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Bottom drag coefficient is one of the key parameters in quantifying shelf hydrodynamics
and sediment transport processes. It varies markedly due to dynamic forcing and bed type
differences, so a set of empirical values have been used for beds of coarse material where
bedforms are often present. In comparison, dramatically fewer such rule-of-thumb values
are available for muddy beds. Here, we present results of variations in bottom drag as
calculated from in situmeasurements by bottom-mounted tripods that were placed across
the top of a muddy deposit during two different deployments, one in summer and another
in winter. A tidal asymmetry of bottom drag was observed, most likely caused by variations
of local bed roughness. For hydrodynamically smooth (Re< 2.3 × 105) flows, computed
values of bottom drag coefficient were fairly scattered but still showed an overall
decreasing trend with an increase in Reynolds number. The bottom drag coefficient for
hydrodynamically rough or transitional flowwas typically constant, while the averaged drag
coefficient over all observation periods was 1.7 × 10−3. Smaller waves (bottom orbital
velocity ub <0.1 m/s) had a very limited impact on the bottom drag coefficient. However,
with an increase in ub, the wave–current interactions can decrease the time-averaged
near-bed velocity and enhance turbulent kinetic energy, thus leading to an increase in the
drag coefficient.
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INTRODUCTION

Within the bottom boundary layer (BBL) on an oceanic shelf, bottom friction changes the
velocity profile of the flow and the production/dissipation of turbulence, thus affecting the
processes of physical, biological, chemical, and sediment transport (Trowbridge and Lentz,
2018). Among the numerous hydrodynamic and sediment dynamic models (Fringer et al.,
2019), the current-related bed shear stress, τc, is commonly parameterized with the quadratic
drag-law:

τc � ρCD�u|�u|, (1)
where ρ is the water density, �u is the near-bed burst mean current velocity, andCD is the bottom drag
coefficient. In a current BBL (without waves and unstratified), the near-bed current velocity is usually
represented by the logarithmic law of the wall (log-law):
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�u(z) � upc

κ
ln( z

z0
), (2)

where upc (
����
τc/ρ

√
) is current-related frictional velocity, κ � 0.40 is

the von Kármán constant, and z0 is hydrodynamic roughness
length, which is commonly a function of grain size, bedforms,
and sediment motion (Xu and Wright, 1995; Trembanis et al.,
2004). Combining Eqs. 1, 2, we can deduce that the value CD

depends upon z0 (e.g., Soulsby, 1997; Feddersen et al., 2003). Regions
of sandy deposits with ripples or sand waves CD could be well
estimated by z0 assuming the anisotropy of bedforms is
appropriately quantified with sufficient spatiotemporal resolution
(Scully et al., 2018). Unlike sandy deposits, sediments in muddy
deposits usually exhibit cohesive properties that hinder the
development of bedforms such as ripples (Baas et al., 2019). In
the research practice of hydrodynamics, CD is usually assumed to be
a constant or a tuning parameter in themuddy areas (e.g., Harris and
Wiberg, 2001; Magaldi et al., 2009). However, numerous
observational studies have shown that CD varies with waves,
currents, biological conditions, and stratifications (e.g., Herrmann
and Madsen, 2007; Safak, 2016; Xu et al., 2017; Egan et al., 2020a).

In the shallow water of continental shelves, the presence of
surface waves (therefore wave-current interaction) impacts the
hydrodynamics of the centimeter-scale wave BBL as well as the
entire water column (Grant and Madsen, 1986). Wave actions
change the velocity structure within the BBL and cause the flow to
experience stronger drag (Grant and Madsen, 1979; Signell and
List, 1997; Styles and Glenn, 2000; Nayak et al., 2015; Egan et al.,
2019), but a recent study by Nelson and Fringer (2018) has shown
that waves may lead to a decrease in drag on a smooth bed.
Enhanced shear stress by energetic waves often leads to the
resuspension of bed sediments (Brand et al., 2010; Egan et al.,
2020b), which can further lead to stratification of suspended
sediment and the drag-reduction effect on the flow (e.g., Wright
et al., 1999; Peng et al., 2020). Therefore, the use of in situ data to
obtain CD a certain spatial and temporal resolution is of great
importance for hydrodynamic and sediment dynamic studies.

Recent studies on sediment transport processes in the muddy
areas of the East China Shelf Seas (ECSS) have often deployed
numerical models such as the Regional Ocean Modeling System
(e.g., Bian et al., 2013; Liu et al., 2015; Wang et al., 2019; Wang et al.,
2020). The Regional Ocean Modeling System implements the simple
quadratic drag-law approach for calculating BBL processes that
require user input of the drag coefficient (Warner et al., 2008).
This is often not an easy task because direct measurements of a drag
coefficient are extremely scarce in themuddy areas of the ECSS due to
a lack of in situ observations. Fan et al. (2019) derived the empirical
relationship between CD both currents and waves based on BBL
observations at eight stations scattered over the ECSS, many of which
are composed of the sandy sea bottom. To our knowledge, however,
there has been no report on whether this empirical relationship also
applies to coastal muddy areas of the ECSS.

