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Receiver function has been routinely used for studying the discontinuity

structure in the crust and upper mantle. The manual quality control of

receiver functions, which plays a key role in high-quality data selection and

accurate structural imaging, has been challenged by today’s booming data

volumes. Traditional automatic quality control methods usually require tuning

hyperparameters and fail to generalize to low signal-to-noise ratio data. Deep

learning has been increasingly used to deal with extensive seismic data.

However, it generally requires a manually labeled dataset, and its

performance is highly related to the network design. In this study, we

develop and compare four different deep learning network designs with

manual and traditional quality control methods using 53293 receiver

functions from three broadband seismic stations. Our results show that a

combination of convolutional and long-short memory layers achieves the

best performance of ~91% accuracy. We also propose a fully automatic

training schema that requires zero manually labeled receiver function yet

achieves similar performance to that using carefully labeled ones. Compared

with the traditional automatic method, our model retrieves ~5 times more

reliable receiver functions from relatively small earthquakes with magnitudes

between 5.0 and 5.5. The average waveforms and H-κ stacking results of these

receiver functions are comparable to those obtained by manual quality control

from earthquakes with magnitudes larger than 5.5, which further demonstrates

the validity of our method and indicates its potential for making use of smaller

earthquakes in the receiver function analysis.
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Introduction

Receiver function analysis can provide valuable constraints on the discontinuity

structure in the crust and upper mantle, e.g., the Moho and the upper and lower

boundaries of the mantle transition zone (Chen et al., 2010; Tauzin et al., 2010; Wei

et al., 2016; Munch et al., 2020). Due to extensive noise in field seismograms, quality

control is essential for obtaining high-quality receiver functions in practice. Although

manually performing quality control can achieve high accuracy, it is time-consuming and

subjective. Researchers have proposed several automatic quality control methods (Yang

OPEN ACCESS

EDITED BY

Lihua Fang,
Institute of Geophysics, China
Earthquake Administration, China

REVIEWED BY

Jiajia Zhangjia,
China University of Petroleum, China
Frederik Link,
Goethe University Frankfurt, Germany

*CORRESPONDENCE

Ling Chen,
lchen@mail.iggcas.ac.cn

SPECIALTY SECTION

This article was submitted to
Solid Earth Geophysics,
a section of the journal
Frontiers in Earth Science

RECEIVED 16 April 2022
ACCEPTED 18 July 2022
PUBLISHED 10 August 2022

CITATION

Gong C, Chen L, Xiao Z and Wang X
(2022), Deep learning for quality control
of receiver functions.
Front. Earth Sci. 10:921830.
doi: 10.3389/feart.2022.921830

COPYRIGHT

© 2022 Gong, Chen, Xiao and Wang.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 10 August 2022
DOI 10.3389/feart.2022.921830

https://www.frontiersin.org/articles/10.3389/feart.2022.921830/full
https://www.frontiersin.org/articles/10.3389/feart.2022.921830/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.921830&domain=pdf&date_stamp=2022-08-10
mailto:lchen@mail.iggcas.ac.cn
https://doi.org/10.3389/feart.2022.921830
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.921830


et al., 2016; Hassan et al., 2020). However, they generally require

setting hyperparameters empirically. For example, Schulte-

Pelkum et al. (2005) apply a minimum variance reduction as

the final receiver function criterion, in which the conservative

criterion risks rejecting a certain number of “good” receiver

functions. Shen et al. (2012) apply harmonic stripping to

quality control and analyze the receiver functions with a wide

azimuthal distribution and azimuthal dependence of phase

arrivals. Gao and Liu (2014) use the signal-to-noise ratio (SNR)

cutoff to reject low SNR receiver functions, which do not consider

the time and amplitude variations of phases. Similarly, Hassan et al.

(2020) cluster the receiver functions by the Euclidean distance,

which demands a certain amount of receiver functions per back-

azimuth bin. Therefore, there is still considerable demand for

improving quality control methods to characterize “good”

receiver functions more efficiently in practice.

