
A Comparative Study of Six Hybrid
Prediction Models for Uniaxial
Compressive Strength of Rock Based
on Swarm Intelligence Optimization
Algorithms
Yu Lei, Shengtao Zhou, Xuedong Luo*, Shuaishuai Niu and Nan Jiang

Faculty of Engineering, China University of Geosciences, Wuhan, China

Uniaxial compressive strength (UCS) is a significant parameter in mining engineering and
rock engineering. The laboratory rock test is time-consuming and economically costly.
Therefore, developing a reliable and accurate UCS prediction model through easily
obtained rock parameters is a good way. In this paper, we set five input parameters
and compare six hybrid models based on BP neural network and six swarm intelligence
optimization algorithms–bird swarm algorithm (BSA), grey wolf optimization (GWO), whale
optimization algorithm (WOA), seagull optimization algorithm (SOA), lion swarm
optimization (LSO), firefly algorithm (FA) with the accuracy of two single models without
optimization–BP neural network and random forest algorithm. Finally, the above eight
models were evaluated and compared by root mean square error (RMSE), mean absolute
percentage error (MAPE), coefficient of determination (R2), and a10 index to obtain the
most suitable prediction model. It is indicated that the best prediction model is the FA-BP
model, with a RMSE value of 4.883, a MAPE value of 0.063, and a R2 of 0.985, and an a10
index of 0.967. Furthermore, the normalized mutual information sensitivity analysis shows
that point load strength is the most effective parameters on the UCS, respectively.
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INTRODUCTION

Uniaxial compressive strength is an important metric in rock mechanics and rock engineering,
particularly in the evaluation of rock slope stability, tunneling design, and ore mining. On the other
hand, the laboratory UCS test is time-consuming and costly. Many predict approaches have been
offered to acquire the UCS quickly and cheaply.

The association between the physical and mechanical properties of rock samples and the UCS should
be studied before theUCS can be predicted. Previous studies have found that a lot of rock parameters such
as porosity, longitudinal wave velocity, point load strength, density, block impulse index (BPI), Young’s
modulus, Schmidt hammer rebound number were correlated with UCS (Bieniawski, 1978; Barton et al.,
1980; Nicholson and Bieniawski, 1990;Mitri et al., 1994; Hoke and Brown, 1997; Barton, 2002; Tsiambaos
and Sabatakakis, 2004; Hao et al., 2018; Shan and Lai, 2018; He et al., 2019). After determining the
parameters that are closely related to UCS, scholars usually use the empirical equation predictionmethod
and machine learning methods to predict the UCS by these parameters.
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When using the empirical equation to predict the UCS, scholars
selected one ormore parameters of rock samples andfit the statistical
relationship between them and UCS. Part of scholars choose a single
parameter andmake predictions through different types of empirical
equations. Leite and Ferland (2001) took the porosity as the input
variable, carried out the linear fitting between the porosity and UCS,
and found that the porosity and UCS were negatively correlated.
Lashkaripour (2002) investigated the relationship between the
porosity and the UCS by the exponential function, a similar
conclusion was obtained with Leite and Ferland. Yasar and
Erdogan (2004) conducted linear fitting on the longitudinal wave
velocity and UCS. Yılmaz and Sendır (2002) fitted the Schmidt
hammer rebound number and UCS with a function combining
logarithmic function and linear function and obtained a reliable UCS
prediction equation. Broch and Franklin (1972) corrected the size of
rock samples to obtain the point load strength, established a linear
function between the point load strength and UCS, and found that
these two parameters are closely related. Ulusay and Gokceglu.
(1998) developed a block impulse index test device, using the BPI
as a parameter to indirectly evaluate UCS, and fitting it with a power
function. Yagiz (2011) found that the slake durability index could be
selected as an input variable for predicting UCS. Moreover, some
scholars choose a variety of rock parameters to conduct this work.
Sachpazis (1990) tested the UCS, Young’s modulus, and Schmidt
hammer rebound number and established a regression equation
between the three. Kayabasi et al. (2003) thought UCS was related to
RQD value, Young’s modulus, and weathering degree of rock
samples, and fit these three parameters and UCS, and the
established a regression equation could meet the requirement. On
the whole, the fitting equation proposed with the traditional
statistical methods could meet the needs of projects.

