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For the limit equilibrium method based on the assumption model of sliding

surface normal stress, the more reasonable the assumed sliding surface normal

stress model is, the higher the accuracy of the calculation results will be, which

is of great significance to improve the theoretical calculation accuracy.

Combined with the powerful spatial data analysis ability of Geographic

Information Systems (GIS), the expression of the normal stress distribution

function of the slip surface is deduced by establishing a GIS-based three-

dimensional slope stability analysis model and limit equilibrium equations. By

analyzing the composition of the normal stress distribution on the sliding

surface, the composition of the normal stress on the sliding surface is

obtained, and then the assumed model of the normal stress distribution on

the sliding surface is constructed. Finally, the assumed GIS model of the sliding

surface normal stress distribution is verified by calculating the proportion. The

model overcomes the problem that the stability factor of the slope will cause

large errors in the three-dimensional state, and provides a theoretical

calculation basis for the establishment of a three-dimensional slope limit

equilibrium method based on the assumption of normal stress on the slip

surface in GIS.
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1 Introduction

Limit equilibrium method is a common analysis method to analyze the stability of

slope, and after years of development (Zhou and Cheng, 2013; Du et al., 2019; Du et al.,

2020; Du et al., 2021), relevant theories currently have been improved and played an

important role in the stability analysis method. Scholars have been exploiting the analysis

method of 2D slopes into 3D slopes, for example, Hovland (1979), Hungr (1987), Cheng

and Yip (2007), Low Wilson (1997). Extended the two-dimensional models of Hovland,

Bishop and Janbu into three-dimensional models, but these methods all need to solve the

stability factor by assuming the force between bars or columns, and it is difficult to meet
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the strict calculation of static balance conditions. Later, Bell

(1968), Zhu and Lee (2002), Zhu et al. (2004), Zhu et al.

(2009), Yang (2004), Zheng and Tham (2010) assumed that

the normal stress distribution pattern of the sliding surface is a

function containing multiple dimensionless parameters, to find

the stability factor. The advantage of this method is that it does

not need to assume the stress and distribution between bars or

columns, and the obtained stability factor is closer to the true

value. However, the normal stress distribution mode assumed in

this kind of method cannot truly reflect the normal stress of the

slip surface, so the accuracy of the results calculated by this kind

of method is not high.

At the same time, in the calculation of slope stability, GIS is

more widely used because it has powerful spatial data processing

abilities, as well as unique advantages in the processing of three-

dimensional data, and the complex mathematical calculations

and difficult algorithms encountered in the process can also be

well solved in GIS (Zhou et al., 2003; Ayalew and Yamagishi,

2005). In the study of GIS combined with the limit equilibrium

method, Xie et al. (2003), Xie et al. (2006a, 2006b). Extended the

2D model of Hovland, Bishop and Janbu to a 3D model based on

the advantages of GIS 3D data processing and developed a 3D

limit equilibrium analysis software 3DSlope. However, the

establishment of the three-dimensional limit equilibrium

method based on the assumption of the normal stress of the

sliding surface in GIS has not been studied by scholars. The key

step of this method is to establish an assumed model of the

normal stress distribution of the sliding surface based on GIS.

The more reasonable the assumed model is, the smaller the

impacts on stability factors closer the results to the actual value.

Regarding the assumed mode of the normal stress

distribution on the sliding surface, for a two-dimensional

slope, the difference in the influence of different normal stress

distributions on the sliding surface on the slope stability factor is

about 19%. After the rationality verification of the inter stripe

force distribution, the difference can be reduced to within 7%, to

meet the needs of engineering. However, the influence range of

three-dimensional state will be greatly increased. Therefore,

establish a three-dimensional limit equilibrium method based

on the normal stress of the sliding surface in GIS, it is necessary to

construct a reasonable three-dimensional sliding surface normal

stress assumption model based on GIS to ensure the accuracy of

calculation results.