Different from the methods above that use only manually

designed features for quality control, deep-learning-based

methods can automatically extract abundant features from

labeled receiver functions. Deep learning has made significant

progress not only in the field of artificial intelligence over the last

decade (LeCun et al., 2015), such as natural language processing

and computer vision, but also in a variety of seismic applications

(e.g., Kong et al., 2018; Zhou et al., 2021). In brief, deep learning

aims to automatically build a mapping function from input to

output with a given dataset. The parameters in the mapping

function are initialized randomly and updated during training

according to the gradients of the loss function. A validation

dataset is generally used to avoid overfitting and determine when

to stop training. In recent studies, deep-learning-based methods,

such as convolution neural network (CNN), have been attempted

to process the task of the quality control of receiver functions

(Gan et al., 2021; Li et al., 2021). However, they still require time-

consuming manual labeling of receiver functions as the training

dataset and lack the comparison of the impact of model design on

their performance.

In this study, we develop a fully automatic receiver function

quality control method that achieves human-level performance

via the following points: 1) we validate the effectiveness of our

method and study the impact of the network design by

developing and comparing four different deep neural network

designs to both manual and traditional approaches; 2) we show

its potential for smaller earthquakes by applying it to earthquakes

with magnitudes between 5.0 and 5.5 and compare average

waveforms and H-κ results to that using earthquakes with

magnitudes above 5.5; 3) we investigate the generalizability

between different stations by evaluating the models trained

with different datasets; 4) we propose a workaround solution

that requires zero manual labels. Because deep learning is

naturally robust to noise (Rolnick et al., 2017), we evaluate

the models trained with labels by the traditional method and

show that deep learning can learn from these noisy labels and

promote the results by the traditional method to the human level.

Methods

To investigate the effect of the manual design of the deep

learning model on receiver function quality control, we compare

the following four most widely-used layers in deep learning: 1)

Fully connected layers that every neuron in the input layer to

every neuron in the output layer are connected. They are

conceptually and technically simple and thus suitable for

baseline reference; 2) Convolutional layers that every output

neuron is only connected to a local area of input neurons; They

can significantly reduce the number of parameters than fully

connected layers, and are widely used in image and time-series

processing for feature extraction. The residual block contains two

convolutional layers and learns residual functions with reference

to the layer inputs (He et al., 2016); 3) Bidirectional long-short-

memory layers that consist of two LSTM layers, each of which

takes the input in a forward and backward direction, respectively

(Hochreiter and Schmidhuber, 1997). They can capture

dependencies between timestamps, and are potentially suitable

for the receiver function quality control; 4) Transformer layers

that consist of a self-attention layer and a position-wise feed-

forward layer (Vaswani et al., 2017). They have attained state-of-

the-art performance not only in neural language processing

(Devlin et al., 2019) and computer vision (Dosovitskiy et al.,

2020) but also in earthquake detection and phase picking

(Mousavi et al., 2020). However, they generally require large

amounts of data to train due to the lack of locality inductive bias

(D’Ascoli et al., 2021).

We build four deep-learning models (Figure 1) according to

the abovementioned four layers using the TensorFlow

2 framework (Abadi et al., 2016). The first model, namely the

FC model, sorely consists of four fully-connected layers

(Figure 1A). The second model, namely the CNN model,

consists of three residual convolutional blocks (He et al.,

2016) for feature extraction, followed by three fully-connected

layers serving as the prediction head (Figure 1B). The third

model, the CNN-BiLSTM model, adds a BiLSTM layer based on

the second model (Figure 1C). The last model, the CNN-

BiLSTM-Trans model, adds a transformer layer based on the

third model (Figure 1D). All four models take a receiver function

(windowed from 10s before to 50s after the P wave arrival) as the

input, which is a tensor of a shape [600, 1]. And they all output a

tensor of a shape [2], which is the one-hot encoding format of the

classification results of “good” and “bad”. We apply a dropout

rate of 0.5 for the FC model and 0.1 for the other three models in

all layers except the final and the penultimate layers, and an early-

stopping callback of 50-epoch-patience to ease the overfitting

issue. The loss function used in all four models is cross-entropy,

which is widely used in classification problems. In addition, to

address the data imbalance issue, a balanced sampling strategy is

used to keep the same number of “good” and “bad” instances in

one batch. Details on training and validation are presented in the

Results and Discussion section.
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Data