With the development of advanced artificial intelligence
methods, various non-linear UCS prediction models have been
established. In these models, several physical and mechanical
parameters of rock samples are usually chosen at the same time
as the input variables. Through tensile strength, point load strength,
and Young’s modulus, Armaghani et al. (2015) used the multiple
regression analysis (MRA) and an adaptive neuro-fuzzy inference
system (ANFIS) to obtain the UCS.Meulenkamp andGrima. (1999)
used Young’s modulus, porosity, and density to predict UCS by the
artificial neural network, and accurate prediction results were
obtained. By using longitudinal BPI, Schmidt hammer rebound
number, and wave velocity, point load index, Mishra and Basu et al.
(2013) predicted the UCS with the farthest candidate selection
model. The results indicated that Schmidt hammer rebound
number and point load strength are excellent input variables.
However, in the UCS prediction of shale, the longitudinal wave
velocity is not a suitable input parameter. Rezaei et al. (2012) selected
three parameters of density, Schmidt hammer rebound number, and
porosity as the input variables, then the UCS was predicted by the
fuzzy inference system (FIS). As a result, the predicted values were
quite close to the laboratory-measured values. Furthermore, in this
study, the sensitivity analysis showed that the Schmidt hammer
rebound number was the best input variable among them.
Mahmoodzadeh et al. (2021) chose long short term memory,
deep neural networks, K-nearest neighbor, decision tree, and
support vector regression to predict the UCS, and these models

all got good prediction results. Even if these single prediction models
could effectively predict theUCS, combined optimization algorithms
are gradually being applied. Majdi and Beiki. (2010) established a
genetic algorithm-optimized artificial neural network model to
predict the UCS with density, RQD value, and porosity. The
predicted results showed that better results could be obtained by
the optimized model. Although the selected input variables are
different, Mohamad et al. (2015) and Momeni et al. (2015) both
employed the artificial neural network (ANN) combined with the
particle swarm optimization (PSO) for the UCS prediction, the
predicted results show that the optimized artificial neural network
could give better-predicted values than before. On the basis of BPI,
point load strength, Schmidt hammer rebound number, and
longitudinal wave velocity, Xue and Wei (2020) compare the
predicted results of least-squares support vector machine
(LSSVM) optimized by genetic algorithm, ANFIS, FIS, and ANN.
The optimized models’ accuracy is superior to the other three single
models, according to the anticipated outcomes. Compared with the
empirical equation prediction method, the prediction models
established through different artificial intelligence algorithms have
better performance in UCS prediction.

Although models built by artificial intelligence algorithms
have found many applications in predicting UCS, its hybrid
model building and the selection of input parameters still need
to be refined. To find a suitable prediction algorithm and input
parameters to predict UCS, in this paper, we selected five input
parameters and used the six optimized BP neural networks with
different swarm intelligence algorithms to predict the UCS, and
evaluated the models through multiple evaluation indexes to find
the optimal UCS prediction model. The findings of the study may
be used as a reference to determine UCS quickly.

BASIC CONCEPTS AND ALGORITHMS OF
PREDICT MODELS

BP Neural Network
The input layer, middle layers, and output layer make up a BP
neural network, with all neurons in the input and middle layers
and the output layer linked. It is worth noting that neurons in the

FIGURE 1 | Schematic representation of the topology of a BP neural
network.
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same layer are not linked. (Yan and Zeng, 2013). The topology of
a BP neural network is shown in Figure 1. Through learning the
input data, BP neural networks could establish a mapping

relationship between input and output data, which leads to
this method being used in multivariate non-linear system
analysis.