In this study, a field campaign was conducted to measure the
BBL dynamics across the top of a mud deposit off the Shandong
Peninsula in the Yellow Sea of China. Reynolds stress, therefore
CD, can be estimated from those direct measurements of flows
and turbulences. Our goal is to quantify the temporal and spatial

variation CD across the mud deposit, which is essential to
interpreting the sediment transport and deposition patterns
that shape the unique, elongated mud deposit. This paper is
arranged as follows: This paper is arranged as follows: this
“Introduction” is followed by “Study Area”. “Materials and
Methods” describes the data and methods used in this study.
The time series and tidally averages CD are presented in “Results”.
Detailed analyses on flood–ebb asymmetry CD and the effect of
waves are discussed in “Discussion”. “Conclusion” summarizes the
findings in this research.

STUDY AREA

The scene of this study is around the depocenter of a muddy deposit
in the coastal seas to the east of the Shandong Peninsula, China
(Figure 1A). The water depths at the study stations are basically
within 40m, and their specific values are shown inTable 1. Previous
sedimentary studies suggested that this muddy deposit was formed
by sediments sourced from the Yellow River and transported by the
ShandongCoastal Currents (SDCC), which flowout of the Bohai Sea
to the Yellow Sea around the Shandong Peninsula (Figure 1A)
(Alexander et al., 1991; Yang and Liu, 2007). Followed the Shepard
scheme (Shepard, 1954), the surface sediment in the study area
belongs to sandy silt with a mean grain size ranging from 5 to 6 ϕ
(Yuan et al., 2020). Moreover, because themud fraction is more than
10% (Yuan et al., 2020; Qi et al., 2022), the bed sediment may have
significant cohesive properties (Bass et al., 2002; Van Rijn, 2007). In
the Yellow Sea, the principal tidal constituent is M2, followed by S2
and K1 (Teague et al., 1998). The hydrography of the Yellow Sea is
also influenced by the seasonally varied East Asian Monsoon
(Naimie et al., 2001). In summer, the southerly winds dominate
the wind field, and in winter, strong northerly winds generally
prevail over the Yellow Sea (Bian et al., 2013; Mo et al., 2016;
Wang et al., 2020).

MATERIALS AND METHODS

Data Collection
Tripods were deployed at three stations on the Inner Shelf of the
Shandong Peninsula during two 10-day field campaigns, one in
summer (August 18–27, 2017), and another in winter (February
23–March 2, 2018) (Figure 1B). One more winter deployment
(January 6–26, 2020) was conducted to make up for a fallen
instrument at S2 during a previous deployment. Each tripod was
equipped with an upward-looking Teledyne/RDI 600 kHz Acoustic
Doppler Current Profiler (ADCP), a Nortek Vector Acoustic
Doppler Velocimeter (ADV), a conductivity/temperature (CT)
sensor, and a turbidity sensor (OBS or RBR-TU) (Table 1). The
sampling period of each instrument is shown inTable 1. In addition,
for winter observations at S2, turbidity sensors were placed at 0.45,
0.9, and 1.34 m above the bottom (mab) to record sediment
concentrations within the bottom boundary layer (Table 1). CTD
(SeaBird 19) packaged with Niskin bottles and a turbidity sensor was
cast to collect water samples and profiles of temperature, salinity, and
turbidity periodically from the watching boats that guarded each
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instrument against being damaged by trawling nets of passing fishing
boats. These water samples were used to calibrate and convert the
observed turbidities into suspended sediment concentrations (SSCs).
Detailed processes of data quality assurance/quality control and
calibration can be found in Qi et al. (2022).

Most ADCPs are equipped with a waving module that enables
wave measurements (Table 1). In addition, hourly significant

wave height and wave period data from the WaveWatch III
Global Wave Model (WW3) at approximately 0.5° (~50 km)
resolution (Tolman et al., 2014), is widely used in coastal
studies (e.g., Duan et al., 2020; Silva et al., 2018), were
downloaded. We compared the modeled and observed
significant wave height (Hs) and peak wave period (Tp) at Site
3 (S3) in winter to verify the validity of the model, and the results

FIGURE 1 | (A) Topography and currents of the Bohai and Yellow seas. The isopaches of the muddy area were from Yang and Liu (2007), and the currents were
based on Bian et al. (2013). These currents are the Shandong Coastal Current (SDCC), the Yellow Sea Warm Current (YSWC), and the Korea Coastal Current (KCC) (B)
The location of the observation sites.

TABLE 1 | Mean water depth and settings of six observations.