We build the dataset using the earthquake catalog of

Incorporated Research Institutions for Seismology (IRIS). We

select earthquakes with magnitudes greater than 5.0 and

download corresponding waveforms recorded by three

stations (station AK. SAW, IC. QIZ, and CB. CAD located at

148.33° W/61.81° N, 109.84° E/19.03° N, and 97.5° E/31° N,

respectively) with the criteria that epicentral distances are

between 30° and 90° (Figure 2, Supplementary Figure S1).

These stations have been in operation since around the year

2000. Three stations with different geological background and

thus having different crustal structures are chosen to test the

general applicability of the new method. According to the

magnitude of the earthquakes, we divide the data from each

station into two groups: those with magnitudes greater than

5.5 are used to compare different model designs, and those with

magnitudes between 5.0 and 5.5 are used to evaluate our model’s

performance on smaller earthquakes.

Receiver functions are extracted in the following steps: 1) For

each earthquake, three-component waveforms are windowed

from 50 s before to 150 s after the P wave arrival and then

rotated from a vertical-north-east coordinate system to a vertical-

FIGURE 1
Diagrams of the four deep learning models. (A) FC model. (B) CNN model. (C) CNN-BiLSTM model. (D) CNN-BiLSTM-Trans model.

FIGURE 2
Location of station AK. SAW, station IC. QIZ and station
CB. CAD.
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radial-transverse coordinate system; 2) Three-component

waveforms are filtered using a Butterworth bandpass filter

with a frequency band of 0.02–1 Hz; 3) Receiver functions are

calculated by an iterative time-domain deconvolution method

(Ligorría and Ammon, 1999). The width of the Gaussian filter

window used in this study is 1.0; 4) Receiver functions containing

null values or having an unexpected number of samples are

removed. Finally, 12487 receiver functions (with magnitudes

larger than 5.5) are selected as the training and validation sets to

compare four model designs, and the other 40806 receiver functions

(with magnitudes between 5.0 and 5.5) serve as a test set to evaluate

the trained model’s performance on smaller earthquakes.

In the comparison experiment of model designs, we first

manually label the quality of 12487 receiver functions (labels are

“good” and “bad”) according to the principle that ones with

similar back-azimuth have similar waveforms. The high SNR

receiver functions labeled “good” have a clear direct P-wave

signal and the Ps conversion from Moho. The receiver functions

in the training set have good coverage of back-azimuth in order

to include as many features as possible. The AK.SAW, IC.QIZ,

CB.CAD datasets consist of 941, 771, 946 “good” receiver

functions, and 4,515, 4,548, 748 “bad” receiver functions,

respectively. We randomly split these receiver functions into

training and validation sets with weights of 0.8 and 0.2,

respectively. The back-azimuth of the test set exhibits the

same wide distribution as the training and validation sets

(Supplementary Figure S1). The performance on the test set is

evaluated by comparing the phase time and amplitude with

manually quality-controlled “good” receiver functions with

magnitudes above 5.5.

Results and discussion

We first present the training and validation of four models on

data from each station. As shown in Figure 3, all models tend to

overfit (the training loss decreases while the validation loss

increases) on the training set, which means early stopping is

necessary for this task to ease the overfitting issue. As a result of

evaluating the FCmodels with two, three, and four hidden layers,

we find that all the three FC models end up overfitting, and we

keep the three-layer one that achieves the best performance

(Supplementary Figure S2 and Supplementary Table S1). The

FC model obtains the lowest performance among four models on

three station datasets (Table 1). Adding and removing layers

from the current FC model does not further improve its

performance (Supplementary Figure S2). The addition of the

BiLSTM layer further improves the CNNmodel and achieves the

best performance on the three validation datasets. The

transformer layer does not further promote the model,

suggesting it may not suit this task as it requires extensive

training data.

