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With the continuous improvement of infrastructure, some high-speed railway

lines will inevitably cross the goaf ground, and there is less research on the

safety of high-speed rail construction in goaf ground. Tomake a reasonable and

accurate safety evaluation of the high-speed railway construction in the mine

goaf ground, machine learning combined with numerical simulation is used to

evaluate the safety depth of goaf under the impact of high-speed railway load.

An optimal algorithm is selected among BP, RBF, and PSO-RBF neural networks

based on the accuracy of the predicted height of a caving fracture zone.

Numerical models for simulating high-speed railway founded on goaf are

set up using the commercial software package FLAC3D, where factors such

as subgrade height, train speed, and axle load are investigated in terms of train

load disturbance depth and the extent of the caving fracture zone. The results

indicate that the PSO-RBF neural network has an error of 2.76% in predicting the

height of the caving fracture zone; the depth of train load disturbance is linearly

related to the axle weight and roadbed height but is a sinusoidal function of the

train speed. Based on the numerical simulation results, a formula for calculating

the depth of train load disturbance is proposed, which provides a certain

reference value for the construction of high-speed railways in the goaf ground.
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1 Introduction

Stringent ground settlement criteria are required for construction and operation of high-

speed railways. When high-speed railways cross goaf zones, the dynamic load generated by

trains could destabilize the existing stable goaf, resulting in settlement and inclination of

subgrade and endangering the driving safety of high-speed railways (Lei et al., 2013; Liang

et al., 2016). The waste of land caused by mining activities has become an important issue

restricting sustainable development (Bian et al., 2012; Yu et al., 2018) Taking Qinshui coalfield

in Shanxi Province as an example, due to the goaf site area of nearly 3000 square kilometers

formed by coal mining, the high-speed railway line inevitably passes through the goaf site. As

shown in Figure 1, the built Tai-jiao section, Shi-tai section, and Tai-xi section and the Qing-
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Yin high-speed railway and Tai-yan high-speed railway under

planning and research all pass through the goaf site.

At present, domestic and international research is focused on

the stability of goaf ground and stability under building loads (static

loads). Guo et al. (2019) proposed an evaluation model of a goaf

expressway with seven evaluation factors based on fuzzy theory,

calculated the factor weight by gray correlation method, and applied

the model to Wuyun Expressway to prove the reliability of the

model. Liu et al. (2011) proposed a fuzzy matter-element model

which used the AHP and matter-element extension method to

identify the risk level of goaf zones. Maria et al. (2013) used the

calculation method based on material resistance to analyze the

sensitivity of goaf roof stability to the variation of roof material

properties. Ashok et al. (2012) proposed a concept of panel stability

based on Salamon stability (Merwe, 2003) criterion, which is further

applied to analyze the critical failure modes of coal pillars. Debasis

and Choi (2006) conducted sensitivity checks on various factors

affecting the stability of aged goafs and used fuzzy collection theory

to predict the occurrence probability of surface subsidence pits.

Dong et al. (2008) proposed an evaluation index system based on

uncertainty measure theory to predict the risk of goaf. Henry et al.

(1989) summarized four mine collapse mechanisms, namely, single-

force source, dual-force opposition, shear dislocation, and tensile

force. However, there are fewer research results on the safety of high-

speed railway construction at the goaf ground. Unlike other

construction loads, high-speed railway loads are not only

influenced by vehicle speed, roadbed height, and axle weight but

also have the characteristics of strong periodicity and large changes.

Once the activation and deformation of the extraction area by train

load occurs, it will cause great hidden danger to the safety of high-

speed railway traffic.

In this study, the machine learning method is used to predict

the height of the caving fracture zone induced by construction

and operation of high-speed railways. The numerical simulation

method is used to obtain the train dynamic load disturbance

depth under various working conditions by changing the

embankment height, train speed, and train axle load. A

calculation formula is provided to predict the train load

disturbance depth, which can be combined with the caving

fracture zone to evaluate the safety of foundations for high-

speed railways.