Label Depth (m) Instruments Mab Sampling

S2 summer 40.1 ADCP 1.8 20 min (currents), 1 h (waves)
ADV 0.67 1/32 s
RBR-CT 1.1 3 s
OBS 1.1 40 s

S3 summer 26.5 ADCP 1.5 10 min
ADV 0.4 1/32 s
RBR-CT 0.88 3 s
OBS 0.88 1 min

S5 summer 23.3 ADCP 1.7 10 min
ADV 0.48 1/32 s
RBR-CT 1.15 3 s
RBR-TU 1.15 3 s

S2 winter 38.9 ADCP 1.7 2 min (currents), 1 h (waves)
ADV 0.6 1/32 s
RBR-CT 0.83 10 s
RBR-TU 0.45, 0.9, 1.34 3 s, 10 s, 3 s

S3 winter 26.6 ADCP 1.9 20 min (currents), 1 h (waves)
ADV 0.88 1/32 s
RBR-CT 1.16 10 s
RBR-TU 1.16 10 s

S5 winter 23.3 ADCP 1.85 20 min (currents), 1 h (waves)
ADV 0.84 1/32 s
RBR-CT 1.2 10 s
RBR-TU 1.2 10 s

Teledyne/RDI Acoustic Doppler Current Profiler (ADCP, 600 kHz); Nortek Vector Acoustic Doppler Velocimeter (ADV); Conductivity/temperature sensor (CT); Turbidity sensor (OBS or
RBR-TU). Sites S2, S3, and S5 are mapped in Figure 1.
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showed that both of them have a strong relationship, with a
correlation coefficient R = 0.95 and 0.91, respectively
(Supplementary Figure S1). Wind data were downloaded
from the National Enters for Environmental Prediction
Climate Forecast System Version 2 (NCEP/CFSv2) with a
horizontal resolution of 0.205 ° × 0.204 ° (Saha et al., 2014).

Tidal Analysis and Wave Parameter
Estimates
We used T_TIDE, a package of routines in MATLAB for
harmonic analysis, to make a tidal prediction (Pawlowicz
et al., 2002). In agreement with previous studies, the dominant
tidal constituent was M2, flowing southwest during flood tide and
northeast during ebb tide.

The bottom wave orbital velocity, ub, was estimated following
Van Rijn (1993):

ub � πHs

Tp shih(k · h), (3)

where Hs is the significant wave height, Tp is the peak wave
period. k (� 2π/L, where L is wavelength) is the wavenumber.
Soulsby (2006) Newton–Raphson method was used to calculate
wavenumbers, and the MATLAB function for this method could
be found in Wiberg and Sherwood (2008). h is water depth.

Wave–Turbulence Decomposition and
Turbulence Quantities
In a wavy aquatic environment, the ADV measured velocity
components (u, v, and w) can be decomposed into the mean,
wave, and turbulent fluctuation components. Before analysis, the
horizontal velocities were rotated into a streamwise orthogonal
coordinate system with u v components aligned with and

FIGURE 2 | (A) Power spectra of velocity fluctuation and turbulent fluctuation (u′, v′ and w′) estimated by Phase method for burst 41 of S3 winter observation. (B)
Cospectra and (C) accumulative cospectra of raw velocity fluctuation and turbulent fluctuations estimated by these two methods.

FIGURE 3 | Tidal ellipses of M2 tidal components were calculated from the mean velocity at 1 mab in (A) summer and (B) winter for each of the three stations. The
mean velocity was translated from ADV data by log law.
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orthogonal to the direction of the mean flow. Take u as an
example, u � �u + ~u + u′, where �u the burst mean velocity
averaged per 10 min, ~u is the wave component and u′t is the
turbulent fluctuation. Assuming that waves and turbulence are
uncorrelated (i.e., terms such as u′ ~w vanish), the shear stress can
be decomposed into turbulent and wave components:

Total shear stress � −u′w′ − ~u ~w, (4)
where −u′w′ is the turbulent Reynolds stress and −~u ~w is the wave
momentum flux (wave stress). To obtain an accurate estimate of
Reynolds stress, here we used the “Phase method” of Bricker and
Monismith (2007) for the wave-turbulence decomposition
(WTD). As shown in Figure 2, the Phase method can
effectively remove the wave motions.

Following Feddersen and Williams (2007), we used the
nondimensional integrated cospectrum (ogive) for controlling
the quality of WTD and the Reynolds stress estimates. The ogive
for u′w′ is defined as

Ogu′w′(f) � ∫f
Cou′w′(f̂)df̂
〈u′w′〉 , (5)

where Cou′w′ is the u′w′ cospectrum. After removing the wave
bias, the Og(f) curves are expected to increase smoothly from 0
to 1 in the range 10−1 < 2πfzu< 10 (Feddersen and Williams,
2007), similar to empirical curves proposed by Kaimal et al.
(1972). Following Ruessink (2010), we applied the ogive
acceptance range as: −0.3<Og(f)< 1.3, where estimates
outside of this range were eliminated. In addition, referring to
Tu et al. (2021), we compared the observed ogive curves u′w′ in
the empirical form and rejected those that were not well fitted.
The ogive test excluded 8.5–29.7% of the bursts from each
deployment (Supplementary Table S1).