In this paper, by introducing GIS and using its spatial data

analysis capability, a hypothetical model of the normal stress

distribution of a three-dimensional slope sliding surface is

constructed based on the grid column units. Based on GIS, a

three-dimensional slope stability analysis limit equilibrium

model is established, and the limit equilibrium equation for

solving the stability factor is deduced according to the limit

equilibrium conditions. And then under the assumption of no

force, the distribution composition of normal stress on sliding

surface based on the grid column units is deduced and analyzed

and later a hypothetical model of the normal stress distribution of

the three-dimensional symmetrical slope sliding surface based on

GIS is constructed. The assumed model not only overcomes the

problem of large errors in the slope stability factor in the three-

dimensional state, but also provides a theoretical basis for the

establishment of a three-dimensional symmetrical slope limit

equilibrium method in GIS based on the assumption of sliding

surface normal stress.

2 GIS-based 3D limit equilibrium
model

Generally, slope data is mostly expressed in the form of two-

dimensional vector data, such as ground contours, rock

formations, groundwater and mechanical parameters. In GIS,

these two-dimensional vector data layers can be converted into

GIS-based three-dimensional grid column unit structure data

layers by using the spatial analysis function. Therefore, all the

data related to the slope can come from the GIS data layer. And

based on the 3D grid column unit data structure of GIS, the limit

equilibrium equation for 3D slope stability analysis can be

established.

As shown in Figures 1A,B, a grid column unit

ABCDA1B1C1D1 is taken in the three-dimensional slide body.

For the entire slide body, the force between columns is the

internal force, and the force is 0, so it is not marked in the

figure. And the acting forces on the grid column mainly include:

the weight of the grid column unit W; the horizontal seismic

inertial force kW with k as the earthquake influence coefficient;

the external force P on the slope surface; the normal total stress

and shear stress on the sliding surface are respectively σ and τ; the

pore water pressure u on the sliding surface.

Figure 1C shows the spatial relationship of each calculation

parameter in the 3D model. On the sliding surface, according to

the Mohr-Coulomb criterion:

FS3D � c′ + (σ − u) tanφ′
τ

(1)

where c´ and φ′ are the effective cohesion force and the effective

internal friction angle, respectively, and FS3D is the three-

dimensional stability factor of the slide body.

According to the static force balance of the slide body, for the

entire slide body, the force balance equations on the X, Y, and Z

axes and a moment balance equation for a rotating axis

perpendicular to the sliding direction can be established. The

combined force between columns in every axis is 0, then the four

equations can be expressed as:

X � ∑
J

∑
I

(Aτ cos θr cos β − Aσ sin θ cos α − kW) � 0 (2)

Y � ∑
J

∑
I

(Aτ cos θr sin β − Aσ sin θ sin α) � 0 (3)
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Z � ∑
J

∑
I

(Aτ sin θr + Aσ cos θ −W − P) � 0 (4)

M � ∑
J

∑
I

[Aτ − (W + P) sin θr] � 0 (5)

In the formula: J and I are the number of rows and columns of

grid units within the slide body range; A is the sliding surface area.

Eqs 1–5 constitute the equilibrium equations for solving the

three-dimensional stability factor. Under the assumption of no

force, the above 5 equations are simultaneously solved to achieve

the normal stress of FS3D and the sliding surface of (J×I) columns,

with a total of (J×I+1) unknown numbers, and the number of

unknowns is more than the that of equations, hence the

equations cannot be solved. If the distribution of the normal

stress σ on the sliding surface can be known, it can be solved.

