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Rainfall-induced landslides commonly occur in residual-soil layers of Chenzhou city, China.
Slope failure induced by rainfall is intimately related to changes in the mechanical property
and microstructures of residual soils. In this study, series of direct shear tests were
respectively conducted on four typical residual soils from the area of Chenzhou to study
influences of rainwater on their mechanical behaviors. Meanwhile, X-ray diffraction (XRD)
tests and scanning electron microscope (SEM) tests were also performed to investigate
microstructure characteristic of several types of soils. Experimental results revealed that
the shear strength of soils decreased with increasing water content and its development
trends were obviously influenced by the types of residual soils. Meanwhile, the shear
strength of soils increased with the increase of vertical loads, and the relationship between
them could be well expressed by a linear function. As water content increased, the
calculated cohesions and internal friction angles both decreased. XRD observations
implied that several residual soils showed rich clay minerals, including pyrophyllite, illite,
kaolinite and montmorillonite, etc. Microstructures of these soils presented a sheet-
structure system which was composed of various-sized clay particles. During
hydration, these clay minerals gradually transferred from a face-face arrangement to
face-edge or even edge-edge one, leading to the softening of clay particles and the
reduction of the contact force between soil particles.
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1 INTRODUCTION

China is a country with frequent landslide activities. Landslide will seriously threaten the safety of
human life and property, e.g., Sugarwumei landslide in 2018, Shuicheng landslide in 2019 and
Manisales landslide in 2019, etc. The occurrence of landslides is normally related to mechanical
properties of sliding-surface soils, especially for the soil layers with poor properties (Zhang et al.,
2016; Xiao et al., 2021; Yin et al., 2022). Large number of studies demonstrated that landslides
commonly happen in rainy seasons because the rainfall causes the deterioration in the mechanical
property of slope soils. Wen et al. (2019) studied the triggering mechanism of rainfall on slow-dip
red-bed rock landslide and concluded that the formation process of landslides could be closely
classified into four stages: 1) the fracture development stage resulted from the rainfall infiltration; 2)
the shear-strength decreasing stage in the weak zone; 3) the rising stage of the pore water pressure
and uplift pressure; and 4) the instability and sliding process of slopes. Zhu et al. (2019) conducted
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laboratory model tests on the loess-mudstone slope under two
heavy rainfall patterns, and results revealed that the slope
instability both occurred on the loess-mudstone contact
surface. The creeping-fracturing instability happened under a
continuous strong rainfall, while a sliding-fracturing instability
occurred in an intermittent strong rainfall, which depended on
the infiltration rates of rainwater. Moreover, Miščević and
Vlastelica (2014) investigated the influences of weathering on
the stability of soft-rock slope and pointed out that the instability
modes of marl slope were primarily controlled by a weak surface
generated during the weathering process. Khan et al. (2017)
explored the failure mechanism of the shallow expansive soil
slope. Experimental results demonstrated that as rainwater
infiltrated along the surface cracks, shear strength of the soils
in the sliding zone obviously decreased, which was the main
reason of landslides. Therefore, it is necessary to study the
mechanical behavior of sliding-zone soils and its sensitivity to
water changes for assessment of the slope stability.

It is well recognized that the rainfall infiltration can cause a
dissipation of the soil suction and a reduction of the shear
strength when the unsaturated soil slopes are subjected to
rainfall (De Vita et al., 1998; Patuti et al., 2017). Farooq et al.
(2004) and Orense et al. (2004) pointed out that the pore pressure
inside slope soil gradually increased from a negative value to a
higher one with the infiltration of rainwater, and the effective
stress accordingly decreased until the failure occurred. The
strength of soil actually originates from frictional resistance
and bonding force between soil particles, which are associated
with fabric changes. Studies demonstrated that the shear strength
of unsaturated soils normally decreased with increasing water
content, and its reduction was intimately related to the soil
property, e.g., microstructure, mineral composition, the stress
history and the original fabric (Fredlund et al., 1996; He et al.,
2020, 2021; Zhang et al., 2021). For unsaturated sandy soils, the
capillary force between soil particles reduces and the cohesion
generated by the capillary water decreases during the infiltration
of rainwater. Meanwhile, small sand particles are likely to
transport through large inter-particle pores under high
groundwater pressure (Bai et al., 2021a; 2021b). While for
unsaturated clayey soils, the interaction between clay particles
was controlled by the absorptive force of absorbed water and the
capillary force of capillary water. The shear strength of soil was
dominated by the absorptive force in low water contents (or high
suctions), while in high water contents (or low suctions), the
change of shear strength was primarily influenced by the capillary
water (Mitchell and Soga, 2005; Lu, 2016). Therefore, the rainfall-
induced strength changes for clayey soil appear to be more
complicate due to complex mineral composition and fabric
changes.

