of 1.77% and from 0.12% to 3.11% with
an average of 0.78%, respectively (Supplementary Data S1)
(Figure 4). Ge/Si ratios are low and show no significant
variations, from 0.14 to 0.63 μmol/mol (mean = 0.33 μmol/
mol). Besides, Ge/Si ratios are not associated with Al2O3 and
Fe2O3 (Figure 5). Thus, Ge/Si ratios of cherts in the Lianziya
section are predominantly controlled by silica content. Low Ge/Si
ratios are close to those of seawater and are lower than those of
hydrothermal fluids, suggesting the Si of cherts in the Lianziya
section was dominantly sourced from seawater.

In the Maoertang section, SiO2 content in cherts is higher,
reaching an average level of 98.80% (Supplementary Data S1;
Figure 4). Similar to the Lianziya section, the Al2O3 and Fe2O3

contents of chert nodules in the Maoertang section range from
0.10% to 2.03%, with an average of 0.56%, and from 0.03% to
1.39%, with an average of 0.34%, respectively (Supplementary
Data S1; Figure 4). There is no positive correlation between Ge/Si

FIGURE 1 | Paleogeographic map [modified fromWang and Jin, (2000)] and the stratigraphic column in the Permian (260 Ma) of the South China Block. Sampling
localities are marked by red stars. LZY: The Lianziya section, MET: The Maoertang section. The geochronology data are modified from Shen et al. (2019).
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FIGURE 2 | Field photographs and photomicrographs of the Permian chert nodules. (A) Field photograph of the Lianziya section; (B) Field photograph of the
Maoertang section; (C–H) Photomicrographs of chert nodules. Scale bars are 500 μm in Figures 2C–H.

FIGURE 3 | Integrated chemostratigraphy of the Maokou and Wujiaping formations in the Maoertang section.
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and Al2O3 or Ge/Si and Fe2O3 (Figure 5) either. Therefore, the
Ge/Si ratios of cherts in the Maoertang section are dominated by
silica components rather than clay minerals or iron oxides.

The Ge/Si ratios in both sections suggested that Si in chert
nodules predominantly originated from seawater. In the Lianziya
section, Ge/Si ratios range from 0.14 to 0.63 μmol/mol, with an
average of 0.33 μmol/mol. Similarly, Ge/Si ratios of the
Maoertang samples are distributed between 0.02 and
0.75 μmol/mol (mean = 0.18 μmol/mol). The Ge/Si ratios of
the cherts from both sections are close to the modern seawater
value of 0.72 μmol/mol (King et al., 2000), which is significantly
lower than that of hydrothermal fluids (5–16 μmol/mol, Escoube
et al. (2015)). Thus, the Ge/Si ratios of the PCE cherts in the SCB
suggest that seawater was the dominant source of Si.

5.2 REE Features of Cherts in the Maokou
and Wujiaping Formations
Chert samples in the Maokou and Wujiaping formations in this
study are a mix of three components: silica content, clay minerals,
and iron oxides. REE patterns will be affected by the ratio of each
component. Detrital clay minerals contain high total REE (TREE)
concentrations that show flat REE patterns, whereas the
authigenic clay minerals come from seawater, recording a
seawater pattern of depleted-LREE, high Y/Ho and a negative

Ce anomaly (German et al., 1991). Iron-minerals show anMREE-
enrichment pattern. Neither clay minerals nor iron-minerals have
Eu or Ce anomalies. The hydrothermal fluid and seawater signals
will not be affected by these two components. However, the
mixing of clays and iron-minerals will elevate total REE
concentrations, which may dilute Eu and Ce anomalies.

In the Lianziya section, both TREE vs. Al2O3 and TREE vs.
Fe2O3 show positive linear correlations (R2 = 0.73 and 0.79,
respectively), indicating that clay and iron-minerals elevate TREE
concentrations (Figure 6). Eu/Eu* and Ce/Ce* are diluted by high
Al2O3 and Fe2O3 concentrations (Figure 6). There is no
correlation between La/Yb and Al2O3, Y/Ho and Al2O3, La/Yb
and Fe2O3, or Y/Ho and Fe2O3 (Figure 6). All samples show
LREE-depletion patterns, negative Ce anomalies (0.72–0.98, with
an average of 0.92) and their La/Yb ratios are all less than 1. And
14 out of 18 samples demonstrate positive Eu anomalies
(0.66–2.16, mean = 1.30, n=18).