2 Critical depth-to-thickness ratio of
a high-speed railway goaf ground

2.1 Failure characteristics of overlay rock
in coal mine goaf

Along with the coal seam being mined out, stress

redistribution occurs in the goaf, and the original structure is

destroyed. Upon completion of stress redistribution, a relatively

FIGURE 1
Study area: (A) Qinshui coalfield location in Shanxi Province, China; (B) high-speed railway line through Qinshui coalfield.
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stable mining-induced secondary rock structure is finally

formed. The overlying strata can be divided into the caving

zone, fracture zone, and bending zone, as shown in Figure 2A,

after mining by the long arm caving method. The caving zone

is mainly destroyed by the original overlying roof. The rock

stratum breaks, and the caving fills the mining area. The

caving zone is denser in the middle, but there are more

cavities on the sides. The fracture zone induced by the

bending of the rock layer is located above the caving zone.

Different from the caving zone, the fracture zone maintains its

layered structure and has more cracks in the rock layer. The

bending zone mainly refers to the rock (soil) layer from the

fracture zone to the surface. The vertical displacement of each

rock layer in the bending zone is basically the same, though

there are some separations and cracks. Masonry beam

structures may also be present in the caving zone and

fracture zone Figure 2B.

2.2 Critical mining depth-to-thickness
ratio

According to the overlay rock failure characteristics of goaf,

the broken rockmass and cracks in goaf exist mostly in the caving

zone and fracture zone. When the broken rock mass is

compacted or the cracks are closed by external force, the goaf

will be reactivated and deformed, resulting in surface subsidence

and affecting the safety of surface buildings.

In general, the evaluation of the stability grade of the goaf site

is based on the location of the depth of the additional stress

influence and the depth of the caving fracture zone. Through

numerical simulation, theoretical analysis, and model

experiment, Zhang (2005) and Guo (2001) pointed out that

the primary factor affecting the construction site of goaf

should be the mining depth-to-thickness ratio. When the goaf

site has a certainmining depth-to-thickness ratio, the existence of

goaf has no effect on the foundation of buildings. Therefore,

before traditional evaluation, it is necessary to preliminarily

determine the mining depth–thickness ratio. If the condition

is not met, the influence grade is divided by the relationship

between the influence depth of additional stress and the depth of

the caving fracture zone.

In order to determine the critical mining depth-to-thickness

ratio, Zhang (2005) analyzed the simulation results of

12 calculation models and 144 calculation schemes and

obtained the critical mining depth-to-thickness ratio under

different loads and different action positions, as shown in

Table 1 (building load).

Compared with the traditional building foundation, the high-

speed railway engineering foundation has more strict

requirements for settlement and inclination. When calculating

the critical ratio in Table 1 (building load), due to the high degree

of compaction and full filling in the middle area of the goaf, the

safety factor is found to be 1.2. In the edge area, the structure

similar to the masonry beam is formed after the rupture of the

hard rock stratum. There are voids and uncompacted areas, and

the safety factor is 1.5. In this study, the safety factor of themiddle

region is increased to 1.5, and that of the edge region is increased

to 2.0. The criterion of the critical depth-to-thickness ratio of

high-speed railway engineering is obtained (train load).

2.3 Load position

As shown in Figure 2B, the outer edge area mainly refers to

the area from the open-off cut to the restoration level of the

masonry beam rock block. The formula for calculating the length

of this region can be obtained from the masonry beam theory

(Qian, 1981):

n � int(H/LZ tanφ) + 1, (1)
LZ � hi

���������������
σt/3(∑ hi + hi)γ√

, (2)
L � n × LZ, (3)

where n is the number of rock blocks in themasonry beam structure,

H ismining depth, φ is fullymining angle, Lz is the length of periodic

weighting step distance, hi is the thickness of the key layer,∑ hi is the

thickness of the upper weak rock layer, σt is the ultimate tensile stress

of the key layer, γ is the volumetric force of the rock layer, and L is

the length of the outer edge region.

FIGURE 2
Characteristics of the mine goaf. (A) Three zones of goaf. (B)
Masonry beam structure
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The inner edge area refers to the area where the rock block

restores the horizontal position to the stop line. The compactness

of the inner edge area is better than that of the outer edge area.

For safety, Eqs 1–3 are also adopted for regional determination.

