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A reliable water level prediction in a lake system is crucial for water resources

management, flood control, etc. The objective of this study is to propose a

machine learning model which is able to achieve a considerably high level of

accuracy in terms of water level prediction. Dongting Lake, which is the second-

largest freshwater lake system in China, was selected as the study area. The

hourly water level, flow rate, rainfall and temperature of the upstream water

stations and rainfall of the downstream water stations were used as the input

features, to predict the water level at the downstream stations. Multilayer

perceptron neural network (MLP-NN), Elman neural network (ENN), and

integration of particle swarm optimisation algorithm to Elman neural

network (PSO-ENN) were selected as the model development techniques.

The PSO-ENN model appears as the best performed model, as it records

NSE of 0.929–0.988, RMSE of 0.129–0.322 and MAE of 0.151–0.359 at the

downstream stations in Dongting Lake. The PSO-ENN model also shows its

ability to provide better performance for the water level prediction of 36 h in

advance. In terms of input variables sensitivity, the developed model is most

sensitive to flow rate, followed by rainfall.
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Introduction

Large freshwater lakes are extremely important natural

resources. The studies that focus on such system have been

carried out throughout the years (Liu et al., 2015; Tularam

et al., 2017). Dongting Lake is the second-largest freshwater

lake in China. Hence, it is essential to have a better

understanding of Dongting Lake from different aspects as it

may bring significant impacts in terms of lake natural resources

management and protection, as well as biodiversity conservation

(Hayashi and Kamp, 2021). The First Law of Geography (TFL)

states that all things are connected, yet things that are close to

each other are more connected than things that are far away from

each other (Reid and Beeton, 1992). In reality, the water level is

not only affected by the river basins, but also related to other

factors such as flow rate, rainfall, and temperature (Hoque and

Adhikary, 2020). Therefore, understanding the interaction

between rivers and lakes is important to study water level

fluctuation in lake areas, and hence predict the occurrence of

floods (Hu et al., 2007; Palmer et al., 2011). Floods happening

around Dongting Lake areas have become one of the most

frequent disasters in Yangtze River basin in recent decades

(Lai and Wang, 2017). In particular, the catastrophic flood in

1998 has caused a loss of 223 million people and 30 billion RMB

(Chen, 2000). Therefore, an accurate water level in the lake areas

is crucial for flood control and improvement of flood control

effectiveness.

Water level prediction has been a popular topic in

hydrological research for quite a long time. Global studies on

water level prediction in Dongting Lake can be divided into two

main categories, which are physical process-based and data

feature-based (Peprah and Larbi, 2021; Win et al., 2021). The

former is the study of physical processes to build predictive

models, containing equations and parameters involving several

physical properties. Song et al. (2011) used Moderate Resolution

Imaging Spectroradiometer (MODIS) data to calculate the water

surface area of Dongting Lake, and then combined it with water

level data from hydrological stations (ranging between 2003 and

2006) to derive the area-water level relationship of Dongting

Lake. Dai et al. (2020) used Mann-Kendall method to determine

and simulate the water level of Dongting Lake and its driving

force, and analyse the trend and abrupt change of its driving

force. However, these methods require a large number of physical

parameters for modelling purposes. Their applications are often

limited by the realistic unavailability of the data, high threshold

of the model application, and the overlying complex processing

procedures (Gayathri et al., 2015).

With the development of modern computer technology, the

application of mathematical models or machine learning theory

for water level prediction has developed rapidly (Li, 2017;

Zhang et al., 2020; Gan et al., 2021). Chen et al. (2018)

studied the water level variation of Dongting Lake and its

relationship with the upstream Three Gorges Dam, thereby

establishing a long short-term memory (LSTM) network model

to predict the daily water level of Dongting Lake. Pan et al.

(2020) developed a combination of convolutional neural

network and gated recurrent unit (CNN-GRU) model for

water level prediction by using a large amount of water level

data from Yangtze River and other rivers. Li et al. (2019)

combined three different optimisation algorithms, namely

particle swarm optimisation (PSO), genetic algorithm (GA)

and artificial bee colony (ABC), with multilayer perceptron

neural network (MLP-NN) to develop PSO-MLP-NN, GA-

MLP-NN and ABC-MLP-NN models for effective prediction

of groundwater level. In general, the LSTM and other deep

learning models exhibit a considerably well performance for

water level prediction in Dongting Lake. However, the

aforementioned models are modelled based on the daily step

size, so they are limited in terms of applicability, especially for

predicting the peak water level with hourly step size during

severe floods.

