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Distribution of landslide is controlled by various causative factors that have

different impacts on the occurrence of landslide in different regions. Using

one single model to build the hazard assessment is not enough to fully reflect

the spatial differences of landslide controlling factors especially for large area.

Landslide hazard assessment based on zonation was therefore proposed in

this study with an attempt to take effective measures to address this problem.

The China–Pakistan Economic Corridor was taken as the study area where

landslide hazard assessment was carried out. Based on the features of

geological structure, topography, and climate, the study area was divided

into three zones. The controlling factors were further analyzed by the

geographical detectors method. It was found that the main controlling

factors for landslides in these three zones were related to the site’s

topography (altitude, slope gradient, and relief amplitude), land use, and

distance to an earthquake epicenter. Furthermore, different factors for

landslide hazard assessment were selected based on the result of a

controlling factor analysis. An artificial neural network model was

employed to build the hazard assessment models, and hazard assessment

maps were generated. Validations were conducted, showing that the

accuracy of hazard assessment maps by zones was higher than that by the

whole study area, despite there was no significant difference during the

modeling process.
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Introduction

The China–Pakistan Economic Corridor (CPEC) is an

important geographical linkage that strengthens the

transportation, energy, and communication between China

and Pakistan. Due to special geological, geomorphic, and

climatic conditions, geo-hazards are frequent and widely

distributed along the corridor, causing disasters to major

infrastructure establishments and projects. For example, the

Karakoram Highway (KKH) constructed between 1966 and

1979 was often broken due to highly frequent geo-hazards

until 2007. On 8 October 2005, a 7.6 magnitude earthquake in

Northern Kashmir triggered a large number of landslides which

caused damages to the KKH (Sato et al., 2007; Aydan et al., 2009).

Subsequently, in 2010, a huge landslide occurred in Attabad

village and formed a large landslide lake, disrupting the traffic for

5 years (NDMA, 2010). Therefore, it is necessary to carry out

landslide hazard assessment for this area.

Landslide hazard assessment at the regional scale was carried

out for CPEC in this research. These regional-scale landslide

hazard assessment methods include expert experience method

(Ercanoglu et al., 2008; Thiery et al., 2014), statistical analysis

(Lee and Min, 2001; Demir, 2018; Barella et al., 2019), and

physical-based model (van Beek and van Asch, 2004; Xie

et al., 2004; Rana and Babu, 2022). In recent years, data

mining and machine learning methods, such as artificial

neural network (ANN) (Yilmaz, 2009; Liu, 2010), logistic

regression models (Xu et al., 2013; Meten et al., 2015; Zhang

et al., 2019a), and support vector machine (SVM) (Su et al., 2015;

Zhang et al., 2019b) were widely used to assess landslide hazard

and showed satisfactory results in practice.

There are already plethora of studies on earthquake and

rainfall-triggered landslide inventories, as well as related

landslide risk and hazard assessments, that have been carried

out in the region, mainly in Pakistan (Dunning et al., 2007;

Khattak et al., 2010; Ahmed and Rogers, 2015; Basharat et al.,

2016; Khan et al., 2019; Imtiaz et al., 2022). In recent years,

landslide-oriented research has been extended to the entire

CPEC, especially for landslides along the KKH (Bacha et al.,

2018; Rashid et al., 2020; Chang et al., 2021; Hussain et al., 2021;

Maqsoom et al., 2022; Su et al., 2021). Hazard and risk

assessments of some large-sized landslides were also carried

out in this area, such as the Attabad landslide (Chen et al.,

2017), where landslide dam breach and its hazards to the KKH

project construction site downstream was discussed.