We choose each model with the minimum validation loss as

the best model of its design. Then we visualize their stacked

FIGURE 3
Training and validation loss of the four models on training sets of each station. (A,E) FC Model. (B,F) CNN model. (C,G) CNN-BiLSTM Model.
(D,H) CNN-BiLSTM-Trans Model.

Frontiers in Earth Science frontiersin.org04

Gong et al. 10.3389/feart.2022.921830

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.921830


waveforms in each back-azimuth bin (Supplementary Figures

S3–S5) and compute their classification confusion matrixes on

the validation sets (Table 2). The confusion matrix consists of

four values: 1) True positive (TP) that a “good” receiver function

is classified as “good”; 2) True Negative (TN) that a “bad” is

classified as “bad”; 3) False Positive (FP) that a “bad” is classified

as “good”; 4) False Negative (FN) that a “good” is classified as

“bad”. The confusion matrix can better represent the

performance of the method in classification problems,

especially for imbalanced datasets. The results show that the

CNN-BiLSTM model exhibits the highest TP and TN rate and

the lowest FP and FN rate in all the three station datasets, which

indict the CNN-BiLSTM model has the best performance for

quality control in practice. Overall, both the training and

validation loss curve and the confusion matrix show that the

CNN-BiLSTM model is the best among the four model designs.

We also choose the traditional quality control method in

HiPerSeis as a benchmark (Hassan et al., 2020), which is

based on amplitude criteria and clustering receiver functions

by similarity. The quality control method in HiPerSeis requires

only two hyperparameters, which is comparable to the deep

learning method that requires zero hyperparameters in terms of

convenience. According to the experiment of tuning the distance

threshold (Supplementary Table S2), the distance threshold and

min samples used in DBSCAN clustering are 0.05 and 5,

respectively. We apply this traditional method to the three

station datasets with magnitudes above 5.5 and compute their

classification confusion matrixes (Table 2). The results show that

the FP rate is low, which means very few “bad” receiver functions

may be mislabeled as “good” in practice. However, the TP rates

are much lower compared to that of the CNN-BiLSTM model

trained by manually quality controlled datasets, which means

many “good” receiver functions may be wrongly discarded in

practice.

We further apply the trained CNN-BiLSTM model to the

receiver function data from smaller earthquakes with magnitudes

between 5.0 and 5.5 and compare its results to those obtained

from the same earthquakes via HiPerSeis and those obtained

from large earthquakes via manual quality control

(Supplementary Figures S6–S8). The earthquakes less than

TABLE 1 The performance of the four model designs on the training and validation sets.

Station Model Overfitting epoch Validation accuracy (%) Validation loss

AK.SAW FC 59 87.88 0.3234

CNN 22 88.94 0.2673

CNN-BiLSTM 65 89.56 0.2555

CNN-BiLSTM-Trans 121 88.50 0.2643

IC.QIZ FC 32 85.90 0.3465

CNN 22 88.91 0.2218

CNN-BiLSTM 55 89.94 0.2163

CNN-BiLSTM-Trans 84 88.25 0.2531

CB.CAD FC 28 85.71 0.3695

CNN 29 88.05 0.2836

CNN-BiLSTM 49 91.25 0.2493

CNN-BiLSTM-Trans 28 86.88 0.2989

TABLE 2 Normalized confusion matrixes of the four deep learning
models and traditional method (HiPerSeis) on three station
datasets.