Random Forest Algorithm
Leo Breiman (2001) invented the Random Forest (RF) method,
which is a classic machine learning approach, which integrates
multiple decision trees through integration learning (Bureau
et al., 2010). Decision tree is a tree-like structure Figure 2 in
which any internal node represents an attribute test. Each
branch in decision tree represents an output result, and each
leaf node represents a type. Within the integrated learning,
multiple classifiers are generated, each classifier conducts
learning and prediction without interfering and finally
synthesizing a single prediction. The most widely used
algorithms in integrated learning are the bagging algorithm
and the boosting algorithm.

More explanations regarding the FA algorithm can be
found in the literature (Yu et al., 2020a; Yu et al., 2020b;
Yin et al., 2022).

FIGURE 2 | Schematic diagram of the random forest structure.

FIGURE 3 | Flow chart of the bird swarm algorithm.
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Bird Swarm Algorithm
Bird is one of the flocking animals, and there are behaviors such
as foraging, vigilance, and flight in their life (Meng et al., 2014).
Bird swarm algorithm (BSA) is proposed inspired by these
behaviors of birds. These community behaviors may be
mimicked, and the swarm’s state of foraging, vigilance, and
flight could be changed using precise rules. The analogous
equation while the swarm is foraging is as follows:

xt+1
i,j � xt

i,j + rand(0, 1) × C × (pi,j − xt
i,j) + rand(0, 1) × S × (gj

− xt
i,j)

(1)
Where j is a positive integer between 1 and D, rand (0,1) is a
uniformly distributed random number between 0 and 1, C is the
cognitive acceleration factor, S is the social acceleration factor,
and both C and S are positive integers, Pi,j is the previous optimal
position of the ith bird, and gj represents the previous optimal
position in the swarm.

When the swarm is alert, each bird tries to get closer to the
swarm’s center. However, there is competition between every bird so
that each bird does not move directly towards the swarm center. The
flow chart of the BSA is shown in Figure 3. More explanations
regarding the BSA algorithm can be found in the literature (Meng
et al., 2015; Miramontes et al., 2018; Varol Altay and Alatas, 2019).

Grey Wolf Optimization
Grey wolf optimization (GWO) is a newmeta-heuristic algorithm
inspired by the grey wolf population’s social structure. (Mirjalili
and Lewis. 2016). There are four different types of grey wolves, α,
β, Δ, and ω, in the social hierarchy. The α wolf has the highest
status, followed by the βwolf, then the Δwolf, and the lowest rank
is the ω wolf. Moreover, Hunting behavior is divided into three
steps–locking for prey, surrounding the prey, and attacking the
prey (Kishor and Singh, 2016).

In the beginning, the wolves approach the prey by stalking and
chasing. Then a group of grey wolves will surround the prey until
the prey stops moving. Finally, they attack the prey. The
behaviors of a wolf population could be defined as:

�DG �
∣∣∣∣∣∣ �CG. �XPG(tG) − �XG(tG)

∣∣∣∣∣∣ (2)
�XG(t + 1) � �XPG(t) − �AG. �DG (3)

Where �DG is the distance between the wolf and the prey, �XPG is
the prey position vector, �XG is the position vector of the grey wolf,
tG is the number of current iterations, �AG and �DG are the
coefficient vectors. For a complete detail of the GWO
algorithm, the readers can refer to the study conducted by Yu
et al. (2019) and Yu et al. (2020c).

Whale Optimization Algorithm
Whales tend to hunt little fish at the surface of the ocean. Their
feeding journey is a unique spiral upward path with many
distinctive bubbles (Mirjalili and Lewis, 2016). There are three
common behaviors in whales, searching for prey, surrounding
prey, and hunting in the whale optimization algorithm (WOA).

Before hunting the prey, when �AW is greater than 1 or less than
−1, the whale in the group randomly selects prey referring to each
other’s positions so that the global search ability would be
improved, this behavior could be written as:

�DW �
∣∣∣∣∣∣ �CW. �Xrand(tW) − �XW(tW)

∣∣∣∣∣∣ (4)
�XW(tW + 1) � �Xrand(tW) − �AW · �DW (5)

Where �Xrand is the randomly chosen location variable for the
current whale population, �DW is the distance between the whale
and the prey; �XW is the position vector of the optimal solution, tW
is the number of current iterations, �AW and C

.