Generally, landslide hazard assessment only builds one

model for one area. However, for a regional scale of landslide

hazard assessment, the characteristics of landslide and causative

factors can be spatially different due to the large size of the study

area. One hazard model is thus not able to represent the situation

of landslides. In the case of CPEC, for example, landslides are

widely distributed in the northern high mountains including the

Hindu Kush Mountains, the Himalayas, and the Karakoram

Mountains. These regions are characterized by complex

geological structures, steep terrains, and intense glacier

activities. In addition, landslides also occur in the Sulaiman

Mountains, Central Barhui Range, Kirthar Range, and Central

Makran Range in the west and southwest of CPEC. However,

these landslides are small due to gentle slopes and low

precipitation. Hence, the study area was first divided into

different zones to account different environmental background

factors and distribution of landslide. Then landslide hazard

assessment models were built for each zone. In doing so, the

accuracy of the regional-scale landslide hazard assessment of this

study was improved.

Study area

Spanning two countries, the study area of CPEC starts from

Kashgar in Xinjiang Uygur Autonomous Region of China in the

north and reaches Gwadar in Pakistan in the south. It is adjacent

to Afghanistan to the west and India to the East. With an area of

as large as 1.06 million square kilometers (Figure 1), CEPC has a

large area with a wide north–south span with different

environmental and landslide characteristics.

Geological structure

CPEC passes through the western edge of the Tibetan Plateau

and is located at the junction of the Western Himalayan and Pamir

syntaxes, which is one of the most tectonically active regions

worldwide (Kumar et al., 2013). The main active faults of CPEC

include the Kashir River Fault, Tashikurgan Fault, Karakorum Fault,

Main Himalayan Thrust (MHT), and Pamir Frontal Thrust. The

structural deformation is mainly concentrated in the Karakoram

strike-slip fault zone and the Tashikurgan Fault (Martin, 2017).

Geomorphology

The landform type of CPEC from north to south include

Kashgar Plain, northern high mountain area, western low

mountain area, Baluchistan Plateau, Potwar Plateau, and

Indus Plain (Yang and Liu, 2005). The northern high

mountain area covers the Karakoram Range and Himalayan

and Hindu Kush ranges, with K2 and Nanga Parbat, two

mountain peaks of higher than 8000 m located in this region.

The Baluchistan Plateau, located in the western part of the

corridor, is mainly composed of north–south parallel ranges

with an average altitude above 3000 m, and the plateau is at

an altitude between 500 and 2000 m. The Potwar Plateau is

bounded by Hazara Mountain and Pirpanjai Mountain in the

north; Salt range in the south; and Indus River and its tributary

Jelum River in the west and east, respectively. The area of the
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Potwar Plateau is 4,350 km2 and the altitude is around 500 m (Xu

et al., 1982; Miller and Craig, 1996).

Climate

The climate of CPEC is affected by the interaction of

Westerly and Southwest monsoons. Most of the area has an

arid and semiarid climate, except the western coast where the

climate is tropical monsoon. Annual precipitation increases first

and then decreases from south to north. The maximum annual

precipitation is exceeding 1200 mm and the minimum rainfall is

less than 100 mm (Yu et al., 2021).

Data source and methodology

Data source

Causative factors
Based on the distribution and characteristics of landslides in

this region, causative factors (e.g., topography, geology, and land

use) and triggering factors (e.g., earthquake and rainfall) were

considered for the landslide hazard assessment in this study.

Altitude, slope gradient, slope aspect, relief amplitude, distance to

fault, distance to epicenter, and annual precipitation were

selected as alternative landslide hazard assessing factors.

Topographic factors including slope gradient, slope aspect,

and relief amplitude were calculated based on SRTM DEM, with

spatial resolution of 30 m. Fault data of CPEC were obtained

from the Geological Map of North Pakistan and Adjacent Areas

of Northern Ladakh and Western Tibet with a scale of 1:650,000

(Searle and Asif Khan, 1997; Yaseen et al., 2021), based on which

the distance to fault was calculated. The average annual

precipitation was calculated on historical monthly weather

data from year 2010 to 2018 by WorldClim with resolution of

2.5 min (Harris et al., 2014). The historical seismic data of CPEC

were obtained from the USGS Earthquake Disaster Project,

including epicenter location, magnitude, and occurrence time

of earthquakes with magnitude above three since 1960, based on

which distance to epicenter was calculated. Land use data were

obtained from global land use data of Tsinghua University in

2017 with resolution of 10 m (Gong et al., 2019). All these factors

were rasterized with a grid size of 0.5 × 0.5 km.