Station Model TP TN FP FN

AK.SAW HiPerSeis 0.6674 0.9490 0.0509 0.3326

FC 0.8698 0.8895 0.1105 0.1301

CNN 0.9290 0.8559 0.1441 0.0710

CNN-BiLSTM 0.9290 0.8592 0.1408 0.0710

CNN-BiLSTM-Trans 0.9053 0.8667 0.1332 0.0947

IC.QIZ HiPerSeis 0.5901 0.9446 0.0554 0.4099

FC 0.8838 0.8548 0.1452 0.1161

CNN 0.9290 0.8823 0.1177 0.0709

CNN-BiLSTM 0.9613 0.8889 0.1111 0.0387

CNN-BiLSTM-Trans 0.9032 0.8790 0.1210 0.0968

CB.CAD HiPerSeis 0.8849 0.8249 0.1751 0.1151

FC 0.8794 0.8264 0.1736 0.1206

CNN 0.8995 0.8542 0.1458 0.1005

CNN-BiLSTM 0.9246 0.8958 0.1042 0.0753

CNN-BiLSTM-Trans 0.8744 0.8611 0.1389 0.1256
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FIGURE 4
Receiver functions stacked in each back-azimuth bin. (A–C) Three “good” AK. SAW datasets (manually quality controlled dataset with
magnitudes larger than 5.5, automatically quality controlled dataset by the CNN-BiLSTM model with magnitudes between 5.0 and 5.5 and
automatically quality controlled dataset by the traditional method in HiPerSeis with magnitudes between 5.0 and 5.5). The summational traces in the
top panels. (D–F) are the same as (A–C) but for three “good” IC. QIZ datasets. (G–I) are the same as (A–C) but for three “good”CB. CAD datasets.
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5.5 magnitude are generally discarded in receiver function

analysis due to their low SNR, on which both manual and

traditional quality controls tend to fail. However, these smaller

magnitude earthquake data could increase the back-azimuth

distribution, which is the premise for mapping dipping and

anisotropic structures beneath a single station. In the AK.

SAW dataset, 691 and 95 receiver functions are labeled as

“good” by deep learning and traditional methods, respectively.

And their patterns are consistent with those of manual quality

control (Figures 4A–C, Supplementary Figures S6A–C). In the

IC. QIZ dataset, 686 and 74 receiver functions are labeled as

“good” by deep learning and traditional methods, respectively

(Figures 4D–F, Supplementary Figures S7A–C). In the CB. CAD

dataset, 458 and 265 receiver functions are labeled as “good” by

deep learning and traditional methods, respectively (Figures

4G–I, Supplementary Figures S8A–C). Compared with the

traditional method in HiPerSeis, our new method retrieves

several times more reliable receiver functions, which possess a

wider back-azimuth distribution (Figure 4, Supplementary

Figures S6–S8). These “good” receiver functions have similar

phase time and amplitude features to those from manual quality

control (Figure 5). The average waveforms, including the time

and amplitudes of phases such as direct P and conversion and

multiple reflections from Moho, are almost identical for all the

three quality controlled datasets (Figure 5). The result shows that

the CNN-BiLSTM model can retrieve more reliable receiver

functions from smaller earthquakes, which can increase the

back-azimuth distribution.

We further validate the classification quality of the CNN-

BiLSTM model with H-κ stacking, which is a receiver function

method for estimating the crustal thickness and Vp/Vs. ratio

beneath a seismic station (Zhu and Kanamori, 2000). This

method stacks the amplitudes of receiver functions at

predicted arrival times for the Ps phase and multiple phases.

Here we give the weights of 0.5, 0.35, and 0.15 to the Ps, PpPs,

and PpSs + PsPs phases when summing the amplitudes based on

their magnitude of energy. The H-κ stacking is then applied to

both the manually quality controlled datasets of bigger

earthquakes (magnitude above 5.5) and the CNN-BiLSTM

model quality controlled datasets of smaller earthquakes

(magnitude between 5.0 and 5.5) (Figure 6 and

Supplementary Figure S9). The obtained crustal thickness and

Vp/Vs. ratio using receiver functions provided by the CNN-

BiLSTM model are nearly identical as those estimated by the

manually quality controlled dataset in three station datasets. The

H-κ stacking results are consistent with the recent CCP imaging

result and H-κ stacking results in the previous studies (Chen

et al., 2010; Miller et al., 2018). This suggests that the CNN-

BiLSTM model is highly reliable for receiver function quality

control.