The compaction area is located in the middle of the inner and

outer edge areas. Due to sufficient collapse of rock mass, there are

fewer cracks in this area and the safety is high.

2.4 Foundation base load

The calculation of load mainly comprises static load of

subgrade and dynamic load of a train. Liang and Cai (1999)

proposed a sine function formula of train load considering

geometric irregularity, which comprises single-wheel static

load and dynamic load caused by geometric irregularity. The

value of irregularity is shown in Table 2.

F(t) � P0 +∑3
i�1
Pi sin(ωit), (4)

Pi � m0aiω
2
i , (5)

ωi � 2πV/Li, (6)

where P0 is the single-wheel static load, kN; ωi is circular

frequency under various conditions; m0 is unsprung mass, kg;

ai is arch rise under various conditions, mm;V is train speed, m/s;

and Li is wave-lengths under various conditions, m.

Based on the measured data of dynamic stress attenuation

law, Bian et al. (2010) obtained the attenuation formula of

subgrade dynamic stress:

η � 1 − z/(a + b × z), (7)

where z is the subgrade height, a and b are the fitting coefficients,

and the mean values of the fitting coefficients a and b of ballasted

track are 0.64 and 0.86, respectively.

In summary, the calculation formula of the base load can be

obtained:

σ � ∑ γizi + P0/W + η∑3
i�1
Pi sin(ωit)/W, (8)

where γi is the bulk density of the subgrade material for layer i, zi
is height of the subgrade material of layer i, and W is the

foundation base width.

3 Influence degree of goaf ground
activation

When the critical depth-to-thickness ratio of the goaf site

does not meet the standards given in Table 1, the influence degree

of reactivation needs to be determined. The additional load

distributed from the foundation of any structures above, once

its value is no more than 10% of the weight of the overburden

rock-soil mass, is considered to impose no significant effect on

the rock and soil mass at this depth. Due to a stringent

requirement for subgrade settlement for the construction and

operation of high-speed railways, a critical influence depth of

train load, Ha, is defined as the disturbance depth at which the

distributed additional stress from the train load is 5% of the

weight of rock and soil above.

The relationship between the critical influence depth of train

load and the depth position of the caving fracture zone is

depicted in Figure 3.

Because of strict requirements for high-speed railway ground

deformation, the more stringent evaluation criteria should be

adopted after considering China code’s criteria (The Professional

Standards Compilation Group of People’s Republic of China,

2014): 1) when the buried depth of the caving fracture zone is

greater than or equal to 2.5 times the load influence depth, the

TABLE 1 Determination of critical mining depth-to-thickness ratio of load.

Load type Load location Load size (MPa)

≤0.036 0.036–0.072 0.072–0.108 0.108–0.180

Building load Intermediate zone 19 30 45

Outer edge region 20 24 45 56

Inner edge region 24 38 60

Train load Intermediate zone 24 38 56

Outer edge region 27 32 60 75

Inner edge region 32 51 80

TABLE 2 Irregularity selection.

Controlling condition Wave-length/m Arch rise/mm

Driving smoothness (1) 10 3.5

Dynamic additional load (2) 2 0.4

Waveform wear (3) 0.5 0.08
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influence is little; 2) when the buried depth of the caving fracture

zone is less than 2.5 times the load influence depth and greater

than or equal to the load influence depth, the influence is

moderate; 3) when the buried depth of the caving fracture

zone is less than the load influence depth, the influence is great.

4 Height prediction of the caving
fracture zone

This study compares the depth of train load disturbance (Ha)

and the depth of the caving fracture zone (Hlf) to determine the

“re-activation” of the goaf ground. Prediction of the height of the

caving fracture zone is commonly based on the empirical formula

in GB 51044 (2014). This method is relatively straight-forward,

but it will produce a less accurate prediction of the safety depth of

the goaf ground for considering only the coal seam mining

thickness.

Machine learning, as an objective and effective prediction

variable or classification method, has been widely used in

geotechnical engineering (Tan et al., 2011; Cai et al., 2020;

Mahmoodzadeh et al., 2021). There are many factors

affecting the development height of the caving fracture

zone. As such, a reasonable influencing factor system is

critical for a more accurate prediction based on the

machine learning method. As per Guo et al. (2021), seven

factors are selected in this study: overburden structure,

buried depth, dip angle, mining thickness, working face

size, coal mining method and layered mining number.