3 Composition analysis of normal
stress distribution on sliding surface

For a single grid column unit, the forces between the columns

cannot cancel each other out. Figure 2 is a schematic diagram of the

force of a single column. The forces between the columns are

horizontal tangential forces T and T+△T on the left and right sides

of the column, vertical tangential forces R and R+△R normal Forces

F and F+△F; horizontal tangential forces E and E+△E on the front

and rear sides, vertical tangential forces V and V+△V, and normal

forces H and H+△H. Under the assumption of no force, according

to the static balance conditions of a single column, the force balance

equation on the X, Y, and Z axes can be obtained as:

X � Aτ cos θr cos β − Aσ sin θ cos α − kW + ΔT − ΔH � 0 (6)
Y � Aτ cos θr sin β − Aσ sin θ sin α + ΔF − ΔE0 (7)
Z � Aτ sin θr + Aσ cos θ −W − P + ΔV − ΔR � 0 (8)

By eliminating τ from Eqs 6–8, the normal stress distribution

function of the sliding surface can be obtained as:

σ � (W+P)cosθr(sinβ+cosβ)+kWsinθr
Acosθcosθr(sinβ+cosβ)+Asinθsinθr(sinα+cosα)
+ (ΔV−ΔR)cosθr(sinβ+cosβ)−(ΔT−ΔH+ΔF−ΔE)sinθr

Acosθcosθr(sinβ+cosβ)+Asinθsinθr(sinα+cosα)
(9)

FIGURE 1
Computational modeling and three-dimensional spatial relationship. (A) 3Dmodel of slide body, (B) typical column force analysis, (C) 3D spatial
relationship.

FIGURE 2
Force analysis of a single column.
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It can be seen from Eq 9 that the distribution of the normal

stress on the sliding surface can be divided into two parts, one of

which is contributed by the self-weight W of the slide body and

the external force P, and the other is contributed by the force

between the columns, which can be denoted as σ1 and σ2

respectively. So, formula (9) can be simplified as:

σ � σ1 + σ2 (10)
where

σ1 � (W+P)cosθr(sinβ+cosβ)+kWsinθr
Acosθcosθr(sinβ+cosβ)+Asinθsinθr(sinα+cosα) (11)

σ2 � (ΔV−ΔR)cosθr(sinβ+ cosβ)−(ΔT−ΔH+ΔF−ΔE)sinθr
Acosθcosθr(sinβ+ cosβ)+Asinθ sinθr(sinα+ cosα)

(12)
If the sliding surface is known, all the parameters in Eq. 11

are known, so σ1 belongs to a known function; however, because

the distribution of the force between the columns cannot be

accurately obtained, σ2 belongs to an unknown function. At

present, in most limit equilibrium analysis methods, certain

conditions are generally assumed to solve the stability factor.

For example, the Swedish strip method assumes that there is no

interaction force between the blocks, the simplified Bishop

method assumes that the force between the strips is only

horizontal, the simplified Janbu method ignores the shear

force between the bars, and the simplified Spencer method

assumes that the inclination of the force between bars is a

constant.

In order to study the contribution of σ1 and σ2 to the normal

stress of the sliding surface, the distribution of σ1 and σ2 is

calculated by a calculation example, so that the contribution

of each component to the normal stress distribution can be

obtained through the actual calculation data. The symmetric

slope calculation example is shown in Figure 3 and this

calculation example does not consider the influence of

earthquake, and the size of the grid unit based on GIS is

0.5 m × 0.5 m.

For this example, the 3D slope stability analysis extension

module 3DSlope, which is developed by this research team based

on GIS, is used, and two methods, the extended Bishop method

and the extended Janbu method based on GIS are applied. The

normal stress σ of the sliding surface, as well as the sum of the two

component σ1 and σ2 are calculated. A cross-section is drawn along

the sliding direction nm of the slide body and perpendicular to

the sliding direction AB of the slide body respectively, and then

the results of σ、σ1 and σ2 are recorded in Figure 4. Due to the limitation

of the three-dimensional effect, only the curves on nm andAB are

shown here.

It can be concluded from Figure 4: (1) In the composition of

the normal stress σ distribution of the sliding surface, the self-

weight of the slide body and the external force (σ1) make a large

contribution to the normal stress of the sliding surface, while the

force between the columns (σ2) contributes very little to the normal

stress of the sliding surface; (2) The normal stress of sliding surface
σ、σ1 and σ2 are continuous and approximately smooth curves.