Although the previous experiments show that the deep

learning method achieves results close to those by manual

quality control, one significant limitation of the proposed

deep learning method is that it requires a pre-existing

manually quality controlled dataset for training, which is

generally not available in the task of receiver function

quality control. Here we propose a workaround solution:

training the model with labels obtained by the traditional

automatic method. Because deep learning is inherently

robust to noise in training (Rolnick et al., 2017), it can

still extract correct features even with the training dataset

labeled by the traditional method (Table 3 and

Supplementary Figures S10). The results show that the

model trained with noisy datasets achieves comparable

(slightly lower) performance to that trained with

manually labeled datasets. That aside, this training

schema allows our approach to be fully automated

without requiring a pre-existing manual dataset.

FIGURE 5
The average waveforms of the three datasets (manually
quality controlled dataset with magnitudes larger than 5.5,
automatically quality controlled dataset by the CNN-BiLSTM
model with magnitudes between 5.0 and 5.5 and
automatically quality controlled dataset by the traditional method
in HiPerSeis with magnitudes between 5.0 and 5.5) recorded by (A)
AK. SAW station, (B) IC. QIZ station, and (C) CB. CAD station.
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Besides using noisy datasets labeled automatically by

traditional methods, one may wonder if a large receiver

function dataset can solve the training set problem. As the

receiver function is related to the relative response of Earth

structure near the receiver, one obvious worry is that mixing

data from different stations with different geological

backgrounds could cause a negative effect. To address this

concern, we conduct the following experiments: 1) use the

data from all the three stations together to train the model

(Supplementary Figures S11) and calculate its confusion matrix

(Table 3); 2) use the label from the other two stations to train the

model for each station (Supplementary Figures S12 and Table 3).

The results show that mixing receiver functions from different

stations together for training improves the model’s performance

on the AK. SAW station and shows no notable negative influence on

the other two stations. All models trained with data from the other

FIGURE 6
Thickness (H) versus Vp/Vs ratio (κ) diagrams from the H-κ stacking method for representative datasets. (A)Manually quality controlled station
AK. SAW dataset with earthquakemagnitudes larger than 5.5. (B) Automatically quality controlled station AK. SAW dataset by the CNN-BiLSTMmodel
with earthquakemagnitudes between 5.0 and 5.5. (C,D) are the same as (A,B) but for station IC. QIZ datasets. (E,F) are the same as (A,B) but for station
CB. CAD datasets.
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two stations have low accuracy, suggesting the background

information on local Earth structures has a significant impact on

this task. Overall, there is still a great need for constructing regional-

scale or global-scale receiver function datasets, similar to earthquake

detection and phase picking datasets (Mousavi et al., 2019), to further

improve deep-learning enabled receiver function analysis.

In summary, we first compare four different model designs of

deep learning to select the best model for receiver function quality

control. The CNN-BiLSTMmodel achieves the best performance on

the training and validation datasets. Our study suggests early

stopping is crucial in easing the overfitting issue for receiver

function quality control. The BiLSTM layer could further

improve the performance, while the transformer layer may not

suit small dataset scenarios.We then test the potential of ourmethod

on earthquakes with magnitudes between 5.0 and 5.5 and compare

the stacked waveforms and H-κ stacking results to validate its

performance. Finally, we discuss how to tackle the lack of

training set by: 1) showing that the deep learning model can

directly learn from noisy labels by traditional methods and

produce better quality control results; 2) comparing the models

trained with receiver functions of different station combinations.

The advantages of the proposed quality control method

include: 1) It can process extensive receiver function data

automatically, rapidly, and accurately; 2) By mining high-

quality receiver functions from earthquakes with magnitudes

between 5.0 and 5.5, it can provide better back-azimuth coverage

and a wider distribution of piercing points, enabling fine dipping

and anisotropic structural imaging at single stations, especially

for those with short observation durations; 3) It can directly learn

from noisy labels by traditional automatic methods as a

substitute for a high-quality manually labeled dataset; 4) The

proposed method may extend to the S-wave receiver function

and P-wave transverse receiver function in the case of labeled

datasets, as no a priori knowledge about the P-wave radial

receiver function is used during training the deep learning model.