W are both the

FIGURE 4 | Flow chart of the firefly algorithm.
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coefficient vectors. For more details, equations and
implementation process of the WOA can be referred tothe
published studies in literature (Aljarah et al., 2016; Mirjalili
and Lewis, 2016; Mafarja and Mirjalili, 2017).

Seagull Optimization Algorithm
Migrating and feeding are the most essential characteristics of
seagulls, and the seagull optimization method is based on these
activities. To avoid colliding, each bird is at a distinct place.
Seagulls may fly towards the direction of the best landing spot.
Seagull groups maneuver in a spiral manner when hunting for
prey. (Dhiman and Kumar, 2019).

To avoid colliding with other seagulls as they migrate, the new
position of the seagull might be determined using the additional
variable A as follows:

Cs(ts) � A × Ps(ts) (6)
Where Cs is a new position that is not in conflict with other
seagulls, Ps is the seagull’s present location, ts is the current
iteration. A reflects the seagull’s movement behavior in the given
search space, and it may be calculated as:

A � fc − [ts × (fc/MAXiteration)] (7)
Where fc is the frequency of the control variable A, with a value
linearly decreasing from 2 to 0. To have a better understanding
regarding the SOA optimization technique, other studies in
literature can be considered (Dhiman and Kumar, 2019;
Dhiman et al., 2020; Panagant et al., 2020).

Lion Swarm Optimization
Lion swarm optimization is a new intelligence optimization
algorithm proposed to simulate lion hunting. There are three

types of lions in the population: lion king, lioness, and young lion.
The update of their position follows different rules. The algorithm
initializes the lion pride positions. Similar to other swarm intelligence
optimization algorithms, the parameters in LSO need to be initialized
before optimization starts (Yazdani and Jolai, 2016).

The lion king travels in a small area around the best prey
during hunting, and the corresponding position update
equation is:

XtL+1
m � gtL(1 + γ(ptL

m − gtL)) (8)
Where Xm is the update position of the lion king, γ is a random
number that fits a normal distribution between N (0,1); gtL is the
population optimal solution in the tLth iteration; and ptL

m is the
historical optimal solution for the mth individual in the tLth
iteration.

Through collaborative hunting, lionesses catch their prey, and
this behavior can be described as:

XtL+1
i � PtL

i + PtL
c

2
(1 + αfγ) (9)

Where X is the position of the lioness moving, PtL
c is the historical

optimal solution for a randomly selected predation partner in the
lioness’ pride during the tL iteration; αf is the lioness’ range
perturbation factor, which mainly affects the lioness’ range of
movement so that the lioness can search for prey at a larger range
and reduce the enclosure after finding prey. A complete version of
the LSO optimization algorithm can be seen in previous work
(Yazdani and Jolai, 2016).

Firefly Algorithm
Firefly algorithm (FA) is a group search-based stochastic
optimization algorithm. There are a few parameters in FA. No

FIGURE 5 | Data matrix.
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complex operations such as variation and crossover, and the
corresponding flow chart is shown in Figure 4.

There are two pivotal parameters in this method–light
intensity and attractiveness (Gandomi et al., 2011).

The light intensity function can be described as:

I(rij) � I0e
−γr2ij (10)

Where I0 is the initial light intensity of the firefly, r is the
distance between two fireflies, γ is defined as the light intensity
absorption coefficient, which could describe light lost in the
propagation.

If two fireflies i and j are located at �XiF and �XjF, respectively,
the distance between them can be calculated through Euclidean
distance as:

rij �






 �XiF − �XjF







 �
�������������∑D
k�1

(Xik −Xjk)2
√√

(11)

Where D is the spatial dimension of the solution problem, Xik is
the coordinates of the ith firefly in the kth dimension.

The attractiveness of FA diminishes monotonically as the
distance between them increases, and the attractiveness
function β(r) could be defined as.