FIGURE 1
Location of the study area.
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Landslide inventory
A dataset including 2045 rockfalls and landsides that

occurred from 1970 to 2020 was utilized in this research (Yi

et al., 2021). Landslide inventory mapping was supported by the

project of “Comprehensive Investigation and Assessment of

Natural Disasters along the China–Pakistan Economic

Corridor”. High resolution images from Google Earth were

utilized to identify the location and boundary of landslide by

the artificial interpretation method in the study area, and then a

field investigation was conducted along the Karakoram Highway

(KKH) in 2019 to validate the landslide data and obtain more

information including landslide triggers, volumes, height

differences, and so forth.

Methodology

Geographical detectors method
The geographical detectors method (Wang et al., 2010) was

employed to detect the controlling factors for landslides in

different regions. Geographical detectors are a set of statistical

methods utilized to detect the spatial heterogeneity of

geographical phenomena and find the driving forces. The

geographical detectors method is based on the assumption

that if an independent variable has an important influence on

a dependent variable, the spatial distribution of the independent

variable and the dependent variable should be similar. In this

study, the differentiation and factor detection were utilized to

detect the spatial differentiation of dependent variable Y

(numbers for landslide), so as to probe how strong the

influence of independent variable X (causative factors for

landslide) on Y, which was measured by q value with the

equation:

q � 1 − ∑L
h�1Nhσ2h
Nσ2

� 1 − SSW

SST
, (1)

SSW � ∑
L

h�1
Nhσ

2
h, (2)

SST � Nσ2. (3)

In this equation, h = 1...; L is the classification or partition of

variable Y or factor X; Nh and N are the number of

classification and the number of units in the study area,

respectively; σ2h and σ2 are the variances of h and Y value,

respectively; and SSW and SST are Within Sum of Squares and

Total Sum of Squares, respectively. The range of q value is (0,

1), and the larger q value is, the more obvious the spatial

differentiation of Y will be, otherwise weaker. The q value of

one indicates that factor X completely controls the spatial

distribution of Y, while the q value of 0 indicates that factor X

has no influence on Y.

Artificial neural networks
Artificial neural networks (ANN) have also been utilized for

landslide hazard assessment (Figure 2). The artificial neural

network model is based on the principle of multilayer

perceptron, which is composed of three layers of neurons:

input layer, hidden layer, and output layer. Neurons are the

basic components of neural networks, and the connection

between neurons is realized by synaptic weights wij. Generally,

FIGURE 2
Artificial neural networks and landslide hazards assessment.
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the greater the value of wij, the higher contribution given by the

factor. A positive value of wij indicates that the factor is positively

correlated with the hazard assessment result, otherwise

negatively.

In this study, an open-source GIS-integrated tool, r.landslide

was used to carry out the hazard assessment based on the ANN

model in the GIS software named Geographic Resources Analysis

Support System (GRASS) (Bragagnolo et al., 2020; GRASS

Development Team, 2017). The tool was written in Python

language and works on the ANN model and landslide

database. The sigmoid activation function, defined in Eq. 4,

was used in r.landslide to depict a balance between linear and

non-linear behaviors.

f(x) � 1
1 + e−βx

. (4)

In this equation, x refers to the input value of the intermediate or

output layer neuron after weight-bearing by the synaptic weights;

β is the slope parameter; and sigmoid functions with different

slopes are obtained by assigning varied β values.