The limitations of our method include: 1) the accuracy of

models trained using noisy data is slightly lower than those

trained on manually labeled datasets. This issue may be

addressed by constructing a high-quality regional-scale or

global-scale receiver function dataset; 2) different methods

and parameters used in receiver function calculation could

result in different input waveforms. Hence, these factors must

be kept consistent during the training, examination, and

application of the deep learning model.

Conclusion

We study the impact of different deep learning model designs

on receiver function quality control. We propose a model that

combines CNN and LSTM layers. Our model achieves human-level

performance on the earthquake dataset with magnitudes above

5.5 and outperforms the traditional method on the earthquake

dataset withmagnitudes between 5.0 and 5.5. Our study provides an

accurate and fully automated approach for receiver function quality

control and a powerful tool formaking use of small earthquakes that

have been long ignored in previous studies.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://github.com/gongchang96/

Receiver-Function-Quality-Control.

TABLE 3 Normalized confusion matrixes of the CNN-BiLSTM model used with or without manually labeled datasets from station itself, other two
stations, or all the three stations. W means training set with manual labels and w/o means training set without manual labels.

Station Manual label Data source TP TN FP FN

AK.SAW w self 0.9290 0.8592 0.1408 0.0710

w/o self 0.8895 0.9074 0.0926 0.1105

w other two 0.7430 0.9114 0.0886 0.2570

w all three 0.9449 0.8995 0.1005 0.0551

IC.QIZ w self 0.9613 0.8889 0.1111 0.0387

w/o self 0.8716 0.8940 0.1060 0.1284

w other two 0.9793 0.6648 0.3352 0.0207

w all three 0.9161 0.9384 0.0616 0.0839

CB.CAD w self 0.9246 0.8958 0.1042 0.0753

w/o self 0.9481 0.8102 0.1898 0.0519

w other two 0.8784 0.7476 0.2524 0.1216

w all three 0.9849 0.7361 0.2639 0.0151
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SUPPLEMENTARY FIGURE S1
Location of stations (triangle) and distribution of teleseismic events
(circles) used in this study. (A) Location of station AK.SAW (triangle)
and distribution of 5456 events (circles) in the training and
validation dataset with magnitudes larger than 5.5. (B) Location of
station AK.SAW (triangle) and distribution of 14398 events (circles) in
the training and validation dataset with magnitudes between
5.0 and 5.5. (C) Location of station IC.QIZ (triangle) and distribution
of 5319 events (circles) in the training and validation dataset with
magnitudes larger than 5.5. (D) Location of station IC.QIZ (triangle)
and distribution of 24551 events (circles) in the training and
validation dataset with magnitudes between 5.0 and 5.5. (E)
Location of station IC.QIZ (triangle) and distribution of 1712 events
(circles) in the training and validation dataset with magnitudes larger
than 5.5. (F) Location of station IC.QIZ (triangle) and distribution of
1857 events (circles) in the training and validation dataset with
magnitudes between 5.0 and 5.5.

SUPPLEMENTARY FIGURE S2
Diagrams (A–C) and training and validation loss (D–F) of the three FC
models with different hidden layers. (A,D) FCmodel with 2 hidden layers.
(B,E) FC model with 3 hidden layers. (C,F) FC model with 4 hidden
layers.

SUPPLEMENTARY FIGURE S3
Receiver functions from station AK.SAW with magnitudes above
5.5 stacked in each back-azimuth bin (A–D). (A) Quality control by
FC Model. (B) Quality control by CNN model. (C) Quality control by
CNN-BiLSTM Model. (D) Quality control by CNN-BiLSTM-Trans
Model.

SUPPLEMENTARY FIGURE S4
Receiver functions from station IC.QIZ with magnitudes above
5.5 stacked in each back-azimuth bin (A–D). (A) Quality control by
FC Model. (B) Quality control by CNN model. (C) Quality control by
CNN-BiLSTM Model. (D) Quality control by CNN-BiLSTM-Trans
Model.