Thirty-eight sets of data as provided in Wang et al. (2016)

are adopted to train and test samples, which are listed in

Table 3.

4.1 Introduction of machine learning
methods

The back-propagation (BP) neural network is a widely used

neural network trained according to the error back-propagation

algorithm. The BP neural network adopts the gradient descent

method, but which tends to terminate the learning by only

achieving a local optimal value. As such, the prediction

accuracy of using a BP neural network is not high.

The RBF neural network is a feedforward nonlinear neural

network. The RBF (radial basis function) neural network consists

of three layers, namely, the input layer, hidden layer and output

layer. The radial basis function of multivariable nonlinear

interpolation is adopted to transfer the input layer data to the

hidden layer instead of the “weight” function used in the BP

neural network. A linear interpolation is adopted in the RBF

neural network when the hidden layer outputs to the output

layer. In this way, the mapping of the network from input to

output is nonlinear, but the network output is linear for variables.

The “weight” factor of the network can be directly solved based

on a set of linear equations. In this study, the RBF neural network

algorithm is further combined with the PSO-RBF-neural

network algorithm (Qin et al., 2005) for learning, and the

results are compared with those based on the BP neural

network. The optimal algorithm is then selected in order to

overcome the local convergence issue of the BP neural network.

4.2 Error analysis and selection

According to the results of sample training and testing, the

performance diagrams of each algorithm are provided in

Figure 4. The PSO-RBF algorithm is found to provide the

highest fitting degree.

Equation 9 is adopted to calculate the error between the

training set and the testing set for each algorithm mentioned

above:

E � ∑n
i�1

∣∣∣∣∣ypi − yi

∣∣∣∣∣/yi, (9)

where E is error of the training set or testing set, ypi is the ith

predicted value, yi is the ith measured value and n is the total

number of objects in the set.

The results in terms of the error of the training set and test set

based on Eq. 9 are provided in Table 5. It shows that some

algorithms have a high fitting degree on the training set but a low

fitting degree on the test set. This might be attributed to a

relatively small number of samples (38 groups). A

comprehensive error is thus defined in Eq. 10:

ES � 0.4Etrain + 0.6Etest, (10)

FIGURE 3
Interaction between high-speed railway and themining zone.
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where Es is composite error, Etrain is the error of the training set,

and Etest is the error of the test set.

The calculation of Eq. 10 shows that in the case of the

same training samples and test samples, the PSO-RBF neural

network algorithm provides a minimum comprehensive

error of 2.76%, while the RBF and BP neural network

algorithms provide 8.048% and 12.84%. The PSO-RBF

neural network algorithm performs even better than the

GA-BP prediction model (2016) and thus will be used to

predict the height of the caving fracture zone.

TABLE 3 Learning samples.

NO. Overburden
structure1

Buried
depth
(m)

Dip
angle
(°)

Mining
thickness
(m)

Working
face
size (m)