In this study, several typical residual soils were extracted from
the landslide zones in Chenzhou, Hunan province. Series of shear
tests, X-ray diffraction (XRD) tests and scanning electron
microscope (SEM) tests were carried out to investigate
mechanical property and microstructures of several soils at
varied water contents, respectively. The changes of strength
parameters (e.g., shear strength, cohesion and internal friction
angle) with water content were analyzed and the corresponding

mechanisms were clarified through microstructural observations.
These findings provide useful information for deeply
understanding the failure mechanism of residual-soil slopes.

2 MATERIALS AND METHODS

2.1 Materials
A western North Pacific Ocean severe tropical storm “Bilis”made
landfall on the southeastern coast of mainland China on 14 July
2006. The heavy rainfalls induced by Bilis attacked the Chenzhou
city in Hunan province and caused more than 8,000 landslides
and mudslides, which killed at least 394 people and left 97 people
missing (Ma and Tan, 2009). Field investigation found that most
of the landslide sliding zones are in residual soil layers. Figure 1
presents several typical residual soils widely distributed in this
area, including white silty-clay layer (WSC), gray coal-soil layer
(GCS) and red-clay layers (RC-I and RC-II). These soil layers are
normally considered as the main slip formations of landslides. In
this work, four types of residual soils above were selected and
remolded. Basic physical properties of these soils are listed in
Table 1. It can be seen that the natural water contents of four
types of soils are all lower than their liquid limits, with a highest
water content for the gray coal soil. Two kinds of red clay had
high liquid limits and initial void ratios. Figure 2 shows particle
size distribution curves of several soil samples. It can be found
that the fine-particles (<0.075 mm) content for all samples is over
than 80 %. Red clay sample has the highest clay content,
corresponding to a high specific surface area.

The preparation procedure of remodeled samples was carried
out with reference to the method proposed by GB/T 50123-2019.
The dry density of soil samples was 1.72 ± 0.2 g/cm3 and the
designed moister content range was between 16%–41%.

2.2 Test Instrument and Method
2.2.1 Direct Shear Test
According to the test method (Ministry of Housing and Urban-
Rural Development of the People’s Republic of China, 2019), a
strain-controlled direct shear apparatus was employed for
conducting direct shear tests. Four vertical loads (i.e., 100, 200,
300, and 400 kPa) were respectively applied on the soil samples
and a shear rate of 0.8 mm/min was adopted for a fast direct
shear. Meanwhile, direct shear tests were separately performed on
soil samples at various water contents to study effects of water
content on shear behavior. There were totally 84 samples for four
types of soils in the direct shear test, where 24 for WSC samples,
16 for GCS samples, 20 for RC-I samples and 24 for RC-II
samples.

2.2.2 X-Ray Diffraction Measurement
The soil samples were dried at 50°C in oven, finely ground and
screened through a 200-mesh sieve to obtain powders for
mineralogy characterizations. Characterization by XRD was
carried out using the random powder method (Sun et al.,
2019). The XRD measurement was carried out by D8 FOCUS
(Germany, Bruker) with CuKα radiation (λ = 0.15418 nm) at the
ambient temperature of 25°C, operating at 30 mA and 40 kV. The
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measured range was 3°–70° and the 2θ-scanning rate was 2°/min.
The JCPDS PDF database was used for the phase identification of
the XRD results.

2.2.3 Scanning Electron Microscope Test
To prepare samples of SEM tests, the soil samples were firstly cut
into small pieces with dimensions of 10 × 10 × 5 mm (length ×
width × height) and then rapidly immersed in the previously
vacuum-cooled liquid nitrogen. After that, the frozen samples
were freeze-dried for 24 h in a vacuumed chamber. SEM tests
were performed on the freeze-dried samples using a JSM-6490LV
electron microscope scanner.

3 RESULTS AND DISCUSSION

3.1 Shear Property of Residual Soils
Figure 3 shows the changes of shear strength with water content
for four soil samples. On the whole, the shear strength of all soil

FIGURE 1 | Typical residual soils in Chenzhou area: (A) WSC; (B) GCS; (C) RC-I and (D) RC-II.

TABLE 1 | Basic physical properties of typical residual soils.