β(r) � β0e
−γr2 (12)

Where β0 is the attraction at the light source. A complete version
of the FA optimization algorithm can be seen in previous works
(Fister et al., 2013; Gandomi et al., 2013).

TABLE 1 | Rock sample data.

No. Type Location Porosity
(%)

SRn VP (km/s) Is(50)(MP) E (GPa) UCS (MPa)

1 Granite Malaysia 0.39 47 5.506 2.31 92.9 117.9
2 Granite Malaysia 0.44 38 6.45 2.87 108.8 122.3
3 Granite Malaysia 0.25 45 5.95 3.12 78.4 124.7
4 Travertine Haji 3.35 27.42 5.66 3.00 11.45 63.68
5 Travertine Haji 9.35 27.38 5.38 2.86 8.03 47.46
6 Travertine Haji 8.14 30.13 5.09 3.63 6.15 37.89
7 Caliche Adana area 28.12 28.00 0.68 1.13 0.55 5.63
8 Caliche Adana area 28.44 25.00 0.49 0.97 0.19 3.37
9 Caliche Adana area 21.00 28.00 1.15 1.25 0.88 7.85
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

153 Sandstone Southern Anatolia 2.32 52.00 4.75 3.30 18.10 122.00
154 Limestone Southern Anatolia 0.66 59.00 5.84 2.20 15.90 112.00
155 Granite Ҫatalca 0.20 67.00 6.37 10.58 45.09 165.79
156 Granite Kapidağ 0.71 72.00 6.36 12.53 58.50 193.33
157 Granite Kapidağ 0.21 69.00 6.69 11.83 51.20 175.49
158 Tonalite Gönen 1.70 68.00 5.84 10.77 48.61 157.62

FIGURE 6 | Data violin plot.
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DATABASE AND DATA PRESENTATION

Selection of Input and Output Parameters
There are five input parameters–porosity, Schmidt hammer
rebound number, longitudinal wave velocity, point load

strength, Young’s modulus, and one output parameter–the
UCS in this paper. The first four input parameters could be
obtained through non-destructive testing methods (Stroffek
and Lesso, 2001; Liu et al., 2020). Moreover, the point load
strength is easy to obtain in the field test. These five

TABLE 2 | Initial parameters for hybrid model optimization.

Algorithm Parameters Value Optimal parameters

BSA a1 1 num_boosting_rounds = 2517
a2 1
c 1
S 1 eta=0.0394
FQ 5
N 20

GWO Convergence constant a [2,0] num_boosting_rounds = 2612
eta=0.0262

WOA r [0,1] num_boosting_rounds = 2371
a [0,2] eta=0.031
b 1
l [0,1]

SOA fc 2 num_boosting_rounds = 795
rd [0,1] eta=0.031

LSO γ 0.5 num_boosting_rounds = 2290
αf 0.4 eta=0.035
αc 0.4

FA γ 1 num_boosting_rounds = 262
β0 2 eta=0.021
α 0.2

rand 0.98

FIGURE 7 | Predicted vs. true values.
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parameters have been used more often in many
previous similar prediction models and are trustworthy
parameters.

Database
The experimental data from the literature (Tugrul and Zarif,
1999; Dincer et al., 2008; Dehghan et al., 2010; Armaghani

FIGURE 8 | Correlation analysis between predicted and actual values.
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et al., 2015) were collected to obtain the database in this paper,
which includes a total of 158 test results, as shown in Table 1.
Since the number of samples is too large, a matrix analysis plot
is drawn to show the data (Figure 5), which examines the
correlation between the input and output variables. It is
indicated that there is a negative correlation between the
porosity and the remaining four input variables. (The Corr
in Figure 5 means Pearson correlation coefficient). Moreover,
longitudinal wave velocity, Schmidt hammer rebound number,
point load strength, and Young’s modulus are positively
correlated with each other. To evaluate whether there are
outliers in the data, a violin plot is drawn, as shown in
Figure 6. The data we utilized in this study is evenly
distributed. There are no obvious abnormal data in this
database.

