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Variations in annual accumulated snowfall over the Antarctic ice sheet have a

significant and direct impact on mean sea-level change. The interannual

variability of the precipitation over coastal Antarctica adjacent to the

southern Indian Ocean (SIO) cannot be totally explained by the dominant

mode of atmospheric variability in the Southern Hemisphere. This study

explores the possible contributions from sea surface temperature (SST)

anomalies in SIO on the precipitation over East Antarctica. The results

suggest that the winter precipitation in the Lambert Glacier basin (LGB) is

closely related to the autumn SST variability in SIO without the influence of

El Niño–Southern Oscillation. It is shown that the positive autumn SIO dipole

(SIOD) of SST anomalies is usually followed by reduced precipitation in the

following winter over the LGB region and vice versa. The positive (negative)

autumn SIOD can persist into the winter and excite cyclonic (anticyclonic)

circulation and deepen (weaken) SIO low in high latitude, corresponding to an

enhanced northward (southward) wind anomaly in LGB and central SIO. This

mechanism prevents (promotes) the transportation of warm and moist marine

air to the LGB region and hence decreases (increases) the precipitation during

the following winter.
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1 Introduction

Global sea levels are rising, mainly due to warmer water

taking up more space and increased melting of glaciers and ice

sheets. The mass balance of the ice sheet surface affects the global

sea level directly and indirectly through its contribution to

freshwater storage on the ice sheet surface and increased ice

flow to the ocean. Changes in the mass balance of the Antarctic

ice sheet, mainly caused by differences between snow

accumulation rates and ice loss, are an important driver of

climate change and sea-level rise. Due to the extremely low

atmospheric moisture content and low local moisture flux

from the ice sheet surface, the formation of precipitation over

the Antarctic ice sheet mainly relies on water vapor transport

from the surrounding oceans (Tietäväinen and Vihma, 2008) and

the mid- to low-latitudes of the Southern Hemisphere. The water

vapor falls to the surface of the ice sheet as solid precipitation due

to low temperatures. Although some recent studies have found

that rainfall occurs in the Antarctic Peninsula region (Han et al.,

2018; Yang et al., 2021), precipitation type in the continental and

coastal regions of East Antarctica remains in snowfall (Yang

et al., 2021). Snowfall is the primary input to the Antarctic ice

sheet, and its variability and change have an impact on the ice

sheet mass balance and, therefore, have important implications

for the sea level on both short- and long-term time scales

(Wingham et al., 2006; Shepherd and Wingham, 2007; Medley

and Thomas, 2019). Evidence from observing and modeling

suggests that the Antarctic ice sheet surface mass balance

increases in a warm climate due to increased precipitation as

snowfall (Van Wessem et al., 2014; Frieler et al., 2015; Zwally

et al., 2015; Lenaerts et al., 2016; Medley and Thomas, 2019).

Proxy reconstructions further suggested that increases in snow

accumulation rates since 1901 have slowed the 20th century sea-

level rise by ~10 mm (Medley and Thomas, 2019), with the

increase in snowfall occurring mainly in the Antarctic Peninsula

and the Princess Elizabeth Land region in East Antarctica since

the mid-20th century (Ding et al., 2017; Yang and Xiao, 2018;

Medley and Thomas, 2019).

The increase in snowfall on the Antarctic Peninsula was

linked to atmospheric warming and Southern Annular Mode,

associated with the location of the Amundsen Sea low, with rising

temperatures increasing the moisture content of the atmosphere

(Medley and Thomas, 2019; Ding et al., 2020). Krinner et al.

(2014) suggested that while changes in atmospheric circulation

have a large impact on Antarctic precipitation, thermodynamic

processes associated with Southern Ocean warming will play a

more important role in the projected increase in Antarctic

precipitation. Wang et al. (2020) showed that the sea surface

temperature (SST) changes around Antarctica influence the

precipitation stem both from the thermodynamic impact on

the source of moisture and from the dynamics of the different

internal variability of its patterns. From the perspective of the

teleconnection between the tropical and Antarctic, accumulated

evidence has shown that the El Niño–Southern Oscillation

(ENSO) events, SST anomalies in the southern Pacific Ocean,

modulate the variability of seasonal precipitation (Zhang et al.,

2021) and rain or snow days (Ding et al., 2020) in the high

latitudes of the Southern Hemisphere by altering the surface-

pressure distribution and moisture transport (Cullather et al.,

1996; Sasgen et al., 2010) on the interannual time scales (Ding

et al., 2020; Zhang et al., 2021).