MLP-NN is commonly applied in studies related to

forecasting as it has a good non-linear fitting ability, however,

it may face defects such as minimum value limitation and long

training time when the database is large (Informatik et al., 2003).

In contrast, Elman neural network (ENN) has less potential to

face a similar issue, as its weights tend to fall into local minima in

the process of training with stochastic gradient descent algorithm

(Covachev and Covacheva, 2021). On the other hand, the PSO

algorithm has the ability to perform a global search and quickly

find the optimal value. Therefore, integrating the PSO algorithm

with the ENN has great potential further improve the overall

model performance (Aziz et al., 2021).

Based on the past literatures, a research gap was found, where

the water level prediction model in previous studies were mainly

developed using the daily step size. This study is innovative in

terms of proposing the development of hybrid metaheuristic

machine learning model using the hourly step size to provide a

more promising result. The main objective of this study is to

propose multilayer perceptron neural network (MLPNN), Elman

neural network (ENN) and integration of particle swarm

optimisation and Elman neural network (PSO-ENN) models

for the water level prediction in Dongting Lake areas by

incorporating the hourly data. In addition, this study also

aims to test the sensitivity of the input variables through the

sensitivity analysis.

Materials and methods

Study area

The study area of this research is Dongting Lake, the second-

largest freshwater lake in China. The lake system received water

from various sources. At the northern part, water from Yangtze

River flows into it through the “three mouths”, whereas at the

Frontiers in Earth Science frontiersin.org02

Deng et al. 10.3389/feart.2022.928052

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.928052


western and southern parts, Dongting Lake received water from

the “four waters”, called Lishui, Yuanjiang, Zishui and

Xiangjiang. Dongting Lake is considered one of the lakes that

provides regulation and storage to the Yangtze River Basin (Li

et al., 2013). Figure 1 shows the topography of Dongting Lake,

where it is roughly in a “U” shape. The northwest of the lake has a

FIGURE 1
Spatial distribution of monitoring stations around Dongting Lake used in this study.
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higher elevation, and it is usually divided into three main regions,

with the name of East Dongting Lake, West Dongting Lake and

South Dongting Lake (Guangwei et al., 2014).

The annual average temperature in the lake area range from

16 to 17°C. The total annual rainfall is recorded at a range of

1,200–1,400 mm, where most of the rainfall events are

concentrated during the summer period, around July and

August. Affected by the flood season of the “four waters”

flood season, it is a norm for the water level in Dongting Lake

to rise in April. Similarly, during the flood season of Yangtze

River which normally falls from June to September, the water

level in the lake areas increases as the consequence of the rapid

increase of flow from the “three mouths”, where the water

reaches its peak from July to August. During September, the

water level tends to gradually decrease because the outflow

exceeds the inflow. Meanwhile, from November to March of

the second year, since such a duration is the dry season, the water

level reaches its lowest peak (Zhang et al., 2018).

Data collection

Figure 1 shows the monitoring stations around Dongting

Lake, which are Zhicheng station (located at the mainstream of

Yangtze River), Xiangtan station (located at Xiangjiang),

Taojiang station (located at Zishui), Taoyuan station (located

at Yuanjiang) and Jinshi Station (located at Lishui), Nanzui and

Xiaohezui stations (located at West Dongting Lake), Yuanjiang

and Yingtian stations (located at South Dongting Lake), as well as

Lujiao and Chenglingji stations (located at East Dongting Lake).

The hourly water level and rainfall data of all the stations were

collected. At the same time, flow rate and temperature data of the

upstream stations (Zhicheng, Xiangtan, Taojiang, Taoyuan and

Jinshi stations) were obtained from the relevant authorities. The

duration of the collected time series data ranged from year

2004–2021.

Since the collected data is wide in terms of its value ranges,

z-score method was applied to standardise the data before

performing model training (Turyn, 2013). The calculation

method is as follows:

Xp
p �

xp − �x
σ

(1)

where �x is the mean of the data , σ is the standard deviation of

the data and xp is the variable to be processed.