In the Maoertang section, REE data show a similar pattern to
that of the Lianziya section. TREE and Al2O3 show a positive
linear relationship (R2 = 0.56, Figure 6), while the positive
correlation between TREE and Fe2O3 is not obvious
(Figure 6). Eu/Eu* and Ce/Ce* are also eliminated in samples
with higher Al2O3 and Fe2O3 concentrations (Figure 6). There is
no correlation between La/Yb and Al2O3, Y/Ho and Al2O3, La/Yb
and Fe2O3, and Y/Ho and Fe2O3 as well. Overall, 11 out of 45

FIGURE4 |Cross plots showing the correlations betweenmajor element contents (measured as oxides in wt%). (A) Al2O3 vs. K2O; (B) Al2O3 vs. MgO; (C) Al2O3 vs.
Fe2O3; and (D) K2O vs. MgO.
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samples show LREE-depletion patterns and negative Ce
anomalies (0.62–1.38, with an average of 0.82). All samples
show positive Eu anomalies (1.05–9.57, mean = 2.43, n = 45).
It is worth mentioning that the measurement of Sm, Eu, and Gd
could also be affected by barium concentrations in ICP-MS;
however, Eu/Eu* and Ba do not show positive correlations
(Figure 7F), ruling out this possibility.

In the Lianziya and Maoertang sections, the LREE-depletion
patterns, high Y/Ho ratios, and negative Ce anomalies suggest
that the seawater might be the predominant Si source of chert
nodules (Figure 8). Meanwhile, samples also show positive Eu
anomalies, which is a typical hydrothermal fluids signal in chert.
To resolve the conflict, we use a binary mixing model to quantify

the contribution of hydrothermal fluid and seawater with regard
to the Si source of chert nodules in the Maokou and Wujiaping
formations from SCB.

5.3 Ge/Si-Eu/Eu * Systematics of Cherts in
the Maokou and Wujiaping Formations
5.3.1 Description of Ge/Si-Eu/Eu * Model
The binary mixing model is based on two parameters, Ge/Si
and Eu/Eu*, and regards seawater and hydrothermal fluids as
two endmembers (Cui et al., 2019). In this model, Ge/Si and
Eu/Eu* can be calculated by mass-balance equations as
follows:

FIGURE 5 | Cross plots showing the correlations between Ge/Si (μmol/mol) and major element contents (measured as oxides in wt%). (A) Al2O3 vs. Ge/Si; (B)
Fe2O3 vs. Ge/Si; (C) MgO vs. Ge/Si; (D). SiO2 vs. Ge/Si; (E) K2O vs. Ge/Si; and (F) Na2O vs. Ge/Si.
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Ge

Si
� f × mHF × (GeSi)HF

+ (1 − f) × mSW × (GeSi)SW
f × mHF + (1 − f) × mSW

, (1)

Eu

Eup
� f × REEHF × ( Eu

Eup)HF
+ (1 − f) × REESW × ( Eu

Eup)SW
f × REEHF + (1 − f) × REESW

,

(2)
where f is the volume fraction of hydrothermal fluids and mi

represents silica concentrations (mM); (Ge/Si)i represents the Ge/
Si ratio; (Eu/Eu*)i represents the Eu anomaly; REE represents total
REE concentrations (ppb); subscripts HF and SW represent the two
endmembers: hydrothermal fluids and seawater, respectively.

Some parameters in hydrothermal fluids, including Eu
anomaly, SiO2 concentration and Ge/Si ratio, are strongly
dependent on temperature (Douville et al., 1999). On the
basis of the data collected from modern hydrothermal fluids
in Lucky strike, Cruise (Douville et al., 1999), a negative
correlation between Eu anomaly and temperature has been
established (Cui et al., 2019), which can be expressed as:

Eu

Eup
� −0.123 × T + 49.604 (R2 � 0.864), (3)

where T is the temperature (in Kelvin) of hydrothermal fluids.

FIGURE 6 | Cross plots showing the correlations between major element contents (measured as oxides in wt%) and TREE (ppm), Ce/Ce*, Eu/Eu*, Y/Ho, and
La/Yb.
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FIGURE 7 | Cross plots showing the correlations between (A)Ge/Si (μmol/mol) vs. TREE (ppm); (B) Ge/Si (μmol/mol) vs. Ce/Ce*; (C) Ge/Si (μmol/mol) vs. Eu/Eu*;
(D) Ge/Si (μmol/mol) vs. Y/Ho; (E) Ge/Si (μmol/mol) vs. La/Yb, and (F) Ba (ppm) vs. Eu/Eu*.