After obtaining the turbulent fluctuation in three directions, we
calculated the Reynolds stress, turbulent kinetic energy (TKE), and
turbulent energy dissipation rates (ε). The TKE was estimated as:
1/2ρ(u′2 + v′2 + w′2). The inertial dissipation method was used to
calculate the turbulent energy dissipation rates (Liu and Wei, 2007):

ε � 2πU−1α−3/2
3 [f5/2ϕ3/2

w′ (f)], (6)
where U is the mean velocity of each burst, α3 ≈ 0.71 is the
Kolmogorov constant (Sreenivasan and Katepalli, 1995), f is the
frequency of the inertial subrange, which is approximately 1–3 Hz
here (Figure 2), and ϕw′

t
is the frequency spectrum density of the

w component over the inertial subrange.

Calculation of the Bottom Drag Coefficient
The Bottom drag coefficient was estimated following Egan et al.
(2020a). As τc � −ρu′w′, we rearranged Eq. 1 and obtained

CD � −u′w′
�u|�u| . (7)

The instantaneous CD can be directly calculated by Eq. 7, and the
CD in a certain range of conditions (e.g., flood and ebb tide) can be
estimated as the best-fit slope from a least-squares regression of the
two terms on the right-hand side of Eq. 7. For the convenience of

comparing CD at different sites, we applied the log-law to deduce
mean velocity at 1 mab (�u100) during weak waves and unstratified
periods. Based on Eq. 2, the mean current velocity at the reference
height (1 mab) can be expressed as �u100 � u(z) + (upc/κ)ln(1/z).
C100 represents the drag coefficient calculated at 1 mab. As the
calculationCD is based on the assumption that themeasuring volume
is within the constant stress layer which is ~10–30% of the BBL
thickness (δ) (Soulsby, 1997), we calculated δ using the equation
(Soulsby, 1983): δ � 0.44u*c/f, where f is the Coriolis parameter,
and retained data for δ greater than 10m. The calculation results
show that more than 99.8% of the bursts satisfy this condition.

Combining Eqs. 1, 2, we can deduce the dependence of CD

on z0:

CD � [1
κ
ln( z

z0
)]−2

. (8)

RESULTS

Tides, Currents, Waves, and Winds
Figure 3 shows the tidal ellipses of M2 tidal components in
summer and winter for each of the three stations. According to
the rotation rate of the tidal ellipse, tide currents in sites S2 and S3
were reversing currents, while the tide in Site 5 (S5) was rotary
currents (Figure 3). The maximum tidal velocity had a certain
difference for each site, and was generally satisfied: S2>S3>S5,
where the maximum tidal velocity of S2 was approximately 0.5 m/
s (Figure 3).

Figure 4 shows the magnitude of wave orbital velocities and
wave directions. The maximum value of wave orbital velocity in
summer was about 0.12 m/s (Figure 4A), and the average values
were 0.01 m/s, 0.03 m/s, and 0.04 m/s at S2, S3, and S5,
respectively. The wave propagation was mainly in the
northwesterly direction in summer. It was not exactly
matching with the direction of the instantaneous winds
(Figure 5A) but was consistent with the trend of the
prevailing southerly winds (Wu et al., 2019), indicating that
the swell waves and background flow dominated the wave
propagation.

The overall intensity of waves was significantly higher in
winter than that in summer (Figure 4). The maximum value
of wave orbital velocity in winter was about 0.37 m/s, and the
average values at S2, S3, and S5 were 0.01 m/s, 0.05 m/s, and
0.06 m/s, respectively. The wave direction was modulated by the
local wind field. During periods of weak wind (wind speed less
than 10 m/s), the wind direction was not fixed and was dominated
alternately by southwesterly and northeasterly winds (Figure 5B).
Therefore, when the orbital velocity was smaller than 0.1 m/s, the
wave propagation direction was mainly southwestward or
northeastward (Figure 4B). However, the stronger wind events
(wind speed greater than 10 m/s) that occurred during the
observation period were dominated by northerly winds
(Figure 5B). Therefore, the wave propagation direction was
mainly southwesterly when the orbital velocity was greater
than 0.1 m/s (Figure 4B). Wave orbital velocities were higher
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at S3 and S5 than that at S2 because of the shallower water depth
(Table 1). We used data in winter to discuss wave-current
interactions in the rest of the article.

Bottom Drag Coefficient
First, we estimated time-series CD values at the three stations
during both summer and winter deployments. In summer, CD

varied from 5 × 10−4 to 10−2 at all stations, with most of it
between 10−3 and 2 × 10−3 (Figure 6). In winter, CD varied
from 10−3 to 10−2 at S3 and S5, with most of it between 10−3
and 3 × 10−3 (Figure 7). At S2 in winter, the range CD was the
same as S3 and S5 before January 18. However, after 18 the

maximum CD extent to 10−1 (Figure 8B). From the time series
data, we found that a sudden increase of the near-bottom SSC
occurred around 08:00 on January 18 of the winter observation at
S2 (Figure 8C). Thus, we divided the data into two periods: calm
and event periods (Figure 8). The probable reason for this event
will be discussed in the following part. Moreover, we found that
CD showed varying degrees of flood–ebb tidal asymmetry during
the different observation periods. For example, at S3 in summer,
theCD values during ebb tides were larger than those during flood
tides (Figure 6D). However, this relationship was not fixed
between observations at different stations or even at the same
station in different seasons. For example, station S2 had a larger

FIGURE 4 |Wave magnitude and direction for three stations (S2, S3, and S5) in (A) summer and (B) winter, with 0° corresponding to the northward propagating
wave, and the radial axis representing the bottom wave-orbital velocity, ub, in m/s.