Multilayer perceptron and Elman neural
networks

Multilayer perceptron neural network (MLP-NN) is a

network, which is developed based on the feedforward neural

FIGURE 2
Network architecture of Multilayer Perceptron Neural Network (MLP-NN) for this study.

Frontiers in Earth Science frontiersin.org04

Deng et al. 10.3389/feart.2022.928052

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.928052


network (FFNN), and proposed by McCulloch and Pitts (Taheri

et al., 2016; Deng et al., 2019). Figure 2 exhibits the architecture of

a MLP-NN model, containing three layers which are input,

hidden and output layers, having a specific number of

neurons in each layer. The basic process is as follows:

The input vector is fed from the input layer, and all neurons

in the hidden layer as well as the output layer are connected to

all neurons in the adjacent layers, and neurons between the

same layers are not connected. The forward signal propagation

process of MLP is computed sequentially from the input layer to

the output layer. For an MLP with input and output vectors of

n1 and nm, respectively, and containing m hidden layers, the

number of nodes in each hidden layer is (n2, n3, ..., nm-1), the

computation of each node in the forward signal propagation

process is as follows:

xij � f(WiXi−1 + bi−1) (2)

where xij represents the jth neuron in layer i, wi is the weight of

the jth neuron from layer i − 1 to layer i, Xi−1 is the value of all

neurons in layer i − 1, bi−1 represents the bias of layer bias i − 1,

and f is the activation function. The ReLU function is used as the

activation function:

f(x) � max(0, x) � { 0, other
x, x> 0 (3)

MLP is a typical supervised learning algorithm, and its loss

function is defined as is defined as:

J(W, b; x, y) � 1
2
‖ hW,b(x) − y‖2 (4)

where: h is the output value of MLP; y is the actual value; ‖-‖ is
any of the distance parametrization, which is usually taken as

2 parametrizations.

The parameters (including weights and biases) are generally

adjusted by the gradient descent method to minimize the loss

function. In this paper, the parameter adjustment algorithm of

MLP adopts the momentum BP algorithm. The gradient

calculation and the calculation method of the momentum BP

algorithm are as follows:

∇W � −zJ(W, b; x, y)
zW

(5)
δWt � α∇Wt + βδWt−1 (6)

Eq. 5 is the calculation of the gradient; α and β in Eq. 6 are in

the range of 0–1, which are both taken as 0.5 in this paper.

Elman proposed the Elman neural network (ENN) for speech

processing problems in 1990, which is a typical local regression

network (Kxa et al., 2019). Figure 3 shows the architecture of the

ENN, which is mainly composed of input, hidden, output and

successor layers. The Elman neural network is based on a BP

FIGURE 3
Network architecture of Elman Neural Network (ENN) for this study.
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neural network with the addition of the carryover layer as a delay

operator compared to the MLP, which gives the network a

dynamic memory function. The signals are transmitted from

the input layer into the network. The transfer function of the

implicit layer can be linear or nonlinear. This internal feedback

mechanismmakes the model sensitive to historical state data and

improves the model’s ability to model and process information

dynamically. The output layer acts as a linear weighting for the

cells and the transfer function is linear.

Taking Figure 3 as an example, the expression in the

ENN are:

Y(k) � G(W3X(k)) (7)
X(k) � F(W1X(k − 1) +W2U(k − 1) (8)

Xc(k) � X(k − 1) (9)

where Y,X,Uand Xc represent the output vector, the middle

layer node unit vector, the input vector and the feedback layer

vector respectively, W3,W2 andW1 represent the connection

weights between layers, G(·) is the transfer function for the

output neuron, F(·) is the transfer function for the intermediate

layer neurons. The Elman neural network in this paper also uses

the BP algorithm for weight correction, and the objective

function for learning is the error sum of squares function:

E � ∑m

k�1(yk − ~yk)2 (10)

where ~yk is the target output vector.

Integration of Elman neural network with
particle swarm optimisation

In general, an ENN, which is trained by the backpropagation

algorithm, is prone to fall into local minima, etc. Meanwhile, a

particle swarm optimisation (PSO) algorithm can search globally

and achieve fast convergence (Buyukyildiz and Tezel, 2015).

Therefore, PSO was selected to optimise the ENN as a

solution of its defect.