FIGURE 8 | PAAS-normalized REE patterns of the MET and LZY sections, showing the LREE depletion and the positive Eu anomaly.
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In hydrothermal fluids, SiO2 remains saturated with respect to
quartz, and the saturation concentration is determined by
temperature (Crerar and Anderson, 1971). The relationship
between SiO2 and temperature can be expressed as (Crerar
and Anderson, 1971):

Logm � −1107
T

− 0.0245, (4)

where m is the saturation concentration of SiO2 (mol) and T is the
temperature of hydrothermal fluids in Kelvin. Solubility of SiO2

usually decreases with decreasing temperature (Crerar and
Anderson, 1971), so cooling of hydrothermal fluids can cause
crystallization of quartz. Compared to Ge, Si preferentially enters
into the lattice of quartz (Escoube et al., 2015), causing
enrichment of Ge and a high Ge/Si ratio in hydrothermal
fluids (Escoube et al., 2015). The development of Ge/Si ratios
of hydrothermal fluids is in accordance with the Rayleigh
distillation model (Evans and Derry, 2002), which can be
expressed as:

(Ge
Si
)
HF

� (Ge
Si
)
0
× Fα−1, (5)

F � [Si]/[Si]0, (6)
α � ((Ge/Si)quartz)/((Ge/Si)fluid), (7)

where (Ge/Si)0 is the Ge/Si ratio of the primary hydrothermal
fluids; F is the fraction of Si in the hydrothermal system, which
can be calculated by Eq. 6; [Si]0 is the initial silica concentration,
and [Si] is the remaining silica concentration; α is the fraction
factor of quartz precipitation, and is defined as the instantaneous
quartz Ge/Si ratio divided by the instantaneous fluid Ge/Si ratio
(Eq. 7). α value ranges between 0.0054 and 0.023 (Evans and
Derry, 2002).

5.3.2 Parameter Setting
We assume that Si concentration and REE level in seawater
remain consistent and REE concentrations in hydrothermal
fluids are fixed. Parameters in this model are summarized in
Table 1.

The Ge/Si ratio of modern seawater is 0.72 μmol/mol (King
et al., 2000), and it is set at 0.02 μmol/mol (minimum of sample
value) in this model. SiO2 and REE concentrations of seawater are

assigned to mSW = 2.2 mM and REESW = 29 ppt, respectively
(Douville et al., 1999; Conley et al., 2017). Eu/Eu* of seawater is
1.13, and the seawater temperature is set at 25°C (Elderfield et al.,
1988). As for hydrothermal fluid, the initial temperature T0 and
(Ge/Si)0 are set as 400°C and 10 μmol/mol, respectively. Si
concentration in hydrothermal fluids is 1281 ppm (Crerar and
Anderson, 1971), and (Eu/Eu*)HF0 is set as 0.4 and change with
temperature (Douville et al., 1999). Besides, REE concentration in
hydrothermal fluid (REEHF) is estimated at 2000 ppt (Douville
et al., 1999). According to Evans and Derry (2002), parameter α
distributes between 0.0054 and 0.023. In this model, α is assigned
to a value of 0.02.

5.3.3Modeling Results and Si Source of Chert Nodules
in the Maokou and Wujiaping Formations
The modeling results are presented by a Eu/Eu*-Ge/Si cross-plot
(Figure 9). The solid contour lines represent various
temperatures of hydrothermal fluids, while the dashed lines

TABLE 1 | Parameters of the binary-mixing model.

Parameter Value Unit Range Equation Reference

Eu * (HF) — — — (3) Douville et al. (1999)
SiO2 — mM — (4) Crerar and Anderson, (1971)
Ge/Si (HT) — μmol/mol — (5) Evans and Derry, (2002)
REEHF 2 ppb 0.5–3.0 — Douville et al. (1999)
SiO2 (sw) 2.2 mM 0.5–2.2 — Siever, (1992); Conley et al. (2017)
Ge/Si (sw) 0.02 μmol/mol 0.02–0.72 King et al. (2000)
REEsw 29 ppt German and Elderfield, (1990); Douville et al. (1999)
Eu * (sw) 1.13 — Douville et al. (1999)
Alpha 0.02 — 0.0054–0.023 Evans and Derry, (2002)
Ge/Si0 10 μmol/mol 5–15
T0 400 °C 300–400

FIGURE 9 | Modeling results showing the binary mixing between
hydrothermal fluid and seawater. The solid contour lines represent
hydrothermal fluids of different temperatures (100–400°C), while the tick
marks and the dashed lines indicate the volume fraction of hydrothermal
fluid (0.2%–2%).
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denote the mixing volume fraction of hydrothermal fluids. Eu/
Eu*-Ge/Si data of samples are plotted in Figure 9.