Coal
mining
method2

Layered
mining
number

Measured
value

1 1 231 8 6.2 167 1 2 90.7

2 4 168 5.5 3.1 137 3 1 27.8

3 1 270 18 1.8 100 2 1 33

4 4 359 2.3 3.6 146 4 1 30

5 1 200 76 8 89 4 1 48

6 1 209.5 30 4.5 77 1 2 47.3

7 1 43 60 3 30 3 1 35

8 4 49 5 4 135 3 1 45

9 1 1024 32 6.5 180 4 1 75.6

10 4 230 37 2 85 2 1 52.5

11 3 120 8 1.2 75 2 1 31

12 1 434.6 8 8.7 153 4 1 64.5

13 2 320 6 1.7 65 2 1 27.5

14 3 475 28 5.13 149 3 1 45

15 3 173 20 3.8 70 1 2 26.7

16 2 409 9 8.13 193 4 1 72.9

17 2 130 5 6.3 136 1 2 52.2

18 2 93 62 1.8 73 2 1 16.6

19 1 260.94 2 5.2 265.5 3 1 153.9

20 3 467 8 11.4 207 4 1 228

21 2 288 6.5 8.61 169 4 1 65.5

22 2 520 12 3 174 3 1 102.3

23 1 391 25 5.6 230 1 2 57.3

24 2 285 6 1.6 180 2 1 30.8

25 2 479 4 6.6 170 4 1 66.6

26 2 325 5 5.6 160 1 2 51.5

27 4 113.3 14.5 2.45 188.8 3 1 34.98

28 4 262.8 2.5 8.8 143 1 2 39

29 4 225 23 6 174 1 3 58.4

30 4 329 8 8.1 134 4 1 83.9

31 3 341 6 5.3 99.5 1 2 45

32 3 52 9 4.3 90 1 2 40.3

33 1 89 7 2.03 69 2 1 45.86

34 2 420 23 3.7 70 3 1 56.8

35 4 350 9 4 136 3 1 35

36 1 400 5.75 5.77 154 4 1 70.7

37 2 418.6 6 8.7 198 4 1 65.5

38 1 272 11.5 8 120 4 1 62

1) The overburden structure includes the hard–hard type (Index 1), the hard–weak type (Index 2), the weak–hard type (Index 3), and the weak–weak type (Index 4).

2) The coal mining methods are blast mining (Index 1), fully mechanized mining (Index 2), layer mining (Index 3), and fully mechanized caving (Index 4).
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5 Numerical simulation of train load
disturbance depth

A lot of research works have been carried out to investigate

the dynamic response of soil under the influence of train load. Xia

et al. (2009) proposed a coupling model to simulate the

train–track–soil dynamic response by considering the track

irregularity condition and the vibration induced by track

irregularity. Galvin and Dominguez (2009, 2010a, 2010b)

established the train–track–subgrade finite element model to

analyze the dynamic response of three typical tracks under

train load.

As a commonly used numerical analysis software in

geotechnical engineering, FLAC3D is widely used in slope

stability (Zhou and Qin, 2020), mining engineering (Booth

et al., 2016), and geotechnical engineering (Yang et al., 2020).

To accurately obtain the depth of ground disturbance under train

load, FLAC3D software is used to simulate this study.

5.1 Prediction of disturbance depth

5.1.1 Train load simulation
Lamaran and Derdas (2002) simulated the load as the sum of

the static load and additional dynamic load as a function of train

speed, sleeper spacing, rail properties, and wheel weight. Auke

and Gerard (2001) pointed out that the geometric irregularity

caused by rail wear will produce huge wheel–rail impact force.

Manabe (2004) studied the rail vibration caused by multiple

wheelsets under track irregularity. Various geometric

irregularities can also contribute to the variation of the train

dynamic load magnitude (Jenkins et al., 1974). At present, the

commonly used train load simulation formula is composed of a

series of sine functions. In this study, the sine function of Eq. 4

considering irregularity is taken as the function of simulating

train load.

5.1.2 High-speed railway subgrade–foundation
model

According to the geotechnical engineering investigation

results of the research railway section, the

subgrade–foundation structure model is established as shown

in Figure 5.

The length of the model is 64.8 m, and the height is 55 m.

5.1.3 Constitutive model and parameters
The British Derby Railway Research Center indicates that the

dynamic behavior of a traditional ballast track subgrade is similar

to that of an elastic damping material. In this study, a

FIGURE 4
Neural network fitting results: (A) BP neural network fitting
results; (B) RBF neural network fitting results; (C) RBF-BP neural
network fitting results.
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Mohr–Coulomb constitutive model is used for the rock and soil

layer, and an elastic constitutive model is used for subgrade

structure. The material parameters of each layer are shown in

Table 4.

5.1.4 Boundary condition and damping
A viscous boundary condition is adopted in FLAC3D to

absorb the vibration wave and improve the calculation efficiency.

Rayleigh damping is selected in this study, with a damping ratio

parameter of 0.5%.

5.1.5 Model validation
The numerical model is first validated against the

monitoring data obtained from the Qinhuangdao–Shenyang

passenger line (Nie, 2005). The dynamic stress at the bottom

of the foundation bed predicted in this numerical

simulation and the measured values are provided in

Figure 6. It can be seen that the numerical model can

capture the upper bound and lower bound values for the

dynamic stress and the variation period. It can be seen from

Figure 6 that the simulated dynamic stress value changes

faster than the measured value because the simulated

dynamic stress considers the geometric irregularity.