Assuming that there are K particles in the M-dimensional

space, the PSO will randomly initialise the position and velocity

of each particle in the space. The current velocity vector of the

i-th particle is recorded as Vi � (Vi1,Vi2, . . . ,ViM)i�1,...,K, and its

position vector is recorded as Xi � (Xi1,Xi2, . . . ,XiM)i�1,...,K.
Then, through a series of procedures, which include defining

the fitness function, tracking the particles and comparing the

previous results, the optimal extreme value (Pbest) of the

individual was obtained, where the individual extreme value

of the i-th particle is Pbest � (Pi1,Pi2, . . . , PiM)i�1,...,K. A global

optimal solution (gbest) is then selected. After getting the optimal

solution, the remaining particles will then update their velocity

and position according to Eq. 11 and Eq. 12.

vil � wvil
∣∣∣∣∣c1r1(pil − xil)∣∣∣∣∣c2r2(pgl − xil) (11)

xil � xil + vil (12)
where i = 1, 2, . . ., k, l = 1, 2, . . ., M, ω is the inertia factor, c1 and

c2 are the learning factors, and r1 and r2 are uniform random

numbers in [0,1]. The flow of ENN optimisation using PSO is

shown in Figure 4.

Model evaluation

Various indicators were used to evaluate the model

performance, which are root mean square error (RMSE),

Nash efficiency coefficient (NSE), mean absolute error (MAE)

and coefficient of determination (R2).

MSE is the standard deviation of the residuals (prediction

errors). In other words, it represents how concentrated the data is

around the line of best fit. RMSE can be expressed as:

RMSE �
												
1
n
∑(yi − xi)2√

(13)

where n is the number of data pairs, x is the observed variable and

y is the predicted variable.

NSE is calculated as one minus the ratio of the error variance

of the modeled time-series divided by the variance of the

observed time-series. NSE can be written as:

NSE � 1 − ∑n
i�1(yi − xi)2∑n
i�1(yi − �y)2 (14)

where n is the number of data pairs, x is the observed variable, y is

the predicted variable, �y is the average.

MAE measures the residuals or differences between the

observed and predicted data. The formula of MAE is shown

as below:

MAE � ∑∣∣∣∣yi − xi

∣∣∣∣
n

(15)

where n is the number of data pairs, x is the observed variable and

y is the predicted variable.

The coefficient of determination (R2) shows the variance

between two groups of data or observed and predicted variables.

The formula of R2 is

R2 � ⎡⎢⎢⎢⎢⎢⎢⎢⎣ n∑xiyi − ∑xi∑yi													
n∑x2

i − (∑xi)2√ 													
n∑y2

i − (∑yi)2√ ⎤⎥⎥⎥⎥⎥⎥⎥⎦2 (16)

where n is the number of data pairs, x is the observed variable and

y is the predicted variable.

Model development

The model development was conducted by using the

processed data, where the water level, flow rate, rainfall and
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temperature from the upstream stations (Zhicheng, Xiangtan,

Taojiang, Taoyuan and Jinshi stations), as well as the rainfall

from Nanzui, Xiaohezui, Yuanjiang, Yingtian, Lujiao, and

Chenglingji stations in Dongting Lake were applied as the

input variables, while the water level of Nanzui and Xiaohezui

stations (at West Dongting Lake), Yuanjiang and Yingtian

stations (at South Dongting Lake), as well as Lujiao and

Chenglingji stations (at East Dongting Lake) was set as the

output variable.

According to the convention of deep learning, the obtained

data needs to be divided into appropriate training and testing sets

between the import of dataset samples to the model training. In

fact, there is no clear method available so far for the division

between datasets. Based on the experience of related studies

(Akter and Desai, 2018; Ren et al., 2020), most authors

suggest that 60%–80% of the data as the training set is used

as the training set and the remaining 20%–40% as the test set, and

that selecting the largest proportion of the data set for model

training provides the maximum input and output training for the

model, thus allowing the model to achieve the best prediction

accuracy. Therefore, in this study, 80% of the dataset is divided

into the training set and the remaining 20% is used as the test set

before model training is performed. The dataset was divided in

such a way that the training and testing datasets were statistically

similar i.e., both the dataset had approximately same mean value.

The division process also ensured that the maximum and

minimum pattern phase of the target dataset was included in

the training dataset, thus exposing the model to the extreme

phases of the dataset while training.