In the Lianziya section, the temperature of hydrothermal
fluids ranges from 300 to 400°C, and the mixing ratio of
hydrothermal influx is lower than 1 vol% (Figure 9). In the
Maoertang section, the temperature of hydrothermal fluids in
the Maokou Formation ranges from <200 to 400°C, and the
mixing ratio of hydrothermal influx is lower than 1 vol%
(Figure 9). In the Wujiaping Formation, the temperature of
hydrothermal fluids ranges from 200 to 400°C, and the mixing
ratio of hydrothermal influx is lower than 0.5 vol% (Figure 9).
Thus, based on the modeling results, the temperature of

hydrothermal fluids ranges from <200 to 400°C. The mixing
volume fraction of hydrothermal fluids is lower than 1 vol%,
equivalent to the mass fraction of 10 wt%. This indicates that
the Si of cherts in the PCE was dominantly sourced from
seawater, as evidenced by Ge/Si ratios and REE patterns. It is
interesting to see that although the contribution fraction of
hydrothermal fluids is extremely low (lower than 1 vol%), it
still results in positive Eu anomalies.

5.3.4 Sensitivity Test
The modeling results could be influenced by parameter settings. To
verify the reliability of the modeling results, we ran sensitivity tests for

FIGURE 10 | Sensitivity tests of the binary-mixing model. The initial default parameters are (Ge/Si)0 = 10 μmol/mol, α = 0.02, REEHF = 2.0 ppb, T0 = 400°C, (Ge/
Si)SW = 0.02 μmol/mol, and mSW = 2.2 mM. The sensitivity of parameters are tested by adjusting a single parameter, (A) (Ge/Si)0; (B) α; (C) REEHF; (D) T0; (E) (Ge/Si)SW;
and (F)mSW; while the other parameters are fixed at the default values. The contour lines represent hydrothermal fluid temperature of 400°C, 350°C, and 200°C in (A–C)
and (E,F). The dashed lines represent the volume fraction of hydrothermal fluid (2%, 1%, and 0.5%). The modeling results indicate that the estimated mixing ratios
are not sensitive to the values of the aforementioned parameters.
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different parameters according to their ranges (Table 1). The
parameters that we tested include the original Ge/Si ratio of
hydrothermal fluids (Ge/Si0), the fractionation during
hydrothermal quartz precipitation (α), the REE concentration of
hydrothermal fluids (REEHF), the initial temperature of
hydrothermal fluid (T0), the Ge/Si ratio of seawater (Ge/SiSW), and
the SiO2 concentration of seawater (mSW). Results of sensitivity tests
indicate that the estimated mixing of 1 vol% of hydrothermal fluids is
not significantly influenced by the tested parameters (Figure 10).

5.4 Implications of Positive Eu Anomaly in
Determining Hydrothermal Source of
Siliceous Precipitation
The Eu anomaly has long been regarded as a direct proxy for the
implicated hydrothermal fluid source of Si in the chert formation.
However, in this study, although the chert samples in PCE show
significant Eu/Eu*[The Lianziya section: 0.66 to 2.16 (mean =
1.30, n=18); the Maoertang section: 1.05 to 9.57 (mean = 2.43, n =
45)], their contribution fraction is rather low (1 vol%). In
addition, low Ge/Si ratios and LREE-depleted REE patterns
also strongly argue for the contemporaneous seawater origin
of the Permian chert nodules.

In fact, Eu/Eu* in hydrothermal fluids and in seawater have
a great variation of 14.17 to 1.13, which means that a small
fraction of hydrothermal fluids could highly influence the Eu/
Eu* of bulk samples. Enriched elements in hydrothermal fluids
could have a very high concentration that is one order of
magnitude higher than that in seawater, making these
elements ineffective in tracing Si source of chert nodules.
Therefore, a positive Eu anomaly does not necessarily
indicate hydrothermal-sourced Si in cherts. In order to
accurately determine the Si source of cherts, the Ge/Si ratio
and REE pattern should also be carefully considered.

6 CONCLUSION

We measured Ge/Si ratios and REE compositions of chert
nodules of the Maokou and Wujiaping formations from two
sections in South China. Samples show low Ge/Si ratios
(0.02–0.75 μmol/mol), LREE-depleted patterns and positive Eu
anomalies, suggesting seemingly conflicting contemporaneous
seawater and hydrothermal fluid origins of the PCE chert

nodules. It is demonstrated, however, by a binary-mixing
model with seawater and hydrothermal fluids as two
endmembers, that hydrothermal fluids only account for 1 vol
% of the Si source in the chert nodules, and seawater is the major
source. This study suggests that a small amount of hydrothermal
fluid can lead to a high Eu anomaly, and therefore, the Eu
anomaly may not always be an effective proxy in determining
the silicon source of cherts; instead, Ge/Si ratio and REE patterns
should also be considered.
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