RESULT ANALYSIS

Parameters Initialization
Setting a proper ratio between the training samples and test
samples in the dataset is significant. According to the Pareto
principle, the training group number and the test group number
should account for about 80% and 20% of the total samples
(Forman and Peniwati, 1998; Yu et al., 2021). On the basis of this
rule, in this study, the training group was set at 128 groups,
accounting for 81%, and the test group was set at 30 groups,
accounting for 19%. The initial parameters of the proposed six
hybrid optimization models–SOA-BP, GWO-BP, WOA-BP,
BSA-BP, LSO-BP and FA-BP are shown in Table 2.

Predicted Results
After using the eight models to predict the UCS values, the actual
values and the predicted values are shown in Figure 7. It is found
that there are some big errors in the BP and RF models. The
predicted values related to these six hybrid models are closer to
the actual values.

Evaluation Method of Prediction Models
To evaluate the predicted results of the mentioned eight models,
four parameters–RMSE, MAPE, R2, a10 index were introduced.
RMSE is a machine learning metric that measures the difference
between the predicted and real values. The prediction model’s
prediction effect improves as the RMSE decreases. (Barnston,
1992). RMSE could be calculated as:

RMSE �

���������������∑N0

i�1
(ŷi − yi)2/N0

√√
(13)

Where N0 is the sample number in the test set, ŷi is the predicted
result and yi is the actual value.

MAPE calculates the difference between the expected and
actual value. MAPE has a range greater than or equal to 0. Once
the MAPE is close to 0, it is indicated that the corresponding
model has little errors. When MAPE is greater than 1, the model
is called as inferior model (Bollen et al., 2011). MAPE could be
calculated as follows:

MAPE � 1
N0

∑N0

i�1

∣∣∣∣∣∣∣∣ŷi − yi

yi

∣∣∣∣∣∣∣∣ × 100 (14)

The coefficient of determination. When least squares are used
for parameter estimation, R2 is the ratio of explained sum of
squares to sum of squares of deviations. And the larger the R2 is,
the more accurate the model is and the more significant the
regression effect is. R2 is a value between 0 and 1, where the closer
it goes to 1, the better the model fits. It is generally considered that
models with a R2 over 0.8 are good. R2 could be obtained as:

R2 � 1 −
∑N0

i�1
(yi − ŷi)

∑N0

i�1
(yi − �yi) (15)

Where �yi is the mean of predicted values.

FIGURE 9 | Taylor diagrams for all prediction models.
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a10 index is a novel index in statistics. It is the ratio of the number
of scatter points falling between ŷi � 0.9yi and ŷi � 1.1yi to the
total number of samples in the test set. a10 lies between 0 and 1. If the
a10 is close to 1, the corresponding model is better. a10 can be
calculated by the following equation (Cevik et al., 2011):

a10 − index � m10
M

(16)

Where m10 is the number in test set falling between ŷi � 0.9yi

and ŷi � 1.1yi, M is the total number of samples in the test set.
Though the above four evaluate indexes, it is indicated that the

FA-BP model is the best model in UCS prediction, with the RMSE
of 4.883, aMAPE of 0.063, an R2 of 0.985 and an a10 index of 0.967.
The worst in the hybrid models was WOA-BP with the RMSE
value of 8.130, the MAPE value of 0.102, the R2 of 0.951, and the
a10 index of 0.933. The other hybrid models all have an R2 of 0.95

FIGURE 10 | Variations of fitness value with the number of iterations.

TABLE 3 | List of evaluation parameters.