It can be concluded from above that: (1) For the sliding

direction along the slide body, since the normal stress of the

sliding surface accounts for a small proportion and is a

continuous and approximately smooth curve, an appropriate

function pair can be used for approximation fitting; (2) For the

direction perpendicular to the sliding direction of the slide body,

the normal stress distribution on the sliding surface is

approximated and fitted by a parabola symmetrical along the

sliding direction of the slide body.

4 Construction of the approximation
distribution function of the normal
stress on the sliding surface

If the sliding surface is known, in the distribution function of

the normal stress σ of the sliding surface, σ1 belongs to a known

function, σ2 belongs to an unknown function because the force

between the columns is difficult to calculate, hence in order to

FIGURE 3
Plane and cross-section of slope. (A) plane of slope, (B) cross-section of slope, (C) the DEM model of slope surface.
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make Eqs 1–5 have solutions, it is necessary to construct the

distribution function σ(x, y) in the normal stress of the sliding

surface.

Figure 5 shows the assumed model of the normal stress

on the sliding surface. The center of the slide body is C, nm is the

long axis direction, FR is the short axis direction, n andm are the

peak and the lowest point of the slide body respectively, and the

X-axis direction is along the sliding surface with the Y-axis

direction perpendicular to the sliding direction. Also, AA and

BB represent the two-dimension features of the slide body

respectively, and at 1/3 and 2/3 of the X-axis, take two points,

m1、m2, respectively, there are:

m1 � m + 1
3
(n −m) (13)

m2 � m + 2
3
(n −m) (14)

4.1 Normal stress distribution σ(x) along
the sliding direction of the slide body

For the cross-section nm along the sliding direction of the

slide body, it is obtained through the research in this paper that

since σ2(x) occupies a small proportion in the composition of the

FIGURE 4
Normal stress distributions of slip surfacewith different calculations. (A) the Bishopmethod based onGIS (Along the sliding direction of the slide
body) and (Perpendicular to the direction of the slide body); (B) the Janbu method based on GIS (Along the sliding direction of the slide body) and
(Perpendicular to the direction of the slide body).

Frontiers in Earth Science frontiersin.org05

Yu et al. 10.3389/feart.2022.923620

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.923620


normal stress σ(x) of the sliding surface, and it is a continuous

and approximately smooth curve, it can be considered that σ2(x)

can be expressed by an approximation function. Since the

proportion of σ2(x) is small, different approximation functions

have little effect on the results, so that the normal stress σ(x) of

the sliding surface is closer to the distribution in the strict

method. Function.

Assuming that the approximation function is β(x), so the

distribution function of the normal stress of the sliding surface in

the sliding direction of the slide body can be expressed as

σ(x) � σ1(x) + β(x) (15)

In the formula: σ(x) is the distribution function of the normal

stress of the sliding surface in the sliding direction of the slide body;
σ1(x) is the component of the normal stress of the sliding surface

caused by the self-weight of the slide body and the external force in

the sliding direction of the slide body, which can be obtained from

the formula (11) is determined and belongs to a known function.

For the approximation function β(x), that is, based on the research

of Zhu et al., over the section on the X-axis of the sliding direction of

the slide body, it is assumed that the normal stress distribution of the

sliding surface is a third order Lagrangian polynomial:

β(x) � k1g1(x) + k2g2(x) + g3(x) (16)
where

g1(x) � (x −m)(x − n)(x −m2)
(m1 −m)(m1 − n)(m1 −m2) (17)

g2(x) � (x −m)(x − n)(x −m1)
(m2 −m)(m2 − n)(m2 −m1) (18)

g3(x) � βm
(x − n)(x −m1)(x −m2)
(m − n)(m −m1)(m −m2)

+ βn
(x − n)(x −m1)(x −m2)
(n −m)(n −m1)(n −m2) (19)

In the formula: k1 and k2 are the dimensionless calculation

parameters; x is the coordinate value of the center of the bottom

surface in each grid column unit on the X axis; βm is the

corresponding part of the normal stress σ2 of the lowest point

m of the slide body; βn is the vertex n of the slide body The

corresponding part of the normal stress σ2.