SUPPLEMENTARY FIGURE S5
Receiver functions from station CB.CAD with magnitudes above
5.5 stacked in each back-azimuth bin (A–D). (A) Quality control by
FC Model. (B) Quality control by CNN model. (C) Quality control by
CNN-BiLSTM Model. (D) Quality control by CNN-BiLSTM-Trans
Model.

SUPPLEMENTARY FIGURE S6
The receiver function waveforms from station AK.SAW around a polar
plot with the source direction. Red lines are the average waveforms
of many similar waveforms in back-azimuth bins. (A) Manually
quality controlled dataset containing 941 receiver functions with
earthquake magnitudes larger than 5.5. (B) Automatically quality
controlled dataset by the CNN-BiLSTM model containing
691 receiver functions with earthquake magnitudes between 5.0 and
5.5. (C) Automatically quality controlled dataset by the traditional
method in HiPerSeis containing 95 receiver functions with
earthquake magnitudes between 5.0 and 5.5.
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SUPPLEMENTARY FIGURE S7
The receiver function waveforms from station IC.QIZ around a polar plot
with the source direction. Red lines are the average waveforms of many
similar waveforms in back-azimuth bins. (A)Manually quality controlled
dataset containing 771 receiver functions with earthquake magnitudes
larger than 5.5. (B) Automatically quality controlled dataset by the CNN-
BiLSTM model containing 686 receiver functions with earthquake
magnitudes between 5.0 and 5.5. (C) Automatically quality controlled
dataset by the traditional method in HiPerSeis containing 74 receiver
functions with earthquake magnitudes between 5.0 and 5.5.

SUPPLEMENTARY FIGURE S8
The receiver function waveforms from station CB.CAD around a polar
plot with the source direction. Red lines are the averagewaveforms ofmany
similar waveforms in back-azimuth bins. (A) Manually quality controlled
dataset containing 964 receiver functions with earthquakemagnitudes larger
than 5.5. (B) Automatically quality controlled dataset by the CNN-BiLSTM
model containing 458 receiver functions with earthquake magnitudes
between 5.0 and 5.5. (C) Automatically quality controlled dataset by the
traditional method in HiPerSeis containing 265 receiver functions with
earthquake magnitudes between 5.0 and 5.5.

SUPPLEMENTARY FIGURE S9
Stacked receiver functions against the epicentral distance. Grey lines
show the theoretical arrival times of the converted phase and multiple
phase from the Moho based on the results of H-κ stacking. (A)
Manually quality controlled station AK.SAW dataset with earthquake
magnitudes larger than 5.5. (B) Automatically quality controlled

station AK.SAW dataset by the CNN-BiLSTM model with earthquake
magnitudes between 5.0 and 5.5. (C,D) are the same as (A,B) but for
station IC.QIZ datasets. (E,F) are the same as (A,B) but for station
CB.CAD datasets.

SUPPLEMENTARY FIGURE S10
Training and validation loss of the CNN-BiLSTM model used training set
labeled by the traditional method (HiPerSeis). (A) Station AK.SAW dataset.
(B) station IC.QIZ dataset. (C) Station CB.CAD dataset.

SUPPLEMENTARY FIGURE S11
Training and validation loss of the CNN-BiLSTM model used manually
labeled training set from all the three stations (AK.SAW, IC.QIZ, and
CB.CAD).

SUPPLEMENTARY FIGURE S12
Training and validation loss of the CNN-BiLSTM model used manually
labeled training set from two stations. (A) Using training set from station
IC.QIZ and station CB.CAD. (B) Using training set from station AK.SAW
and station CB.CAD. (C) Using training set from station IC.QIZ and station
CB.CAD.

SUPPLEMENTARY TABLE S1
Normalized confusionmatrixes of the FCmodelswith different hidden layers.

SUPPLEMENTARY TABLE S2
Normalized confusion matrixes of the traditional method with different
distance thresholds on station AK.SAW dataset (magnitude > 5.5).
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