The previous studies have focused on precipitation

anomalies in the Antarctic Peninsula and West Antarctic

ice sheet. However, precipitation changes in East Antarctica

have received limited attention, and the mechanisms are not

clear yet. Recent studies reported that the southern Indian

Ocean (SIO) and South Atlantic play a dominant role in

winter precipitation over East Antarctica (Wang et al.,

2020). Zhang et al. (2021) showed that the interannual

precipitation in the East Antarctic ice sheet was negatively

correlated with ENSO events, which contradicts the views of

Bromwich et al. (2000), and the latter showed an insignificant

effect from ENSO on the precipitation in East Antarctica. Yu

et al. (2018) also reported that the annual precipitation at the

Progress Station showed no significant relationship with the

Southern Annular Mode, ENSO, and zonal wave 3 indices.

Little attention has been paid on the influences of SST

variations in the Southern Ocean on the precipitation over

the adjacent East Antarctic continent. Here, we investigate a

possible dynamic linkage between the SST anomalies in the

SIO and the changes in precipitation over coastal East

Antarctica. The objective of this study is organized as

follows: the datasets and methodology are described in

Section 2. The relationship between the SST in SIO and

precipitation in East Antarctica is discussed in Section 3.

The circulation and moisture transport anomalies related to

the anomalous SST are also presented to support in detail the

physical mechanisms responsible for this relationship. Finally,

the main conclusions are summarized and outstanding issues

are presented in Section 4.

2 Data and methodology

2.1 Datasets

The data used in this study involved total precipitation,

zonal and meridional wind, geopotential height, mean sea level

pressure (MSLP), specific humidity, vertical velocity, and SST

from 1979 to 2019. The monthly data of precipitation and

atmospheric variables with a resolution of 0.25 × 0.25 were

obtained from the European Centre for Medium-Range

Weather Forecasts (ECMWF) reanalysis (ERA5; Hersbach

et al., 2020: https://cds.climate.copernicus.eu/#!/search?text=

ERA5&type=dataset). The monthly mean SST data were

extracted from the NOAA Extended Reconstructed SST
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(ERSST) version 3b (ERSST v3b) dataset (Smith et al., 2008)

gridded at 2.0 × 2.0 (https://psl.noaa.gov/data/gridded/data.

noaa.ersst.v3.html). Four additional SST datasets derived

from ERSST v4 (Huang et al., 2015), ERSST v5 (Huang et al.

, 2017), HadISST (Rayner et al., 2003), and COBE SST2

(Hirahara et al., 2014) were also used to verify the analysis.

Even though the regional bias existed between the different

datasets due to insufficient in situ measurements in the

Southern Ocean (Huang et al., 2018), most of them showed

good consistency (not shown). All datasets performed in high

agreement with autumn, but ERSST v5 had a visible difference

from the other datasets in winter. ERSST v3b was ultimately

selected because it showed the most significant coupling of SST

and precipitation in both seasons and had a high agreement

with other datasets. The variability of the El Niño–Southern

Oscillation (ENSO) is described by the Niño 3.4 index which is

available at https://www.cpc.ncep.noaa.gov/data/indices/ersst5.

nino.mth.91-20.ascii. To calculate anomalies, the climatology of

1979–2019 was removed from the original series. The autumn

(March, April, and May) and winter (June, July, and August)

refer to the austral seasons in this study.

2.2 Methods

We employed the singular value decomposition (SVD;

Bretherton et al., 1992) analysis to identify covariability of

spatial associations between SST anomaly (SSTA) patterns

over the SIO (30°–80°S and 30°–120°E) and precipitation

anomalies over adjacent Antarctica (60°–80°S and

50°–100°E) for the 41-year period from 1979 to 2019. This

statistical technique can identify pairs of spatial patterns

with the maximum temporal covariance between

precipitation and SST. More details about the SVD

method can be seen in Bretherton et al. (1992) and

Wallace et al. (1992).