FIGURE 5 | Rose diagrams of hourly averaged wind frequencies during (A) summer and (B) winter observations at S3. The greyscale indicates the categories of
wind speed (m/s).
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FIGURE 6 | Time series of (A,C,E) ADV’s burst mean velocity (�u, blue line) and bottom wave orbital velocity (ub, orange line) and (B,D,F) drag coefficient, CD,
estimated using ADV’s burst mean velocity at S2, S3, and S5 in summer. Green and red shaded areas denote periods of ebb and flood tides, respectively.
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CD ebb tide in summer (Figure 6B) and a larger CD flood tide in
winter (Figure 8B). Moreover, after the event, CD increased
significantly during flood tides, while the change CD during
ebb tides was relatively small (Figure 8B). In addition, the
fluctuation CD in summer followed the tidal cycle variation of
flow velocity while the effect of waves was weak (Figure 6). But in
winter, affected by stronger waves, CD during the wind events
were relatively larger than that during calm periods at all three
stations (Figures 7,8A,8B).

To recognize the flood–ebb tidal asymmetry CD and compare
CD at different sites, C100 flood or ebb tides at each station were
estimated using least-squares regression (Figure 9). Note that
only data during calm periods (with weak waves and no sediment
stratification) are shown in Figure 9 to ensure the feasibility of log
law. Generally, C100 ranged from 0.0010 to 0.0020 (average,
0.0015 ± 0.0004) in summer and from 0.0013 to 0.0026

(average, 0.0019 ± 0.0005) in winter. There was little
difference estimated CD between summer and winter at S5.
However, at S2 and S3, the CD in winter was twice that in
summer during the flood tide, while the estimated CD did not
show extensive differences during the ebbing tide in summer and
winter. The R2 of the fitted curves for each observation was above
0.71 except for the CD S2 in winter. At S3 in summer and at S2 in
winter, CD a significant flood–ebb tidal asymmetry, and its
controlling factors are discussed in Section 5.

DISCUSSION

Variation of CD During an S2 Winter Event
During event periods, the SSC at 0.45 mab was significantly
higher than that of 1.34 mab, which caused significant suspended

FIGURE 7 | Time series of (A,C) ADV’s burst mean velocity (�u, blue line) and bottom wave orbital velocity (ub, orange line) and (B,D) drag coefficient, CD, estimated
using ADV’s burst mean velocity at S3 and S5 in winter. Green and red shaded areas denote periods of ebb and flood tides, respectively, and gray shaded areas denote
periods of strong winds.
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sediment stratification (Figure 8C). We used the buoyancy
frequency squared, N2 � − g

ρ0

z�ρ
zz, to quantify the magnitude of

density stratification (Figure 8D). Jones and Monismith (2008)
and MacVean and Lacy (2014) took N2 � 10−4 s−2 it as the
threshold for sediment stratification. Also by comparing
gradient Richardson numbers, Peters (1999) showed the
critical N2 of stratification probably be 10−3 s−2. In our study,
N2

fluctuated mainly around two typical values, i.e. about 10−4
during the calm period and exceeding 10−3 during a significant

portion of the event period (Figure 8D). To facilitate the
discussion of stratification, we took N2 � 10−3 s−2 it as the
threshold for sediment stratification. The results showed that
sediment stratification mainly occurred during the ebb tides,
especially after January 24, and SSC showed significant tidal
asymmetry, i.e., the concentration was not stratified during the
flood tides but stratified during the ebb tides. At the same time,
the current velocity also showed asymmetry (Figure 8A). During
the calm period (except for January 9 when S2 was affected by

FIGURE 8 | Twenty-day time series during the winter deployment at S2 showing measurements of (A) ADV’s burst mean velocity (�u, blue line) and bottom wave
orbital velocity (ub, orange line), (B) drag coefficient, CD, estimated using ADV’s burst mean velocity, (C) suspended sediment concentration (SSC) at 0.45 mab (yellow
line) and 1.34mab (blue line), (D) buoyancy frequency (N2) and the black dashed line indicatesN2 is equal to 10−3 s−2, and 10−4 s−2, (E) turbulent kinetic energy (TKE) and
(F) turbulence dissipation rates (ε). Green and red shaded areas denote periods of ebb and flood tides, respectively, and gray shaded areas denote periods of
strong winds. The vertical red dashed line is the demarcation between the calm and event periods.
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strong winds), the current velocities of flood and ebb tides were
similar. In contrast, during the event period, the velocity of the
flood tides was significantly smaller than that of the ebb tides
(Figure 8A).