When the train runs several times, it will be partially

worn, which makes the train travel on the railway similar

to a jumping state. The measured value is measured when

the railway has just been built and the track is relatively

smooth.

FIGURE 5
Train foundation structure.

TABLE 4 Parameters of subgrade and soil layers.

Thickness (m) Bulk modulus
K (MPa)

Shear modulus
G (MPa)

Density γ
(kN/m3)

Effective cohesion
c’ (kPa)

Effective internal
friction angle
φ’ (°)

Railway track 0.2 17680 14960 25 - -

Crosstie 0.15 17680 14960 25 - -

Ballast 0.35 2960 2310 23.44 - -

Surface of subgrade bed 0.7 76 175 22 - -

Bottom of subgrade bed 2.3 38 98 20 - -

Embankment below subgrade bed - 38 98 20 - -

Yellow clay 15 9.5 4.4 18.6 20 30

Sandstone 35 1302 1059 22 2000 35

FIGURE 6
Model verification.
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5.2 Disturbance depth formula

In this study, FLAC3D software is used to simulate the depth

of train load disturbance as a function of axle load, speed, and

embankment height, and twelve groups of models are designed

by control variables as shown in Table 5. The depth of load

disturbance was determined by comparing the maximum

additional stress at each monitoring point with the 5% self-

weight of the rock and soil mass at the point.

When two high-speed trains meet at the goaf ground, the

load on the goaf ground is the largest. In order to accurately

determine the disturbance depth of train load, stress monitoring

points are set between the single rail and double rail in the same

numerical model so as to determine the location of the maximum

disturbance depth. The results are shown in Figure 7.

At −4 and −8 m, the load of the monitoring points between

the double track is always greater than that between the single

track. At 0 m, the load fluctuates greatly, but it is still the

maximum value of the monitoring points between the double

track. So, the position between the two tracks is selected to

arrange monitoring points for determining the maximum

disturbance depth. The diagram of stress change and

disturbance depth for each group is shown in Figure 8.

5.2.1 Influence analysis of train axle load
In this study, the influence depth under the five grades of axle

load listed in Table 5 is studied. As shown in Figures 8A,D, the

increase of axle load would increase the additional dynamic stress

on the base and increases the influence depth significantly. This is

because the axle load directly affects the unilateral static wheel

load, and the size of the unilateral static wheel load accounts for a

large proportion of the dynamic load (see Eq. 4).

5.2.2 Influence analysis of train speed
Five grades of varying train speed between 150 and 350 km/h,

as listed in Table 5, are used to study the change of dynamic load

influence depth. It can be seen from Eq. 4 that the increase of

train speed would result in a corresponding increase in the force

TABLE 5 Experimental groups.

Group Axle load (t) Train speed (km/h) Embankment height (m)

Axle load group 14 250 4.15

18 250 4.15

22 250 4.15

26 250 4.15

30 250 4.15

Train speed group 22 150 4.15

22 200 4.15

22 250 4.15

22 300 4.15

22 350 4.15

Embankment height group 22 250 3.35

22 250 3.75

22 250 4.15

22 250 4.55

22 250 4.95

FIGURE 7
Load size under different action positions.
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acting on the rail, which should be attributed to the impact of

the change of speed on the circular frequency under various

control conditions. The influence depth, as indicated in

Figure 8B, is observed to increase linearly with the train

speed increases from 150 to 300 km/h but remains nearly

constant when the train speed increases from 300 to 350 km/h.

This observation is consistent with the findings of Bian et al.

(2014). Such impacts of train speed on influence depth should

be attributed to a shorter duration of train load with the train

speed increasing.