FIGURE 3
Zonation in CPEC [(A) Attabad landslide with coordinates of N 36°18’48.66", E 74°49’6.43"; (B) Maiun landslide with coordinates of N
36°14’34.71", E 74°25’11.98"].

TABLE 1 Zonation of CPEC.

Zonation Area
(103km2)

Topography Precipitation Geology Landslide

Zone 1 228.72 Karakoram mountains Less than 200 mm Karakoram Fault 764

Zone 2 117.17 Hindu Kush and the Himalayas 200–1600 mm Main Boundary
Thrust

417

Zone 3 712.19 Sulaiman Mountains ACT, Central Barhui Range, Kirthar Range, and
Central Makran Range

Less than 500 mm Chaman Fault 864

Zhob Valley Thrust
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Training of ANNs was performed by using the back-

propagation algorithm, which the weight is calculated by

evaluating the error between the response value obtained by

propagation and the known true value (Haykin, 1999). During

the training process, each sample is given a corresponding output

valueO, which is compared with the reference valueOD. T stands

for the transpose, which defines the error function by Eq. 5:

E � −1
2
(OD − O)T(OD − O). (5)

Moreover, Δwij is the increment of synaptic wij, and it is

calculated by Eq. 6:

Δwij � −α zE

zwij
, (6)

where α is the learning rate which controls the adjustment

strength related to the synaptic weights. The objective of the

back-propagation algorithm is to adjust the synapse weights so

that the error function E is minimized during the training

process.

Integrated natural zonation
An integrated natural zonation was carried out based on

mountain ranges, main fault systems, and precipitation in this

research. The study area was divided into three zones (Figure 3;

Table 1). Zone 1 is located in the northernmost of CPEC, where

the topography is mainly dominated by the Karakoram

Mountains with an annual precipitation less than 200 mm.

The Main Karakoram Thrust and Main Mantle Thrust are

the main fault systems in this area. In Zone 2, the mountains

include the Hindu Kush and the Himalayas, and the main fault

is the Main Boundary Thrust. This region has the highest annul

precipitation between 200 and 1600 mm. Zone 3 covers the

southern part of CPEC, with the Sulaiman Mountains, Central

Barhui Range, Kirthar Range, and Central Makran Range

located in this region. The main faults in this zone are the

Chaman Fault and Zhob Valley Thrust (ZVT). The annual

rainfall in this region is less than 500 mm. The quantities of

landslides are counted by zones. From the landslide inventory,

37.4, 20.4, and 42.3% landslides fall in Zone 1, Zone 2, and Zone

3, respectively.

Controlling factors of landslide
distribution

Causative factors

Landslide causative factors are chosen as the parameters of

the hazard assessment model. At present, there is no unified

FIGURE 4
Landslide hazard assessment factors of CPEC [(A) altitude; (B) slope gradient; (C) slope aspect; (D) relief amplitude; (E) distance to fault; (F)
distance to epicenter; (G) land use; and (H) annual precipitation].
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causative factor system for landslide hazard assessment. Mostly,

researchers select landslide causative factors through field

investigation and characteristics analysis of landslide

distribution in the study area. In this study, landslide

triggering conditions and environmental background

conditions are considered. Precipitation and earthquake were

mainly considered as the triggering conditions, and geology,

topography, and land cover were considered as the

environmental background conditions. Finally, a total of eight

factors were selected as landslide causative factors.

Classifications were carried out on eight causative factors:

altitude (x1), slope gradient (x2), slope aspect (x3), relief

FIGURE 5
Classification of different factors and distribution of landslides in each zone [(A) altitude; (B) slope gradient; (C) slope aspect; (D) relief amplitude;
(E) distance to fault; (F) distance to epicenter; (G) land use; and (H) annual precipitation).
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amplitude (x4), distance to fault (x5), distance to epicenter (x6),

land use type (x7), and annual precipitation (x8) (Figure 4). In

specific, the altitude was classified into six classes by an interval of

1000m; and the slope gradient was classified into six classes by an

interval of 10°.