Figure 10 shows the estimated CD for two periods. Possibly
due to enhanced noise contamination in the water column

(Ruessink, 2010; Tu et al., 2021), there were few valid
Reynolds stress estimates at the beginning of the event period
and we only plotted data after 12:00 on January 24 (Figure 10B).
For ebb tides, stronger stratification was observed during the
event period. Previous studies have shown that sediment
stratification could suppress turbulence and reduce the bottom

FIGURE 9 | Correlation between measured turbulent Reynolds stress, −u′w′, and the sign-preserving squared mean velocity at 1 mab, �u100|�u100|, for the (A,B,C)
summer and (D,E,F) winter. Note that only data during calm periods (with weak waves and no sediment stratification) are shown to ensure the feasibility of log law. The
best fit lines are shown in red, with the slopes indicating the drag coefficient,C100, for ebb tides (top) and flood tides (bottom). The 95% confidence intervals (gray shaded
areas) and R2 are shown for each regression.

FIGURE 10 |Correlation betweenmeasured turbulent Reynolds stress, −u′w′, and the sign-preserving squared ADV’s burst mean velocity, �u|�u| at S2 during winter
observation. (A) Calm period with time before January 18, (B) event period after 12:00 on January 24.
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drag (Adams and Weatherly, 1981; Tu et al., 2019; Wu et al.,
2022). However, when comparing data from before and after the
event, estimations CD were generally the same during ebb tides
(Figure 10). In addition, TKE and turbulent dissipation rates
were also not controlled by stratification even from January 23 to
24, when sediment stratification was more significant and
continuous (Figures 8E,F), but followed the asymmetry of the
flood and ebb tides (Figure 8A). For flood tides, the CD value
during the event period was generally seven times larger than that
during the calm period. These results suggest that the effect of
stratification on CD was relatively small and the variation of bed
configurations, which increased upstream during flood tides,
could be the main reason for the variation CD. Because the
study area was located in a shipping channel with shipping
vessels moored for shelter and fishing vessels actively trawling,
the actual cause of the bed roughness change remains difficult to
determine.

Flood–Ebb Asymmetry of CD
The variation of CD could be affected by different factors, such as
tidal currents (Wright, 1989; Xu et al., 2017), accelerating/
decelerating flow (Soulsby and Dyer, 1981; Wright, 1989),
waves (Safak, 2016), stratification (Peng et al., 2020), local
bathymetry (Fong et al., 2009), upstream/downstream roughness
(Scully et al., 2018), benthic biology (Egan et al., 2020a), and water
depth (Wang et al., 2014). These factors can lead to asymmetry CD

by influencing mean current velocity or turbulence. First, changes
in water depth between flood and ebb tides were relatively small

and not sufficient to alter CD, and we did not find sufficient
substrate organisms to alter drag in several box samples. In
addition, we did not observe near-bottom density stratification
including temperature, salinity, and SSC in either CTD casts or
bottom observations, except for the S2 winter (Figure 8C), for
which there is still asymmetry CD in the calm period without
sediment stratification (Figure 10A). Moreover, it is difficult to
explain the asymmetry with seasonal variation based on the wind
and wave data. For example, the mean wavelength (L) at S5 during
strong wind periods was estimated as 65m; therefore, the wave
base (L/2) was significantly larger than the water depth. However,
CD had no significant flood–ebb asymmetry at S5. For S2 and S3,
the direction of flood tide coincided with the prevailing winter
wind direction and was opposed to the prevailing summer wind,
but the current experienced stronger drag during flood tides in
winter than in summer, which is contrary to our general
understanding. Furthermore, the acceleration/deceleration scale
of the flow could be characterized by the time derivative of
shear velocity (Soulsby and Dyer, 1981; Wilkinson, 1986). As
each flood or ebb tide contains an accelerating and decelerating
stage, acceleration and deceleration will only affect the fluctuations
within a flood or ebb tide and cannot explain the flood–ebb
asymmetry. By comparing phase-averaged tidal height (data not
shown), we observed no significant seasonal differences, which
indicates the variation in tidal forcing is small between winter and
summer (Egan et al., 2020a).