The MLP-NN model was constructed using two layers of

hidden layers. A similar number of hidden layers was applied to

the ENN model. The optimal number of hidden neurons in the

hidden layers was determined using trial and error method. In

this case, the best combination of hidden neurons in MLP-NN is

25 and 35 in the first and second hidden layers respectively, while

for ENN, it reached the best combination when the number of

hidden neurons was recorded at 40 for both the first and second

hidden layers. The tansig activation function was selected as the

transfer function for both MLP-NN and ENN models. Based on

the developed ENN model, PSO is used applied for optimisation

purpose. In terms of the parameters setting, the maximum

number of iterations is set to 50, the number of individuals in

the population is fixed at 100, the inertia weight ω is selected as

0.729, while c1 and c2 have a similar value, which is 1.49445.

In studies about water level prediction, it is always inevitable

to consider the lag time between water level, rainfall and flow at

each station. The concept of “time lag” can be understood as the

response time of water level changes. In these studies, it is pointed

out that due to the geographical distance between the upstream

stations and Dongting Lake, the Three Gorges Reservoir has a

FIGURE 4
Optimisation of Elman Neural Network (ENN) using Particle Swarm Optimisation (PSO).
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FIGURE 5
Simulation results of different input data processing schemes under the test set.

Frontiers in Earth Science frontiersin.org08

Deng et al. 10.3389/feart.2022.928052

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.928052


long time lag. It is noted in these studies that due to the difference

in distance between the upstream site and Dongting Lake, it takes

some time for the water flow from the upstream site to reach

Dongting Lake. In addition, the upstream site is in the upper

reaches of the Yangtze River, while Dongting Lake is located in

the middle reaches of the Yangtze River. The difference in river

conditions between the upper and middle reaches of the Yangtze

River is large, and the slowing down of water flow in the middle

reaches, together with the storage effect of the lake, makes the

process of water level change in Dongting Lake slower, thus

creating a time lag. However, due to the complexity of the water

flow process, it is difficult to determine the exact timing of this

time lag. Therefore, seven different combinations of water level

and flow lag methods were used for model training, and its results

were used to determine the best combination of lag times.

According to the study on water level prediction in Dongting

Lake by Lai et al. (2020), it is known that the lag is about 3 days for

the Zhicheng station, 2 days for the Jinshi station, and about 1 day

for the Sanshui station (Xiangtan, Taoyuan and Taoyuan stations).

However, this is the data based on the daily average hourly study,

which is not applicable to this study for hourly prediction. Therefore,

on the basis of the standardized data set, the input under 7 programs

of delay schemes were tested: 1) 72 h before Zhicheng Station, 48 h

before Jinshi Station, Xiangtan, Taojiang, and Taoyuan (here in after

referred to as “the other three”) 2) 72 h before Zhicheng Station, 36 h

before Jinshi Station, and 24 h before the other three stations; 3) 72 h

before Zhicheng Station, before Jinshi Station 36 and 12 h before the

other three stations; 4) 60 h before Zhicheng Station, 36 h before

Jinshi Station, and 24 h before the other three stations; 5) 60 h before

Zhicheng Station, Jinshi The flow and rainfall of 24 h before the

station and 12 h before the other three stations; 6) The flow and

rainfall of 48 h before Zhicheng Station, 24 h before Jinshi Station,

and 12 h before the other three stations; respectively, to predict the

representative stations in different lake areas of Dongting Lake

(Nanzui, Xiaohezui, Yuanjiang, Yingtian, Lujiao and Chenglingji

Stations).

By comparing the simulation results under seven-time delay

schemes with the ENN model, the influence of the incoming

water transmission distance and rate is considered. The model

training evaluation indicators are shown in Figure 5. In general,

under program 5, the flow and rainfall of 60 h before Zhicheng

Station, 24 h before Jinshi Station, and 12 h before the other three

stations can be used as inputs to better predict the future water level

changes of representative stations in different lake areas of Dongting

Lake. Among them, the RMSE value of the water level prediction of

each station in the training phase is 0.311–0.545m, the NSE value is

0.871–0.934, and the R2 value is 0.871–0.922; the RMSE value of the

water-level prediction of each station in the verification phase is

0.301–0.502m, and the NSE value is 0.873–0.945, R2 values ranged

from 0.841 to 0.924, reaching the optimal value in the seven schemes.

In this study, advanced water level prediction was also

performed on the developed models. Advanced water level

prediction models are usually required for flood warnings.