5.2.3 Influence analysis of embankment height
Five groups of embankment height, namely, 3.35 m, 3.75 m,

4.15 m, 4.55 m, and 4.95 m are studied regarding their influence

on the depth of train dynamic load. As shown in Figures 8C,F,

with the increase of embankment height, the static load imposed

on the foundation by the embankment would increase, which,

thereby, would increase the influence depth of train load. In fact,

due to the characteristics of high-speed rail, dozens of high-speed

railway will pass through every day, and increasing the

embankment height can effectively reduce the impact of

dynamic load on the site. For example, the curve of 4.15 and

4.55 m embankments in Figure 8C shows that the additional load

under the condition of 4.15 m is basically the same as that under

the condition of 4.55 m at the monitoring point of 4 m below the

base. Although the static load of the 4.55 m embankment is larger

than that of the 4.15 m embankment, the increase of

embankment height makes the disturbance consumption of

FIGURE 8
(A) Relationship between influence depth of dynamic load and axle load; (B) relationship between dynamic load influence depth and velocity;
(C) relationship between dynamic load influence depth and embankment height; (D) disturbance depth under different axial loads; (E) disturbance
depth under different train speeds; (F) disturbance depth under different embankment heights; (G) fitting of axle load and disturbance depth; (H)
fitting of train speed and disturbance depth; (I) fitting of embankment height and disturbance depth.
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train dynamic load increase, resulting in the additional stress

being equal at the base of 4 m.

5.2.4 Disturbance depth of train load
Figures 8A–F show that the disturbance depth is dependent

on the additional stress, the latter of which is a function of the

axle load, train speed, and embankment height. These three

factors are mutually independent. As such, the relationship

between the disturbance depth and each factor can be

obtained by data fitting. A comprehensive formula by

superposition can be obtained for the critical disturbance

depth of train load.

The fitting results of the relationship between the three

factors and disturbance depth are shown in Figures 8G–I. A

linear relationship is apparent between the two factors of axle

load and embankment height and the disturbance depth. A sine

function relationship is, however, observed between the train

speed and disturbance depth, which should be attributed to the

loading function (a sine function, Eq. 4) used in this study.

As shown in Eq. 11, the relationship between the critical

disturbance depth of train dynamic load and the three factors,

i.e., axle load, speed and embankment height can be obtained as

Hd � a0 + a1G + a2H + a3 sin(0.0009v + 4.185), (11)

where Hd is the critical disturbance depth of train dynamic load,

m;G is axle load, ton;H is height of embankment below subgrade

bed, m; v is train speed, km/h; and a0, a1, a2, and a3 are fitting

coefficients.

By using a multiple linear regression analysis, the following

values for the fitting coefficients can be obtained:

a0 � −7.283; a1 � 0.150; a2 � 4.437; a3 � −39.448.

Substituting a0, a1, a2, and a3 into Eq.11, the formula for

calculating the critical depth of train dynamic load disturbance is

shown in Eq.12.

Hd � −7.283 + 0.150G + 4.437H − 39.448(0.0009v + 4.185).
(12)

The residuals obtained by this multiple linear regression are

shown in Figure 9. The confidence interval of residual values at

each data point contains 0 points, and the R2 value of this formula

is 0.97, indicating that this fitting can better reflect the

original data.

6 Case study

6.1 Engineering geology

In order to verify the validity of the judgment method

and the correctness of the FLAC3D model, an engineering

example, DK259 + 690-DK259 + 710 road section of Tai-Jiao

high-speed railway, as shown in Figure 10, is used to verify

the approach provided above. The high-speed rail line

crosses No. 2 goaf, which has a buried depth of goaf

about 46.6 m and a maximum mining height of about

6.5 m. The dip angle of the coal seam is 2°–5° and was

mined by blast mining. The backfilling material is

sandstone and mudstone gravels, and the backfilling

structure is loose. The high-speed railway is constructed

with ballast track, and the height of the embankment

below the subgrade bed is 0 m. The ground profile and the

design parameters are the same as those adopted in this study

above (Figure 6 and Table 4). The design train speed is

250 km/h, the design axle load is 22 t, and the railway trunk

line is 40 m from open-off cut.

6.2 Critical mining depth-to-thickness
ratio determination

The goaf site of the railway trunk line is determined

according to Eqs 1–3, and relevant data are inserted: hi is

3 m, Σhi is 10 m, γ is 2.5e4 N/m3, σt is 10 MPa, and H is

46.6 m. The calculation shows that Lz is 9 m and n is 5. The

length of the outer edge and inner edge is 45 m. Therefore,

the location of the high-speed railway project is the outer

edge area.