Combined with the above analysis, variation in the tidal
asymmetry CD was most likely caused by the difference

FIGURE 11 | Scatter plots of drag coefficient estimated at 1 mab, C100, versus the Reynolds number (Re) for the (A,B,C) summer and (D,E,F) winter. The orange
scatters represent the flood tide, and the blue scatters represent the ebb tide. The vertical dashed lines are the boundary between regions of relatively large and small
dispersion. The horizontal dashed lines are the mean value of CD the right-hand side of the boundary. The yellow lines are the empirical relationship under the
assumptions for smooth flow.
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between upstream and downstream roughness. In order to
estimate upstream and downstream roughness, we should first
determine the hydrodynamic roughness regimes. Generally, the
flow regime in the boundary layer can be classified into smooth,
transitional, and rough conditions. Hydrodynamically smooth
flow, z0 reflects only the thickness of the laminar sublayer and is
not determined by bed configurations (Chriss and Caldwell, 1982;
1984). Meanwhile, experimental and observational evidence has
shown that hydrodynamically rough flow, z0 and CD are no
longer dependent on flow conditions but are related to bed
configurations (Sternberg, 1970; Green and Mccave, 1995).
Here, we used the Reynolds number (Re) as a criterion for
distinguishing the flow conditions:

Re � urzr
υ

, (9)

where ur is the velocity at the reference height zr (� 1 m), and υ is
the molecular kinematic viscosity taken as 0.01 cm2/s in summer
(20°C, 32 ‰) and 0.016 cm2/s in winter (4°C, 32 ‰) (Soulsby,
1997). Figure 11 shows the estimates CD as a function of Re.
Generally, the dispersion CD decreased with increase Re.
Following Sternberg (1968), using the criterion that CD is
generally a constant, we visually estimated the threshold of
hydrodynamically smooth flow (vertical dashed lines in
Figure 11). The mean value of critical Re was about 2.3 × 105.
Unsurprisingly, as Re was less than the threshold (i.e., smooth
flow), CD decreased with increase Re, which is consistent with
previous findings (Sherwood et al., 2006; Safak, 2016). We
substituted the empirical formula z0 for smooth flow
(z0 � 0.11υ/up) (Sternberg, 1968, 1970; Chriss and Caldwell,

1984; Soulsby, 1997) into the log-law and plotted this
relationship in Figure 11 (yellow lines) for comparison. When
Re was slightly larger than the threshold, CD fluctuated around
the empirical relationship but did not follow the empirical
relationship exactly, which may reflect the characteristics of
transitional flow. Because z0 is a constant for rough flow, we
found the estimation z0 by substituting the mean values ofCD Eq.
8 (Table 2). This shows that the larger the tidal asymmetry CD,
the greater the difference in upstream and downstream
roughness, which suggests that varying upstream and
downstream roughness is the main reason for the flood–ebb
asymmetry of CD.

Bottom Drag Enhanced by Waves
In addition to the change in roughness, the bottom drag
experienced by currents could be enhanced by waves, which
do affect the flood–ebb asymmetry CD. We removed the data
during strong waves (ub > 0.1 m/s) in winter (red dots in
Figure 12) and refitted the data to obtain CD. After refitting
the data of S3, the tidal asymmetry was reduced and the difference
CD between the flood and ebb tides changed from 5 × 10−4 to
2 × 10−4 (Figure 12B). After refitting the data of S5, the fitted R2

during flood tides changed from 0.66 to 0.76 (Figure 12C). These
findings indicated that stronger waves can have a significant effect
on bottom drag at S3 and S5, leading to a bias in the CD estimates.
Because relatively few data are available for strong waves, the re-
estimated CD did not change significantly at S2 (Figure 12A).

To quantify the effect of waves, we used a one-dimensional
time-dependent model, referred to as the Grant-Madsen (GM)
model, that incorporates the combined effects of a steady current
in the presence of oscillatory waves (Grant and Madsen, 1979). In
the GMmodel, the friction velocity combined waves and currents
(upcw) is given by

upcw � upw[1 + 2(upc/upw)2 cosϕ + (upc/upw)4]1/4, (10)
where ϕ is the angle between currents and the direction of wave
propagation. In addition, upw is the friction velocity associated
with the wave-related bed shear stress (τw) given as

TABLE 2 | The mean value of z0 for hydrodynamic rough flow for flood and ebb
tides in summer and winter.

Summer Winter

S2 S3 S5 S2 S3 S5

Flood 4.3e–6 3.5e–6 1.0e–4 3.2e–4 6.2e–5 1.7e–4
Ebb 2.6e–5 6.5e–5 3.9e–5 4.6e–5 3.7e–5 1.1e–4

FIGURE 12 |Correlation betweenmeasured turbulent Reynolds stress, −u′w′, and the sign-preserving squared ADV’s burst mean velocity, �u|�u|, for the (A) S2 calm
period, (B) S3, and (C) S5 in winter without the strong wave observations (red dots). The best fit lines without the strong wave observations (red dots) are shown in green
and the best fit lines of all data are shown in red, with the slopes indicating the drag coefficients, CD, for ebb tide (top) and flood tide (bottom).
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u2
pw � τw

ρ0
� κupcwub���������������������[log(κupcwz0ω

) − 1.15]2 + (π2)2√ , (11)

where ω (� 2π/Tp) is the wave frequency. Here, we assumed z0 �
2 × 10−5 m, which is generally consistent with the value reported for
other sites dominated by silt (Soulsby, 1983; Brand et al., 2010) and is
in general agreement with our estimate in Table 2. In the region
aforementionedthe wave-current boundary layer (z> δcw � κupcw/ω),
the effect of the wave-current interaction is to increase the roughness
experienced by the current so that the log-law becomes

U(z) � upc

κ
( upc

upcw
log

δcw
z0

+ log
z

δcw
). (12)

Based on the observed data, we calculated the upc−GM by
solving Eqs. 10–12 iteratively. By comparison, we found that
upc−GM was in good agreement with the results calculated by
observed data (upc−ADV) (Supplementary Figure S2).