Time series data were re-arranged to make output data 6, 12,

18, 24, 30, 36, 42 and 48 h ahead of input data. This leads the

model to predict the output several hours ahead (in future) of the

input. Thus, assisting us to predict the upcoming flood and

generate the flood warning. The results of the advanced water

level prediction are presented in the discussion section of this

manuscript.

Results

Combined with the actual lag time of the flow and rainfall

process in the middle and upper reaches of the previous section, as

well as the response of the Dongting Lake water level change, as well

as multiple simulation calculations, we believe that the use of the

flow of 60 h before Zhicheng Station, 24 h before Jinshi Station, and

12 h before the other three stations, Rainfall is the most reasonable

simulation of water levels in different lake areas of Dongting

Lake.The aforementioned data were arranged accordingly and

used together with the rainfall data of Nanzui, Xiaohezui,

Yuanjiang, Yingtian, Lujiao and Chenglingji stations to train the

MLP-NN, ENN and PSO-ENN models for the water level

prediction at Nanzui and Xiaohezui stations (at West Dongting

Lake), Yuanjiang and Yingtian stations (at South Dongting Lake), as

well as Lujiao and Chenglingji stations (at East Dongting Lake). The

NSE, R2 and RMSE were used as the statistical indicators to evaluate

model performance as shown in Table 1. For theMLP-NN, in terms

of training performance, the NSE ranges from 0.774 to 0.858, the R2

shows the value from 0.782 to 0.850, while the RMSE has a range

from 0.777 to 0.995. For ENN, from the perspective of training

performance, the NSE exhibits a value from 0.871 to 0.934, the R2

displays the values from 0.871 to 0.934, while the RMSE ranges from

0.322 to 0.545. The training performance of PSO-ENN has shown

NSE of 0.920–0.981, R2 of 0.927–0.979 and RMSE of 0.134–0.369.

In summary, the PSO-ENN exhibits a better training

performance in terms of NSE, R2 and RMSE if compared to

MLP-NN and ENN. A similar trend can be observed in testing

performance, where PSO-ENN is the best-performed model,

followed by ENN and MLP-NN. Although the PSO-ENN

model was developed and trained using hourly data from the

upstream water stations and stations within the Dongting Lake,

the model performance does not show a significant difference

from the models developed using daily data, by Deng et al.

(2021), Adnan et al. (2021), and Liang et al. (2018)

In order to compare the performance of PSO-ENN more

visually, the predicted water level and the measured water level

at the representative stations of the three major lakes of West, South

and East Dongting Lake were plotted and fitted, as shown in

Figure 6. The figure shows the fit between the predicted and

measured values at each station. In general, the average absolute

errors of PSO-ENN at each station are in the range of 1.356%–

1.993%, and PSO-ENN can generally fit the sudden changes of water

level well. The curves of water level changes are well fitted.
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Discussion

Models developed for this study were tested for different

input scenarios, such as real-time forecasting and advanced water

level forecasting. Also, the sensitivity analysis was performed to

determine the weight of each input in predicting water level.

These analyses describe the strength of the model and also the

inputs in accurately predicting water level.

Real-time water level forecast in Dongting
Lake

To further investigate the real-time water level prediction

performance of the developed PSO-ENN model, the latest

datasets of all representative stations located in West, South

and East Dongting Lake, ranging from 1st November 2021 to 9th

January 2022, were applied to the model.

Table 2 shows that the RMSE is in the range of 0.152–0.360,

the MAE shows a value between 0.157 and 0.372, while the

average absolute error ranges from 0.644% to 0.899%. Overall,

the presented errors while applying the PSO-ENN model for

water level forecast purpose is relatively small. In the other words,

the model is able to achieve a considerably high level of accuracy.

On the other hand, the comparison between the measured/

observed and predicted water levels of each representative station is

shown in Figure 7. It can be seen that the line representing the

measuredwater level fits well with the line representing the predicted

water level. The lines basically coincide with each other and the error

fluctuation trend is small.

Advanced water level forecast in Dongting
Lake

To further ensure the applicability of the developed model

in a real Dongting Lake environment, its forecasting

performance under different time series was tested. Time

series data of 6, 12, 18, 24, 30, 36, 42 and 48 h ahead were

implemented into the PSO-ENN model and the water level

TABLE 1 Model performance evaluation using NSE, R2 and RMSE.