According to the statistics of the area for each factor

classification and landside quantities, it can be seen that the

environmental conditions and distribution of landslides are

different in three zones. In terms of altitude factor

(Figure 5A), in Zone 1, there is a large area with the altitude

FIGURE 6
Controlling factors analysis by geographical detectors.

TABLE 2 Landslide controlling factors in different zones.

No. Zone 1 Zone 2 Zone 3 All zones

Factors q value Factors q value Factors q value Factors q value

1 Altitude 0.088 Altitude 0.049 Distance to epicenter 0.021 Altitude 0.026

2 Slope gradient 0.049 Relief amplitude 0.035 Relief amplitude 0.018 Relief amplitude 0.025

3 Land use 0.041 Slope gradient 0.033 Altitude 0.014 Slope gradient 0.022

4 Relief amplitude 0.043 Annual precipitation 0.015 Slope gradient 0.012 Distance to epicenter 0.021

5 Distance to fault 0.028 Distance to fault 0.013 Annual precipitation 0.011 Distance to fault 0.014

6 Distance to epicenter 0.020 Land use 0.012 Land use 0.008 Annual precipitation 0.012

7 Slope aspect 0.007 Distance to epicenter 0.007 Distance to fault 0.008 Land use 0.011

8 Annual precipitation 0.002 Slope aspect 0.005 Slope aspect 0.007 Slope aspect 0.007
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between 1000 and 2000 m. The altitude in Zone 2 is mostly below

5000 m. The altitude of Zone 3 is mostly below 3000 m, and the

proportion of the area with an altitude less than 1000 m is

especially high, accounting for almost 80%. There are also

significant differences for the distribution of landslides. In

Zone 1, landslides are most distributed in the area with an

altitude of 2000–3000 m, while in Zone 2, landslides are

mostly distributed in the altitude of 1,000–2000 m. In Zone 3,

landslides are mainly distributed in the area with an elevation less

than 1000 m.

Slope gradient is considered as one of the most significant

factors for landslide. If the slope gradient is larger than the

natural angle of repose of the substrate, landslide may occur

when there is no enough cohesion (Kamp et al., 2008).

Proportions of slope gradient divisions are consistent in Zone

1 and 2, but different in Zone 3. The distribution of landslides

also shows the same tendency. In Zone 1 and 2, more landslides

are distributed in the area with a slope gradient of 30°–40°, while

in Zone 3, more landslides tend to be distributed in areas with a

slope gradient of 10°–20°(Figure 5B). The proportions of slope

aspect in different classes are highly consistent in each zone, but

the proportions of landslides distributed in slope aspect divisions

are different in three zones (Figure 5C).

The relief amplitude factor represents the gravitational potential

energy of the slope. The greater relief amplitude value is, the greater

the gravitational potential energy of the slope will be, which may

cause higher susceptibility and large scales of landslides. Proportions

of relief amplitude are similar in Zone 1 and Zone 2, but there is a big

difference in Zone 3, where the proportion of relief amplitude with a

value less than 200 is particularly high. The correlation between

landslides and relief amplitude is explained as, there are large

numbers of landslides distributed in the area with relief

amplitude of 400–600 m in Zone 2, more landslides distributed

in the area with relief amplitude of 200–400 m in Zone 1, but in

Zone 3 most landslides are distributed in the area with relief

amplitude of less than 200 m (Figure 5D).

The distance to faults, whether area proportion or landslide

quantity, are consistent in the three zones (Figure 5E). The

distance to an earthquake epicenter reflects the influence of

the earthquake, and the proportion of the earthquake-affected

areas in Zone 2 is higher.

Earthquake is one significant trigger for landslides.

Earthquake with big magnitude can cause a large number of

co-seismic landslides, and it can also destroy the stability of slope

and lead more sliding after the shake. Historical earthquake

epicenters were concentrated in north–west of CPEC in

China, North high mountain area and western low mountain

area in Pakistan.