Since the normal stress at the boundary of the upper half

of the slide body is small (Leshchinsky, 1990), it is assumed

that its normal stress is 0, then βn = 0. And assuming that the

normal stress at the boundary of the lower half of the slide

body is linearly distributed, that is, its normal stress is x σ

(m)/m, then:

βm � σ(m) − σ1(m) (20)

4.2 Normal stress distribution σ(y)
perpendicular to the sliding direction of
the slide body

For the cross-section perpendicular to the sliding

direction of the slide body, the distribution of the normal

stress is approximated and fitted by a parabola symmetrical

along the sliding direction of the slide body (that is, along the

X axis).

FIGURE 5
Normal stress assumption on the slip surface.
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Then the normal stress distribution σb(y) of any cross-section

in the lower half of the slide body and the normal stress

distribution σa(y) of any section in the upper half of the slide

body are expressed as

σb(y) � h1y
2 + h2y + h3 (21)

σa(y) � λ1y
2 + λ2y + λ3 (22)

Considering the boundary conditions, Eqs 21, 22 can be

expressed as

h1 � (AA2)−1(xσ(m)
m

− σ(x)), h2 � 0, h3 � σ(x) (23)

λ1 � −(AA2)−1σ(x), λ2 � 0, λ3 � σ(x) (24)

4.3 Distribution σ(x, y) of normal stress on
sliding surface

After obtaining the normal stress distribution σ(x) along the

sliding direction of the slide body and the normal stress distribution
σ(y) perpendicular to the sliding direction of the slide body, for the

entire sliding surface, the normal stress distribution σ(x,y)of the sliding

surface of any grid column unit can be expressed as

σb(x, y) � (AA2
x)−1y2{σ(m)

m
x − (σ1(x) + β(x))}+

σ1(x) + β(x)
σa(x, y) � {1 − (AA2

x)−1y2}(σ1(x) + β(x))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(25)

In the formula: σb(y) represents the normal stress distribution of

the sliding surface in the lower half of the slide body; σa(y) represents

the normal stress distribution on the sliding surface of the upper half

of the slide body; AAx is the short axis dimension corresponding to

the x axis; y is the corresponding coordinate value on the Y axis.

4.4 Example verification

During the example verification, the approximation function

shown in Eq 25 is used for the normal stress of the sliding surface,

and the Eqs 1–5 and Eq 25 are combined together. The final four

equations, after dividing and eliminating the difference, contain

four unknowns (FS3D、
σ(m)、k1 and k2), and the number of

equations is equal to that of unknowns, so the three-

dimensional stability factor FS3D can be solved. For the

specific calculation process, please refer to the calculation

method proposed by this research team (Yu et al., 2019).

4.4.1 Example 1
The case shown in Figure 3 is used in combination with the

proposed method to calculate, together with the GIS-based 3D

Hovland method (Xie et al., 2003), 3D modification Hovland

method (Xie et al., 2006a), 3D Bishop method (Xie et al., 2006b),

3D Janbu method (Xie et al., 2006b), 3D Spencer method (Low

and Wilson, 1997), and 3D M-P method (Chen and Zhu, 2010),

proposed. and used for comparative calculation, and the results

are shown in Table 1.

From the analysis of the results in Table 1, it can be seen that.

(1) According to the classification method proposed by

Deng Dongping, the 3D Hovland method, the 3D

modification Hovland method, the 3D Bishop method,

and the 3D Janbu method satisfy a smaller amount of

equilibrium conditions, so the obtained stability factor is

conservative. The method is close to the non-strict method;

the Spencer method satisfies the balance conditions of

the five forces and is a quasi-strict method; the M-P

method satisfies the force and moment balance conditions

most, and is a strict method, that is, it is the closest to the

true value. And the strict method has the largest result,

the quasi-strict method is the second, and the non-strict

method is the smallest.