Model

Training RMSE Score MAPE Score R2 Score A10-index Score
BP 12.859 0.000 0.190 0.000 0.941 0.029 0.608 0.006
RF 9.846 0.349 0.163 0.223 0.940 0.000 0.606 0.000

BSA-BP 7.058 0.672 0.081 0.901 0.958 0.514 0.928 0.953
GWO-BP 7.035 0.675 0.079 0.917 0.961 0.600 0.827 0.654
WOA-BP 8.009 0.562 0.096 0.777 0.953 0.371 0.936 0.976
SOA-BP 6.789 0.703 0.109 0.669 0.965 0.714 0.889 0.837
LSO-BP 6.622 0.723 0.101 0.736 0.953 0.371 0.912 0.905
FA-BP 4.228 1.000 0.069 1.000 0.975 1.000 0.944 1.000

Testing BP 12.058 0.000 0.210 0.000 0.941 0.000 0.733 0.000
RF 9.832 0.310 0.153 0.388 0.945 0.091 0.800 0.286

BSA-BP 6.776 0.736 0.079 0.891 0.967 0.591 0.933 0.855
GWO-BP 7.136 0.686 0.080 0.884 0.967 0.591 0.900 0.714
WOA-BP 8.130 0.547 0.102 0.735 0.951 0.227 0.933 0.855
SOA-BP 6.854 0.725 0.099 0.755 0.970 0.659 0.900 0.714
LSO-BP 6.854 0.725 0.094 0.789 0.969 0.636 0.933 0.855
FA-BP 4.883 1.000 0.063 1.000 0.985 1.000 0.967 1.000

FIGURE 11 | Multiple model score graph.

FIGURE 12 | Input volume sensitivity analysis diagram.
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or higher, which shows that the hybrid models have better
prediction results. On the contrary, the BP model had the
RMSE value of 12.058, the MAPE value of 0.21, the R2 of
0.941, and an a10 of 0.733. In the random forest, there are the
RMSE value of 9.832, MAPE value of 0.153, R2 of 0.945, and the
a10 was 0.800. Their effects were all relatively poor. The
relationship between the predicted and actual values was drawn
in Figure 8. It could be seen in Figure 8 that all points are
distributed on both sides of the perfect fit line. The data points
corresponding to the FA-BPmodel are closest to the perfect fit line,
and the data points are the most discrete in the BP model.

To further evaluate the predict results of all prediction models,
the Taylor diagrams were drawn to show the relevance of the
standard deviation, root mean square error and correlation
coefficient (Ciesielski et al., 2002), the relationship in these
three parameters in Taylor diagrams could obtained by:

R �
1
Z∑Z

1
(ln − �l)(mn − �m)

σ lσm
(17)

Where R is the correlation coefficient, Z is the number of discrete
points, ln and mn is discrete variables, σ1 and σm is the standard
deviation of l and m, �l and �m are the means of σ1 and σm,
respectively.

All Taylor diagrams are listed in Figure 9, and all the fitness value
curves with the increasing iterations were collected, as shown in
Figure 10. It could be seen fromFigure 9 that the point corresponding
to the FA-BP model is closest to the observation point in the 2D
coordinates, indicating that this model has minimal prediction error.
On the contrary, the point corresponding to the BP model is the
furthest from the observation point, indicating that the prediction
effect is poor. Moreover, the fitness curve corresponding to the FA-BP
model decreases faster than that of other prediction models.

COMPREHENSIVE EVALUATION OF UCS
PREDICTION MODELS

To further analyze and compare the prediction performance and
algorithm stability of these six hybrid models and two single models,
we scored and evaluated the evaluation metrics for each model
training set and testing set. Within the widely used grading method,
all evaluation indexes need to be ordered, and then graded (Yin et al.,
2021). However, two similar values may be classified into different
levels in this method. To avoid this condition, we only calculate the
scores for each model. The same evaluation index of each model is
normalized by the following equation (Rao et al., 2008):

yi � xi −min0

max0 −min0
(18)

Where yi is the normalized value, xi is one of the evaluation indexes,
min0 and max0 are the minimum and maximum values of each
evaluation index, respectively.

After the normalization, all normalized values are in the range of
0–1. Noting that the larger R2 value and a10 index value represent
better models. On the contrary, if RMSE andMAPE are smaller, the

corresponding model is better. When calculating the evaluation
score of these four evaluation indexes, the evaluation scores for
RMSE and MAPE are the difference between 1 and their
corresponding normalized values. For the R2 value and a10 index
value, the evaluation score is equal to their normalized values. By
replacing the traditional simple grading method with this
standardized evaluation index, the problem of excessive disparity
between the scores of close evaluation parameters can be solved
(Chen et al., 2013).