Generally, the quantity of landslides shows a gradual

decreasing trend against the distance from the earthquake

(Figure 5F). Since land use types of bare land and grassland

cover large areas in CPEC, therefore more landslides are

distributed in the area of these land use type (Figure 5G).

Finally, annual precipitation is low in Zone 1 and Zone 3.

Hence, the effect of annual precipitation on landslides is not

significant in both zones. However, the number of landslides is

increased in Zone 2 as a result of the zone’s higher annual

precipitation (Figure 5H).

FIGURE 7
Landslide hazard assessment maps [(A) landslide hazard assessment map by zones; (B) landslide hazard assessment map of the whole region].
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Controlling factor analysis

The landslide controlling factor was defined as the most

significant causative factors, which affect the distribution of

landslides at the regional scale. The landslide controlling

factor analysis was carried out based on landslide inventory

and causative factors. First, the study area was divided into

small units by the size of 10 × 10 km (Figure 6). Then the

number of landslides was counted in each unit of the eight

causative factors that are associated with landslide occurrence.

Finally, the q value was calculated by geographical detectors,

and the main controlling factors were analyzed for landslide in

each zone.

Results showed that the controlling factors are different in

each zone (Table 2). Topographical factors including altitude,

slope gradient, and relief amplitude are controlling factors in

Zone 1, especially for the altitude factor. In addition, land use

factor also plays a significant role on the distribution of

landslides. The q values for all these four factors are larger

than 0.04. In Zone 2, altitude is also the most significant

factor for landslide, followed by relief amplitude and slope

gradient. But the q values of these three factors are smaller

than in Zone 1. Large differences for controlling factors are

showed in Zone 3, where the distance to the epicenter is the most

significant factor, whichmeans earthquake affects strongly on the

occurrence and distribution of landslide in this region. Other

main controlling factors are topographical factors including relief

amplitude, altitude, and slope gradient in Zone 3. But all the q

values in this region are smaller than either Zone 1 or Zone 2.

When it comes to the entire study area, topographical factors

including altitude, relief amplitude, and slope gradient are the top

controlling factors for landslide, followed by the distance to the

epicenter.

Landslide hazard assessment

Hazard assessment

Landslide hazard assessment was conducted for each zone. In

order to make a contrast, landslide hazard assessment in the

whole study area was also carried out.

Based on the analysis of main controlling factors, the top six

factors ranked by q values were selected as the hazard assessment

factors in different zones. Altitude, slope gradient, land use, relief

amplitude, distance to fault, and distance to epicenter were

selected for Zone 1; altitude, relief amplitude, slope gradient,

TABLE 3 Landslide hazard assessment maps validation.

ANN models Zones Validation samples Correct samples Accuracy (%)

Zone 1 Zone 1 153 134 87.6

Zone 2 83 80 96.4

Zone 3 173 105 60.7

Zone 2 Zone 1 153 142 92.8

Zone 2 83 75 90.4

Zone 3 173 165 95.3

Zone 3 Zone 1 153 87 56.8

Zone 2 83 60 72.3

Zone 3 173 148 85.6

By 3 models Whole 409 357 87.3

By 1 model Whole 409 345 84.4

FIGURE 8
ROC curve and AUC value for ANN models.
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annual precipitation, distance to fault, and land use were selected

for Zone 2; and distance to epicenter, altitude, relief amplitude,

slope gradient, annual precipitation, and land use were selected

for Zone 3. For the whole study area, altitude, relief amplitude,

slope gradient, distance to epicenter, distance to fault, and annual

precipitation were selected as the hazard assessment factors.