(2) Since the approximation function used by the proposed

method is close to the real function, the calculation result

of the proposed method is closer to the real value, that is, it is

close to the strict method. Seen from the calculation result,

the proposed method achieves the biggest data, close to that

of the M-P method, as well as that of a strict method, which

shows the rationality of the approximation function

proposed in this paper.

(3) Compared with the strict method (three-dimensional

Spencer method), the results of the proposed method

differ by 3.2%, compared with the non-strict method

(three-dimensional Bishop method) by 7.3%, and are close

to the difference obtained by Deng Dongping et al. (The

difference between the strict method and the quasi-strict one

is 1–3.8%, and the difference is 6–12.8% compared with the

non-strict method), which further shows that the calculation

results of the proposed method are close to the correctness of

the strict method.

4.4.2 Example 2
Figure 6 shows a slope with a weak discontinuity. The

mechanical parameters of layers 1 to 4 are as follows: the

effective friction angles are 35°, 25°, 30°, and 16° respectively,

the effective cohesion forces are 9.8, 58.8, 19.8, and 9.8 kPa, and

the unit weights are 19.6, 18.62, 21.07, and 21.07 kN/m³. The grid

unit is 0.5 m × 0.5 m. The calculation process is the same as that

of calculation example 1, and the results are shown in Table 2.

Analysis of the results from Table 2:

(1) The results of the 3D Hovland method, the 3D modification

Hovland method, the 3D Bishop method, and the 3D Janbu
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method are smaller, followed by the results of the Spencer

method. The M-P method and the proposed method have

the largest calculation results, and the results obtained by the

strict method are the largest, followed by the quasi-strict

method, and the non-strict method is the smallest.

(2) According to the calculation result, the rationality of the

approximation function, that is, the calculation result of the

proposed method, is close to the real value;

(3) The result of the proposed method is 2.7% different from the

quasi-strict method (three-dimensional Spencer method),

and 6% different from that of the non-strict method

(three-dimensional Bishop method), which is like Deng

Dong’s (Deng and Liang, 2017). The difference obtained

by equality is close, which verifies the correctness of the

calculation result of the proposed method to be close to the

strict method.

5 Discussion

5.1 Discussion on the advantages of GIS-
based limit equilibrium method

GIS can provide a unified platform for complex and multi-

source data, and all target-related data can be converted into GIS

raster datasets based on columnar raster cells. Based on the GIS

platform, combined with its advantages in processing complex

spatial data, the limit equilibrium method can be easily extended

to 3D (Carter, 1994).

For complex slope engineering problems, the factors

affecting the three-dimensional stability evaluation mainly

include topography, strata, geotechnical parameters, and

groundwater. Due to the multi-source and complexity of these

data, it is difficult to express these spatial data in the general slope

stability analysis system, and GIS can provide a unified platform

to process these complex spatial data.

By adding professional models to GIS, a three-dimensional

slope stability analysis model based on grid-column units can be

established to analyze the stability of three-dimensional slopes.

The model has the advantages of simple data processing and easy

programming.

5.2 Discussion on the influence of the
normal stress distribution on the sliding
surface on the stability factor

If the distribution pattern of the normal stress on the sliding

surface has a significant influence on the stability factor, the stability

factor obtained by assuming the normal stress distribution on the

sliding surface is unreasonable. Therefore, it is necessary to develop a

discussion of the sensitivity of the stability factor to the normal stress

distribution of the sliding surface.

Lu et al. (2012) studied the influence of the two-dimensional

stability factor under different assumptions of normal stress on the

sliding surface through calculation examples. The research results

show that the error of the two-dimensional stability factor values

obtained from different normal stresses on the sliding surface is small,

but the distribution curves of the normal stress on the sliding surface

are completely inconsistent. It can also be concluded that the influence

TABLE 1 Calculation results.