Number Sample name Specific gravity Water content
(%)

Void ratio Liquid limit
(%)

Plastic limit
(%)

1 White silty clay 2.69 17.7 0.476 32.3 16.2
2 Gray coal soil 2.72 25.7 0.536 32.9 20.3
3 Red clay I 2.73 20.6 1.098 54.1 19.4
4 Red clay II 2.69 22.4 1.379 49.6 20.2

FIGURE 2 | Particle size distribution curves of several residual soils.
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samples decreased with increasing water content, but the shear
strength for each soil shows different developing trends. ForWSC
samples, the shear strength firstly decreased quickly with
increasing water content and then gradually tended to a
stabilization, as shown in Figure 3A. At a given water content,
the shear strengths of samples increased with the increase of
vertical loads. Similar phenomenon was also observed from the
curves of gray coal soil (Figure 3B). Results in Figure 3C
demonstrated that the shear strength of RC-I samples slightly
reduced as water content increased from 16% to 26%, whereas it
obviously decreased with a further increase of water content.
Different from RC-I samples, the strength changes for RC-II
samples were significant in low water contents, whereas the
reducing rate of shear strength became slower in high water
contents. According to the natural water contents of several soils,
the increases of water content nearby the natural value will cause
an obvious reduce of shear strength for WSC, GCS and RC-II
samples, excepting for RC-I sample.

Figure 4 presents changes of shear strength with vertical load
for soil samples at different water contents. Generally, the
relationship between shear strength and vertical load can be
described by a linear equation in Eq. 1. According to

experimental results in Figure 4, the fitting curves between
shear strength and vertical load could be obtained, and the
corresponding parameters ϕ and c are listed in Table 3,
respectively.

τs � σ tan ϕ + c (1)
where τs is the shear strength (kPa) of soil samples; σ is the applied
vertical load (kPa) on samples; ϕ is internal friction angle (°) and c
is cohesion (kPa). It is noted that for unsaturated soils, the
parameters ϕ and c in Eq. 1 are influenced by the water
contents, which is also confirmed from Table 2.

Figure 5 shows variations of cohesion c and internal friction
angle ϕwith water content, respectively. Results indicated that the c
values for WSC, GCS and RC-II samples firstly reduced obviously
and then gradually tended to a stable state, but it appeared that the
opposite developing trend was observed in RC-I samples. An
exponential function (Eq. 2) can be tried to describe the
relationship between the cohesion and water content, and the
corresponding fitting parameters are summarized in Table 3.
Comparison reveals that this fitting function could give high
correlation coefficients (R2), suggesting a good fitting

FIGURE 3 | Variations of shear strength with water content for (A) WSC samples; (B) GCS samples; (C) RC-I samples and (D) RC-II samples.
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relationship. Observations from Figure 5B showed that the
internal friction angle ϕ nearly decreased linearly with the
increase of water content. A linear function (Eq. 3) was used to
represent the relationship between ϕ and water content. Results in
Table 4 implied that this linear equation can well describe the

variation of ϕ values with water content, excepting for RC-I
samples.

c � αeβw + χ (2)
ϕ � aw + b (3)

FIGURE 4 | Relationships between shear strength and water content for (A) WSC samples; (B) GCS samples; (C) RC-I samples and (D) RC-II samples.

TABLE 2 | Fitting results for relationship between shear strength and vertical load.

Samples Water
content

(%)

ϕ C R2 Samples Water
content

(%)

ϕ c R2

WSC 16 12.298 72.403 0.986 RC-I 16 8.306 90.710 0.997
18 10.979 33.786 0.990 20 9.146 83.287 0.987
21 9.425 23.514 0.994 27 9.592 76.624 0.999
25 8.531 11.996 0.992 31 5.086 43.693 0.993
26 8.475 8.707 0.999 40 1.318 17.995 0.824
31 6.504 8.596 0.989 RC-II 21 11.860 106.600 0.943

GCS 25 17.589 57.42 0.980 23 12.462 71.828 0.956
30 15.855 33.713 0.963 24 11.034 55.330 0.992
32 16.066 25.805 0.980 27 7.970 32.279 0.983
41 13.604 13.585 0.998 29 8.419 21.573 0.993

37 5.370 5.830 0.918
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where α, β, χ, a and b are fitting parameters, respectively; w is
water content.

3.2 Mineral Composition and
Microstructure of Residual Soils
3.2.1 Mineral Composition Analysis
Figure 6 shows X-ray diffraction results of WSC, GCS and RC-I
samples. The mineral contents of soils are summarized in
Table 5. It can be seen from Table 5 and Figure 6 that the
white silty clay sample include rich clay minerals, especially
pyrophyllite and illite. Similar observations were also found in
gray coal soil, corresponding to 36% for pyrophyllite and 27% for
illite. Differently, the main mineral compositions of red clay were
kaolinite and quartz, as well as low montmorillonite (12%).
Moreover, X-ray diffraction spectra implied that the mineral

diffraction peaks for WSC and GCS soils were sharp due to a
high content of pyrophyllite, while those of RC-I soil were
relatively flat.