Evaluation Indicators Chenglingji Lujiao Nanzui Yingtian Xiaohezui Yuanjiang

Train set MLP NSE 0.858 0.836 0.827 0.783 0.774 0.810

R2 0.850 0.825 0.825 0.815 0.791 0.782

RMSE 0.777 0.784 0.853 0.882 0.964 0.995

Elman NSE 0.934 0.930 0.901 0.911 0.880 0.871

R2 0.922 0.912 0.902 0.901 0.871 0.890

RMSE 0.311 0.376 0.424 0.467 0.520 0.545

PSO-Elman NSE 0.981 0.974 0.957 0.930 0.927 0.920

R2 0.979 0.966 0.956 0.927 0.935 0.929

RMSE 0.134 0.161 0.184 0.266 0.312 0.369

Test set MLP NSE 0.841 0.833 0.809 0.795 0.790 0.775

R2 0.812 0.802 0.809 0.779 0.795 0.754

RMSE 0.773 0.791 0.842 0.897 0.981 0.980

Elman NSE 0.945 0.933 0.891 0.908 0.873 0.876

R2 0.924 0.913 0.910 0.891 0.853 0.841

RMSE 0.301 0.340 0.462 0.513 0.537 0.501

PSO-Elman NSE 0.979 0.969 0.945 0.934 0.931 0.909

R2 0.973 0.963 0.950 0.933 0.928 0.917

RMSE 0.143 0.185 0.199 0.241 0.316 0.401

The values were bolded to show that the performance of PSO-Elman is the best when comparing to that of MLP and Elman.

TABLE 2 Performance analyses of PSO-ENN on real-time water level forecast.

Indicators Chenglingji Lujiao Nanzui Yingtian Xiaohezui Yuanjiang

PSO-Elman RMSE 0.152 0.173 0.211 0.283 0.331 0.360

MAE 0.157 0.233 0.264 0.313 0.347 0.372

Average percentage error (%) 1.379 1.484 1.733 1.811 1.902 1.989
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FIGURE 6
Plot for observed water level and predicted water level using PSO-ENN model. (A) Chenglingji station, East Dongting Lake. (B) Lujiao station,
East Dongting Lake. (C)Nanzui station, South Dongting Lake. (D) Yingtian station, South Dongting Lake. (E) Xiaohezui station, West Dongting Lake. (F)
Yuanjiang station, West Dongting Lake.
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FIGURE 7
Real-timewater level forecast in each representative stations inWest, South and East Dongting Lake. (A)Chenglingji station, East Dongting Lake.
(B) Lujiao station, East Dongting Lake. (C) Yingtian station, South Dongting Lake. (D)Nanzui station, South Dongting Lake. (E) Xiaohezui station, West
Dongting Lake. (F) Yuanjiang station, West Dongting Lake.
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FIGURE 8
Performance of the selected PSO-ENN model under different time advances conditions (lag time).

TABLE 3 Sensitivity analysis on the PSO-ENN model.

Combination of variables Indicators Chenglingji Lujiao Nanzui Yingtian Xiaohezui Yuanjiang

Water level of the upstream stations + rainfall + temperature NSE 0.949 0.936 0.934 0.915 0.901 0.897

RMSE 0.298 0.307 0.366 0.452 0.527 0.551

NSE Difference −0.027 −0.027 −0.011 −0.016 −0.029 −0.013

RMSEDifference 0.154 0.12 0.169 0.209 0.215 0.146

Water level of the upstream stations + flow rate +
temperature

NSE 0.957 0.943 0.937 0.926 0.915 0.892

RMSE 0.267 0.286 0.246 0.311 0.429 0.498

NSE Difference −0.019 −0.02 −0.008 −0.005 −0.015 −0.018

RMSEDifference 0.123 0.099 0.049 0.068 0.117 0.093

Water level of the upstream stations + rainfall + flow NSE 0.964 0.952 0.939 0.926 0.921 0.9

RMSE 0.211 0.207 0.196 0.255 0.352 0.421

NSE Difference −0.012 −0.011 −0.006 −0.005 −0.009 −0.01

RMSEDifference 0.067 0.02 −0.001 0.012 0.04 0.016
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prediction was performed. The data is rearranged (shifted the

output n hours backward) so that the upstream flow (input) is

paired with the n hours in advance downstream flow (output).