Method 3D Hovland
method

3D modification
Hovland
method

3D Bishop
method

3D Janbu
method

3D Spencer
method

3D M-P
method

The proposed
method

Safety
factor

1.431 1.573 1.616 1.431 1.688 1.736 1.743

FIGURE 6
Slope example 2. (A) Cross section of slope, (B)The DEM
model on the surface of the slope.
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of the normal stress distribution on the sliding surface on the two-

dimensional stability factor is not significant.

In the three-dimensional state, the influence of different

sliding surface normal stress distributions on the stability

factor will be greatly increased, which requires constructing a

reasonable sliding surface normal stress distribution. In this

paper, by analyzing the composition of the normal stress of

the sliding surface, an approximation function σ(x, y) of the normal

stress distribution of the sliding surface of the symmetrical slope

is constructed, and the approximation function is closer to the

distribution function in the strict method. In this way, from the

mathematical aspect, the problem that the normal stress of the

sliding surface of the symmetrical slope has a significant

influence on the stability factor is solved.

5.3 Discussion on approximation function
based on grid column unit

GIS is widely used in geotechnical engineering due to its

advantages in data processing and analysis capabilities. For

example, GIS can not only establish the stability analysis

model of a single slope, but also can establish a large-scale

regional slope stability analysis model. Compared with the

traditional slope stability analysis software, GIS has inherent

advantages (Irigaray et al., 2003).

The advantage of the proposed method is that a reasonable

three-dimensional sliding surface normal stress assumption

model is constructed based on GIS, which provides a

theoretical calculation basis for establishing the limit

equilibrium method based on the sliding surface normal

stress assumption in GIS; secondly, the approximation

function constructed in this paper overcomes the influence

of large error on the slope stability factor in the three-

dimensional state, and makes the calculation result closer to

the real value.

6 Conclusion

(1) Using the spatial data analysis ability of GIS, a GIS model

of limit equilibrium for three-dimensional slope stability

analysis was established, and the limit equilibrium

equation for solving the three-dimensional stability factor

was deduced according to the limit equilibrium conditions.

Using this model, the limit equilibrium method based on the

assumption of normal stress on the sliding surface can be

established in GIS, and it has the advantages of simple data

processing and easy programming.

(2) Under the assumption of no force, the composition of

the normal stress distribution of the sliding surface

based on the grid column unit is deduced and analyzed,

and it is concluded that in the composition of the

normal stress σ distribution of the sliding surface, the

self-weight of the slide body and the external force (σ1).

The contribution of the normal stress of the sliding surface

is very large, while the contribution of the force between

the columns (σ2) to the normal stress of the sliding surface

is very small.

(3) For the normal stress distribution σ(x, y) along the sliding

direction of the slide body, since the proportion of σ2(x) is

rather small in the normal stress σ(x) on the sliding surface,

and it is a continuous and approximately smooth curve,

it can be considered to use a third-order Lagrangian

polynomial. Due to the small proportion of σ2(x), the

approximation function has little effect on the result,

making the normal stress of the sliding surface more

approximate to the distribution function in the strict

method.

(4) For the entire sliding surface, considering the normal stress

distribution σ(x) and σ(y), the approximation function σ(x, y)

of the normal stress distribution of the sliding surface for

any grid-column element of the slope can be obtained.

The approximation function not only overcomes the

influence of large error on the slope stability factor in the

three-dimensional state, but also provides a theoretical

calculation basis for establishing a three-dimensional

symmetrical slope limit equilibrium method based on the

assumption of normal stress on the sliding surface in GIS.

The rationality of the approximation function is verified by

an example.

(5) Through the verification of the case, the results calculated by the

method in this paper are close to the results calculated by the

strict method, which verifies that the assumed model of the

normal stress of the sliding surface proposed in this paper is

closer to the real value.

TABLE 2 Calculation results.

Method 3D Hovland
method

3D modification
Hovland
method

3D Bishop
method

3D Janbu
method

3D Spencer
method

3D M-P
method

The proposed
method

Safety
factor

1.006 1.096 1.114 1.018 1.151 1.179 1.185
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