The mining depth-to-thickness ratio of the goaf site is only 7,

which does not meet the critical value of any working condition

in Table 1. Therefore, the relationship between the depth of the

caving fracture zone and the disturbance depth is used to

determine the influence level of goaf activation.

FIGURE 9
Fitting residual error.
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FIGURE 10
Engineering location.

FIGURE 11
Z-Direction stress map.
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6.3 Height prediction of the caving
fracture zone

The height of the caving fracture zone in the goaf is predicted

by the PSO-RBF algorithm. The engineering condition of the

goaf is normalized and compiled, with an input matrix being

obtained:

X � [1 0.001 0.0405 0.5196 0.3830 0 0].
The trained grid is used to train the input matrix, and the height

of the caving fracture zone in the goaf is calculated to be 39.37 m.

6.4 Train load disturbance depth
prediction

To verify numerical simulation and Eq.12, these twomethods are

compared by predicting the disturbance depth of the train

dynamic load.

The numerical simulation model produces the Z direction

stress figure. As shown in Figure 11, the influence depth under

this condition is 32.96 m. At the same time, the numerical

simulation model results show that the maximum stress load

at 0 m is 72.56 kPa, and the result obtained by Eq. 8 is 80.682 kPa,

indicating that the equation is reasonable.

With the train parameters substituted into Eq. 12, the

dynamic load disturbance depth is predicted to be 33.675 m.

The difference between the values predicted by these two

methods is only 0.679 m.

Calculations of the height of the caving fracture zone and the

depth of train load disturbance show that the critical disturbance

boundary of the train dynamic load is expected to intrude into

the top boundary of the caving fracture zone. The dynamic load

of the train would impact the caving fracture zone, closure of the

separation layer and cracks, and reactivate goaf deformation. The

influence level of the goaf site is significant.

Grouting treatment was carried out during the construction

of high-speed railway in this section to fill the separation layer

and cracks in the caving fracture zone to improve the foundation

performance. This is consistent with the predicted results of the

research method and indicates that the method has some

engineering reference value.

7 Conclusion

Due to the high-intensity and long-term mining of China’s

coal resources, a large area of goaf sites have been formed. In

addition, with the rapid development of high-speed railway,

some key lines will inevitably cross the coal mine goaf site.

The activation evaluation criteria of goaf ground are one of

the urgent problems to be solved to ensure the safe operation and

maintenance of high-speed railways. Based on the neural

network and numerical simulation, the combined methods for

the goaf ground activation criteria of high-speed railway are

proposed. The main conclusions are as follows:

1) The criteria for determining the critical mining depth-to-

thickness ratio of high-speed railway in the goaf site is given,

the zoning formula of the goaf site is proposed, and the

simplified formula of combined action under subgrade and

train load is obtained.

2) The BP, RBF, and PSO-RBF neural networks are used to learn

the 38 mine goaf samples, and the error of each model for

sample learning and testing is obtained. The PSO-RBF neural

network model has the lowest error, which can be used to

predict the height of the caving fracture zone in the goaf site.

3) One evaluation criterion for the influence degree of goaf

ground stability of high-speed railway is proposed, and a

simple and effective numerical simulation model about

applying train dynamic load is established. Comparisons

on the additional dynamic stress and self-weight stress of

the goaf ground are drawn, the disturbance depth of train

dynamic load is predicted, and the influence degree of goaf

ground stability is judged.

4) Activation judging formula with high availability and

reliability is deduced. By changing the embankment height,

train speed, and train axle load, the FLAC3D model was used

to simulate various working conditions. The results show that

the disturbance depth of train dynamic load has a good

functional relationship with the abovementioned three

factors. The calculation formula of critical depth of train

dynamic load disturbance is given by using the superposition

principle and multiple linear regression analysis.

5) An example verification process through a line section of the

Taijiao high-speed railway proves that the method has a certain

reference value in the safety evaluation of high-speed railway

construction projects at the site of the mining area, but it cannot

provide detailed hazard classification, such as the corresponding

measures to be taken for each level of hazard.
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