All the obtained evaluation scores according to the calculation
procedures were listed in Table 3 and Figure 11. As can be seen
from Table 3, the scoring parameters of the training set and the
testing set are relatively close in the same algorithm, which
indicates that the algorithms are stable. Meanwhile, in order to
better show the prediction effects of the eight algorithms, we
accumulate the scores of the training and test sets of the
algorithms to get the final scores of the algorithms, as shown
in Figure 11. It is indicated from the evaluation results that the
best prediction model is FA-BP, with a full score of 8. While the
other five hybrid algorithms all scored between 5.123 and 6.196,
the single model RF only scored 1.693 and the BP neural network
scored 0.035. Noting that even if the other five hybrid models all
have a worse effect than the FA-BP model, their predicted results
are better than the unoptimized model–BP model and RF model.

SENSITIVITY ANALYSIS

It is evident from previous sections that the five input variables in this
paper all have an obvious correlation with the UCS, but the
significance level of each input variable is not yet known, and it
needs to be further studied. Mutual information was often used by
scholars in the information theory as a parameter to evaluate the
correlation between two objects (Maes et al., 1997). Furthermore,
normalized mutual information (NMI) can also be used to evaluate
the relationships between each feature label. To make the overall
predictive modeling scheme more convincing, the five input variables
are evaluated bymeans of theNormalizedMutual Information (NMI)
as a means of determining the importance of each variable parameter
to the model. Mutual information I could be obtained as follows.

I(X;Y) � ∑
x

∑
y

p(x, y)log p(x, y)
p(x)p(y) (19)

Where X and Y are two random variables, p(x,y) is the joint
distribution of these two random variables, and p(x), p(y) is the
marginal distribution of x and y. Mutual information I(X;Y) is the
relative entropy of the joint distribution p(x,y) and the product
distributions p(x)p(y). To compare the significance of all input
variables, the mutual information should be normalized by the
following equation:

NMI(X;Y) � 2I(X;Y)
H(X) +H(Y) (20)

Where NMI(X;Y) is the normalized mutual information, and
H(X) and H(Y) are the information entropy of the X and Y,
respectively. On the basis of the values of the normalized
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mutual information, the significance levels of these input
variables using in UCS prediction can be obtained, as
shown in Figure 12. The sensitivity scores of the four
quantities–Schmidt hammer rebound number, rock
longitudinal wave velocity, point load test strength, and
Young’s modulus are 0.777, 0.808, 0.828, and 0.833
respectively. Porosity has a low sensitivity score of 0.68. On
the whole, the five parameters selected in this paper are in line
with the requirements.

CONCLUSION

In this paper, to predict the UCS of rock samples with the collected
database with the artificial intelligence algorithm, six hybrid
models–BSA-BP, GWO-BP, WOA-BP, SOA-BP, LSO-BP, FA-BP,
and two classic models–BP and RF were developed. The predicted
results obtained from the developed eight models were compared
through four evaluation indexes and comprehensive scores. The
following conclusions could be drawn:

(1) When predicting the UCS, six hybrid models based on the
swarm intelligence optimization algorithms in this study
are all significantly more accurate and significantly better
than the BP neural network model and random
forest model.

(2) The prediction accuracy of the used eight models from
high to low is the FA-BP model, BSA-BP model, GWO-BP
model, LSO-BP model, SOA-BP model, WOA-BP model,
RF model, BP model. Among them, the FA-BP hybrid
model showed the best comprehensive performance in six
hybrid models and two single models. When carrying out

the UCS prediction, the FA-BP model should be
considered first.

(3) In the sensitivity analysis, porosity, Schmidt hammer
rebound number, longitudinal wave velocity, point load
strength, and Young’s modulus have the higher scores of
0.680, 0.777, 0.808, 0.828, and 0.833, respectively. They all
could be utilized as input quantities when conducting the
UCS prediction.
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