In another words, the data is arranged in the way that the

model will use the upstream data to predict the n hours

advance flow at downstream. The results of statistical

analyses in terms of NSE, RMSE and MAE are shown in

Figure 8. The NSE of the representative stations in West,

South and East Dongting Lake shows a value larger than

0.896 with a peak value of 0.988, RMSE ranges from

0.129 to 0.376, and MAE displays the minimum and

maximum values of 0.151 and 0.385 respectively. The

analyses indicate that the PSO-ENN has achieved a

considerably good performance as it has a range of high

NSE, low RMSE and small MAE.

In terms of the prediction length of the same station, when it

increases from 6 to 36 h, the NSE increases gradually, while the

RMSE and MAE show a different trend. However, as the prediction

length is increased from 36 to 48 h, NSE starts to decrease, while

RMSE and MAE show an increasing trend. Taking Chenglingji

station as an example, the NSE is increased by 0.007, and the RMSE

and MAE are decreased by 0.007 and 0.01 respectively when the

predicted length increases from 6 to 36 h. On the other hand, the

NSE is decreased by 0.017, while RMSE and MAE are increased by

0.015 and 0.023 respectively when the prediction length is increased

from 36 to 48 h. In summary, the PSO-ENN provides the best

accuracy when the prediction length is 36 h. Under such a condition,

theNSE is ranged from 0.916 to 0.988 while the RMSE andMAE fall

in between 0.129 and 0.361 as well as 0.151 and 0.363, respectively.

Therefore, it can be concluded that the PSO-Elman model can

provide a better water level prediction at all the representative

stations in Dongting Lake for a duration up to 36 h in advance.

Analysis of Sensitivity

In this case, while developing the water level prediction

models, flow rate, rainfall and temperature are the important

influencing parameters. In order to measure the impact of each

variable, a sensitivity analysis was performed. For this purpose,

the PSO-ENN model was retrained by removing one of the

variables each time. Taking NSE and RMSE as the main statistical

indicators, after subtracting the newly obtained results from the

original PSO-ENN model, the corresponding deviation values of

each of the cases were obtained. If the newly obtained value

differs significantly from the original value, it means that the

model is more sensitive to that particular variable. The result for

the sensitivity analysis is shown in Table 3. It can be seen that the

PSO-ENN prediction model is more sensitive to flow rate,

followed by rainfall, and less sensitive to temperature.

Conclusion and prospect

Dongting Lake is chosen as the study area of this study as it

is the second-largest freshwater lake in China. Several

techniques, namely multilayer perceptron neural network

(MLP-NN), Elman neural network (ENN) and integration

of particle swarm optimisation with ENN (PSO-ENN) were

applied to develop the water level prediction models. The

models were developed using the water level, flow rate, rainfall

and temperature at the upstream stations, as well as the

rainfall at the representative stations in Dongting Lake. The

performance of the developed models was evaluated. It was

found that the arrangement of data in terms of flowrate and

rainfall with a lag duration of 60 h for Zhicheng station, a lag

duration of 24 h for Jin City station, and a lag duration of 12 h

for Xiangtan, Taojiang and Taoyuan stations, with the original

time step arrangement of temperature, upstream water level,

and downstream rainfall is the best data arrangement for the

model development.

PSO-ENN model appears as the best-performed model as it

has the highest NSE, lowest RMSE and smallest MAE ranges if

compared to theMLP-NN and ENNmodels. Also, the PSO-ENN

model has shown its ability to provide better accuracy for a

duration of 36 h in advance, which in turn may provide

reasonable guidance for flood control and drought resistance

in the areas around Dongting Lake. Meanwhile, the sensitivity

analysis shows that the PSO-ENNmodel is more sensitive to flow

rate, followed by rainfall, while the temperature is the least

responsive variable.

Combined with the vision of this study for future

research, the following outlook is made for future research:

1. More refined research can be done on the water level of

Dongting Lake according to the geographical location. In the

future, more locations of hydrological stations can be

considered for Dongting Lake to represent water level

changes in the lake area. In addition, the GIS method can

be used for the study of water level changes in the Dongting

Lake area; 2. Further study the generalizability and portability

of the methods and models proposed in this paper. The

hybrid metaheuristic (PSO-ENN) model for water level

prediction in this paper has good prediction performance,

so it can be extended to other river waters for water level

prediction.
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