The artificial neural network is defined as a supervised

classification model that determines part of landslide samples

that need to be selected to train and build the hazard model. In

this study, the landslide inventory was divided into two parts in

each zone. In addition, 80% of landslides were selected randomly

for building the model, and the other 20% samples were taken for

validation. The hazard assessment models of landslides were

modeled by using the artificial neural network method based on

r.slope. Proportions of the dataset for the training, validation, and

test of the ANN were 70, 15, and 15%, respectively. A three-layer

neural network was used to train the data. The input layer had six

neurons, the hidden layer had 14 neurons, and the number of

iterations was 200.

Finally, landslide hazard assessment maps were generated by

the hazard assessment models for the three zones as well as the

whole region (Figure 7). The value of hazard assessment map

ranged from 0 to 1, and it was classified into four classes by the

intervals of 0–0.25, 0.25–0.5, 0.5–0.75, and 0.75–1. The hazard

levels were defined as very low, low, high, and very high. Areas of

very high and high landslide hazard levels in three zones were

FIGURE 9
Validation landslide samples [(A) correctly assessed landslide; (B) wrongly assessed landslide].

FIGURE 10
Landslide hazard maps base on different models [(A) landslide hazard model built in Zone 1 applied in the whole region; (B) landslide hazard
model built in Zone 2 applied in the whole region; and (C) landslide hazard model built in Zone 3 applied in the whole region].
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very similar, accounting for 17.2, 17.4, and 17.6%, respectively.

But for the hazard assessment map by the whole region, the

proportion of very high and high landslide hazard levels reaches

23.6%. Obvious differences could be recognized between two

assessment maps, especially in Zone 3. Areas near the earthquake

epicenters showed very high or high landslide hazard level.

Landslide hazard assessment model
validation

The receiver operating characteristic (ROC) curve was

utilized to validate the landslide hazard assessment models for

three zones and the whole region, and the area under curve

(AUC) value was calculated for each curve to compare the

accuracy of each model quantitatively (Figure 8). The result

shows that all the AUC values were greater than 0.5,

indicating that all these models were effective. A larger AUC

value indicates a higher accuracy of the model. The AUC values

of landslides for three zones and the whole region were very

similar.

Validation of landslide hazard assessment
maps

By using the 20% samples of landslides not involved in the

model construction, the proportion of hazards located in

different hazard zone levels was counted to validate the

hazard assessment results. If more landslide samples are

located in high and very high hazard level region, it means

that the hazard assessment map has a higher accuracy (Table 3).

Comparing the accuracy level of landslide hazard assessment

maps in three zones and the whole region, some phenomena

were found: 1) the accuracy of hazard assessment by zone was

higher than that of the whole region. Accuracies of hazard

assessment in three zones were 87.6, 90.4, and 85.6%

respectively, and average accuracy in the whole region could

reach 87.3%, but the accuracy for the whole region by one

landslide hazard model was only 84.4%. 2) Compared with

Zone 1 and 2, the accuracy of hazard maps for Zone 3 was

relatively low.

The validation of the landslide hazard assessment map of

Zone 3 showed the lowest accuracy (Figure 9). Not as same as

high mountains and deep valleys in Zone 1 and Zone 2, the

topography in Zone 3 is much gentler. Misevaluated landslides

are mostly located in the front edge of the slope area or on the

sides of the gullies. Due to low precision of topographic factors,

especially slope gradient, relief amplitude, the micro-

geomorphology and characteristics of these areas could not be

described precisely. Therefore, the landslide hazard could not be

incorrectly assessed in these areas. In addition, the area of Zone

3 is the largest during three zones, and the landslide quantity is

also the largest one. Hence, the effect on landslide by causative

factors on landslide may vary in different areas of this zone.