Figure 13A shows the estimates CD as a function of the ratio of
bottom wave orbital velocity to mean current velocity (ub/�u)
during strong waves, which is a common parameter used to
quantify the effect of waves (Safak, 2016). The results show that
CD increased with the increase ub/�u, which is similar to the
findings of Safak (2016) and Fan et al. (2019) in muddy
environments. In our study, the fitted equation between CD and
ub/�u was CD � 0.00087 ub

�u + 0.00194, R2 � 0.61 (orange line in
Figure 13A). Although bin average CD is somewhat scattered, the
R2 is pretty good. The constant term in the fitted equation was
approximately equal to the averageCD during the winter S3 and S5
observations (Figures 11E,F). Moreover, GM-model results (red
dots in Figure 13A) are in good agreement with the trend of the
fitted curve of observed values (orange line in Figure 13A).
However, when we used the log-law, which does not consider
wave-current interactions, the calculation CD remained almost
unchanged (black dots in Figure 13A). It indicates that although
our observations are not within the wave’s bottom boundary layer,
the effect of the wave is still significant. On the one hand, waves can
modify the current structure within the bottom boundary layer.
We obtained the difference �u calculated by log-law (�ulog) and GM-
model (�uGM) (Figure 13B) and found that when ub > 0.1 ± 0.03m/
s, �ulog − �uGM tended to gradually increase. On the other hand, the
wave effect could lead to an enhancement of the TKE (Perlin and
Kit, 2002; Bricker et al., 2005). Figure 13C shows the variation of
TKE, which is also bounded by ub � 0.1 ± 0.03 m/s. Therefore, we
infer that in the study area, ub ≈ 0.1 m/s can be defined as an
important threshold for determining whether the wave effect is
significant in the bottom boundary layer. Note that although GM-
model results have the right trend, there is no good agreement
between it and the observed data, especially when ub/�u is large. It
indicates that under wave-current conditions similar to those in
this article, the fitted equation between CD and ub/�u could give a
more accurate estimate CD.

CONCLUSION

In situ observations of currents, waves, and suspended sediment
concentration at three stations on the muddy deposits off the
Shandong Peninsula was conducted to investigate the variation of
the bottom drag coefficient. Data collected in both summer and
winter highlight the tidal variations and the effect of winter storm
events. The results show that the estimatedCD was around 0.0015
in summer and 0.0019 in winter. A significant tidal asymmetry
CD was observed in both summer and winter. By analyzing the
different influencing factors one by one, we conclude that this
flood–ebb asymmetry was mainly caused by the variation of local
roughness; the drag reduction caused by the suspended sediment
stratification was limited. Variations CD could be affected by
different hydrodynamic flow regimes. For hydrodynamically
smooth flow, the bottom drag coefficient was relatively
dispersed and showed an overall decrease with increase Re.

FIGURE 13 | (A) Scatter plots of CD verses ub / �u when ub >0.1 m/s for
S3 and S5 in winter. Gray dots indicate directly observedCD, red dots indicate
CD calculated by the Grant-Madsen model, black dots indicate CD calculated
by log-law, blue squares are the bin averages of observed CD, and
vertical lines indicate standard deviation. The best fine line observed CD is
shown in orange. (B) The difference �u calculated by the log-law velocity profile
(�ulaw ) and the Grant-Madsen model (�uGM ) and (C) turbulent kinetic energy
(TKE) as a function of ub.
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For hydrodynamically rough or transitional flow, the bottom drag
coefficient typically was a constant that varied from 1 × 10−3 to
2.5 × 10−3 over the different observation periods. On average,
hydrodynamically smooth flow occurred when Re was less than
2.3 × 105. In addition, strong waves, during which the bottom
drag generally increases with increasing wave forcing, can lead to
bias in the CD estimates. When ub > 0.1 ± 0.03 m/s, the current-
only log-law is not valid in BBL while the GMmodel performs
well in terms of trends. As the waves strengthen, TKE is also
significantly enhanced. In general, we believe that ub ≈ 0.1 m/s is
the critical value to determine whether the wave effect is
important in the bottom boundary layer.

In this work, we provide an accurate estimate of CD the study
area, which would be useful to improve the hydrodynamic and
sediment transport models in the muddy deposits of the East
China Shelf Seas. Moreover, the threshold of ub (≈ 0.1 m/s) has
guiding significance for the study of sediment transport and
erosion dynamics in the bottom boundary layer. These
relationships between CD waves or currents, though based on
observations off the Shandong Peninsula, could provide a
reference to related research in other muddy deposits over the
continental shelf.
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