3.2.2 Microstructural Analysis
The SEM photos of white silty clay, gray coal soil and red clay
(RC-I) are illustrated in Figure 7. The microstructure of WSC
sample was composed of various-sized aggregates (1–30 μm),
which were consisted of clay particles. These clay particles
exhibited a loose arrangement with identified inter-particle
pores and a poor orientation with face-face and face-edge
connections, as shown in Figure 7B. Meanwhile, these large-
size pores (1–10 μm) between clay particles promoted the
connection of air or fluid inside soil, thus resulting in a high
permeability. Observations from Figures 7C,D revealed that the

FIGURE 5 | Variations of cohesion c and internal friction angle ϕ with water content for several residual-soil samples.

TABLE 4 | Fitting results for relationship between internal friction angle and water
content.

Samples Fitting parameters R2

A B

WSC −0.361 17.619 0.960
GCS −0.242 23.514 0.951
RC-I −0.314 15.092 0.625
RC-II −0.449 21.574 0.866

FIGURE 6 | X-ray diffraction spectra of soils in the study area.

TABLE 3 | Fitting results for relationship between the cohesion and water content.

Samples Fitting parameters R2

A B Χ

WSC 34945.338 −0.396 9.599 0.972
GCS 1,583.817 −0.139 8.035 0.994
RC-I -26.089 0.039 140.964 0.888
RC-II 9,309.764 −0.214 2.663 0.998
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coal-soil structure exhibited a sheet-structure system with an
orderly face-face arrangement and a strong orientation between
clay particles. Compared with WSC samples, the GCS samples
had smaller sized pores and a tighter structure. Thus, the
permeability for GCS samples was lower and the anisotropy in
mechanical property was more obvious. Similarly, red clay also

possessed a face-face structure. The soil particles were arranged in
an orderly manner with an obvious orientation. The stratification
between particles was discernible, but the boundaries and edges
between clay particles could not be clearly identified.

The residual-soil landslide induced by rainfall is substantially
due to the reduction in shear strength of the sliding-zone soils.
Results in Figure 3 have demonstrated that the shear strength of
soils decreased with increasing water content, indirectly
confirming that the rainfall process will cause a decrease in
shear strength of slope soils in the field environment. Actually,
the reduction of shear strength was actually attributed to
microstructural changes inside the soils. Several residual soils
studied in this study contained abundant clay minerals, e.g., illite,
kaolinite and montmorillonite. During hydration process, these
clay minerals would absorb water molecules, generating water
films on the surface of clay particles (He et al., 2019; Zhang et al.,
2020; He et al., 2022). As the thickness of water films increased,

TABLE 5 | Mineral compositions of typical residual soils.

Samples A V (%) O (%) H M W L N

WSC 41% 17 20 12% 4% — — Rest
GCS 36% 21 27 — — — — Rest
RC-I — 25 7 32% 12% 11% 3% Rest

A, pyrophyllite; V, quartz; O, illite; H, kaolinite; M, montmorillonite; W, limonite; L, anatase;
N, others.

FIGURE 7 | SEM photographs for (A) (B) WSC samples; (C) (D) GCS samples and (E) (F) RC-I samples.
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clay particles separate from each other and the cohesiveness
between them gradually reduced. Correspondingly, the clay
structure underwent softening and degradation, and the clay
minerals transferred from a tightly face-face arrangement to a
loosely face-edge or even edge-edge one, leading to a reduction in
mechanical strength (Zhang et al., 2016; Lu et al., 2021).

4 CONCLUSION

In this study, the mechanical property of typical residual soils
from a landslide zone was investigated by conducting direct shear
tests. Meanwhile, mineral composition and microstructures of
soil samples were also analyzed through XRD and SEM tests. The
obtained results allowed the following conclusions to be drawn:

The shear strength of soils gradually decreased with increasing
water content under constant vertical load, but the developing
trends of shear strength were influenced by the soil types. At a
given water content, the shear strength of all soil samples nearly
linearly increased with the increase of vertical loads. The soil
cohesion reduced with increasing water content and this change
could be well described by an exponential function.
Simultaneously, as water content increased, the internal
friction angle of soils nearly linearly decreased.

XRD analysis results implied that the main mineral
components for white silty clay and gray coal soil were
pyrophyllite and illite, corresponding to sharp mineral
diffraction peaks. Different from these two samples, red clay
had rich kaolinite and montmorillonite and its mineral
diffraction peaks were low. SEM observations revealed that
white silty clay was consisted of various-sized aggregates. The
clay particles inside aggregates exhibited a loose arrangement and
a poor orientation. Compared with white silty clay samples, the
gray coal soil samples showed an orderly face-face arrangement
and a strong orientation between clay particles. In red clay, the
soil particles were arranged in an orderly manner, but the

boundaries and edges between clay particles could not be
clearly identified. The clay minerals inside residual soils
absorbed water molecules upon hydration, generating water
films on the surface of clay particles. Clay particles separated
from each other and gradually transferred from a tightly face-face
arrangement to a loosely face-edge or even edge-edge one,
resulting in a reduction in the cohesive force between them.
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