Results analysis

The landslide hazard assessment models were applied to

different zones to analyze the applicability for each model

(Figures 10, 11). Landslide hazard model built in Zone 1 was

applied to Zone 2 and Zone 3. The landslide hazard map shows

that the proportion of very high hazard zones in these two zones

were much larger than in Zone 1, reaching more than three times

and nearly two times, respectively. By using the landslide hazard

model built in Zone 2 to Zone 1 and Zone 3, the proportion of

very high hazard area in Zone 1 and Zone 3 exceeded 50% due to

the influence of precipitation, which was in fact inconsistent with

the situation of landslide activities. The landslide hazard model

FIGURE 11
Proportion of landslide hazard levels in different zones.
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built in Zone 3 was applied to Zone 1 and Zone 2, and the

proportion of very high hazard area was 36.4 and 44.0%,

respectively, which was also much higher than the proportion

of very high hazard in Zone 3.

The accuracy level of landslide hazard assessment result

was compared by using landslide validation samples (Table 3).

The landslide hazard assessment model built in Zone 1 had a

very high accuracy in Zone 2, while a very low accuracy in

Zone 3. The landslide hazard assessment model built in Zone

2 had a very high accuracy in both Zone 1 and 3. However, it

was due to the extremely large proportion of a very high

hazard level area in Zone 1 and 3, the high accuracy in both

zones was of no practical significance. The landslide hazard

assessment model built in Zone 3 had a low accuracy in both

Zone 1 and Zone 2.

Therefore, it suggests that the landslide hazard model should

be built within the subzones of a study area, which suits for

specific environmental backgrounds of landslides in the region. If

the model is applied to other regions, especially for the places that

have significant differences from the modeling region, it could

lead to decreased landslide evaluation accuracy, and even

erroneous results.

Conclusion

From this research, the following conclusions were drawn.

1) The controlling factors for landslides vary in different area of

CPEC. Considering diverse features of geological, topography,

and precipitation, the study area was divided into three zones.

Geographical detectors were utilized to analyze the controlling

factors for landslides in different zones. Landslide controlling

factors were very similar in Zone 1 and Zone 2. Topographical

features including altitude, slope gradient, and relief amplitude

influenced the occurrence of landslides significantly. In

addition, the land use type played an important role in

Zone 1 rather than in Zone 2. In Zone 3, the distance to

epicenter was the most significant factor, which was different

with Zone 1 and Zone 2.

2) Landslide hazard assessments were carried out by using the

ANN method in three zones and the whole region based on

80% random landslide samples. The ROC curve was utilized

to validate the accuracy of hazard assessment modeling. All

AUC values of ROC curve were similar and greater than 0.5,

which indicated that all these models were valid. The

accuracy of landslide hazard maps of all three zones and

the whole region was validated by the 20% samples not

involved in the modeling. Results show that the accuracy

level of landslide hazard assessment maps by zones was

higher than by the whole region. Therefore, hazard

assessment by subzones is a more advantageous approach

than that of the whole region.

3) Landslide hazard model built by ANN within the subzones

has a high accuracy. However, if it is applied to other regions,

especially for the places that have significantly different

environmental backgrounds from the modeling region, it

could lead to lower accuracy, even bringing erroneous results.

4) In addition to landslides, CPEC suffers from multiple

natural hazards, such as mudslides, avalanches, and

glacial lake outburst floods (GLOF). It is particularly

important to carry out a comprehensive multi-hazard

assessment on top of the single-hazard assessment. First,

it is especially crucial to clarify the relationship between

different types of hazards. For example, Cees van Westen

et al. (2014) analyzed the interrelationships between

different types of mountain hazards, which are broadly

summarized into three types: 1) different types of

mountain hazards induced by the same trigger; 2) one

hazard provides development conditions for another

hazard to occur; and 3) hazard chains or cascading

hazards, in which one hazard causes another. Second, the

different types of mountain hazards determine that the units

for their evaluation cannot simply use uniform-sized pixel

cells. Some scholars have proposed the concept of slope

units as the basic unit for multi-hazard assessment.

Susceptibility and risk of different types of hazards could

then be carried out for each slope unit (Alvioli et al., 2016;

Lombardo et al., 2020). This method can also be applied to

regional scale studies such as CPEC, which may be useful for

integrated multi-hazard assessments.
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