The correlation analysis methods were applied to explore the

possible physical mechanism. Two-tailed Student’s t-test with the

appropriate number of degrees of freedom (Neff) was conducted

to statistically test the correlation coefficients of a highly auto-

correlated variable. This is based on Li et al. (2013) and Sun et al.

(2015), and Neffis given as

1
Neff

≈
1
N

+ 2
N

∑N
i�1

N − i
N

ρXX(i)ρyy(i),

where N is the sample size and ρXX(i) and ρyy(i)are the

autocorrelation of two-time series X and Y at time lag i,

respectively.

To exclude the signal of the ENSO on the linkage between the

SST in SIO and the precipitation over East Antarctica, the partial

correlation is employed. For two variables x1 and y, the partial

correlation after removing the effect of x2 (as the Niño 3.4 index

in this study) is calculated as follows:

rx1y,x2 �
rx1y − rx2yrx1x2�����������������(1 − r2x2y)(1 − r2x2x1)

√ .

Before SVD and correlation analyses, we first removed the

linear trend from 1979 to 2019 in all data to eliminate the impact

of long-term trends and focus on the interannual variations.

3 Results

3.1 Coupled connection between the
austral autumn sea surface temperature
anomaly pattern in the southern Indian
Ocean and winter precipitation in the
Lambert Glacier basin

Figure 1 presents the loading vectors for thefirst leadingmode of

detrended autumn SSTA in the SIO and winter precipitation pattern

in East Antarctica from 50°E~100°E longitudes. It can explain 71.33%

of the total covariance meaning that there is a clear covariability

between the two fields on an interannual time scale. There is a positive

SSTA in the mid-latitude of western SIO and a negative SSTA in the

south-eastern SIO in the austral autumn, which is characterized by a

dipole-like structure. In the following winter, the precipitation field

displays a significant negative correlation with the SSTA pattern,

which covers the Princess Elizabeth Land and Macrobertson Land

around the Lambert Glacier basin and the adjacent ocean areas

(hereafter referred to as the LGB region). This suggests a tight

coupling between the austral autumn SSTA in SIO and following

winter snowfall in the LGB region.

The leading mode time series obtained by the SVD analysis

presents a strong interannual variability (Figure 1C). In this

study, the first expansion coefficient of SSTA was normalized and

defined as the autumn SIOD index (Figure 1C, blue line). The

normalized average precipitation anomaly for the LGB region is

defined as the winter precipitation index (Figure 1C, red line).

Correlation analysis suggests that the winter precipitation index

in LGB is significantly correlated with the autumn SIOD index

(r= −0.59, over the 99% confidence level) (Figure 1C; Table 1).

The tight coupling between the SIOD and precipitation implies

that the austral autumn dipole-like SSTA pattern in the SIO may

be a crucial factor influencing the following winter precipitation

variability in the LGB region.

3.2 Mechanism of how autumn southern
Indian Ocean dipole affects the winter
precipitation in the Lambert Glacier basin

3.2.1 Persistence of the influence of the austral
autumn southern Indian Ocean dipole

We further investigate the physical processes that might

be responsible for the linkage between autumn SIOD and
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winter LGB precipitation. The results from SVD analysis

between the winter SST and winter precipitation show a

similar dipole-like pattern of SSTA over the western Indian

Ocean and south-eastern SIO (Figure 2). The leading mode

of SVD explains more than 51.07% of the total covariance.

From autumn to winter, the warm center of SSTA over the

western SIO extends northward and the cold center over the

south-eastern SIO extends eastward (Figure 2A).

Correspondingly, the precipitation in the LGB region still

displays a significant negative correlation with this SSTA

pattern, and the anomaly center extends from the coast to

inland (Figure 2B). The correlation map between the winter

SSTA and autumn SIOD index also shows a prominent

dipole-like pattern with out-of-phase variations in the

SSTA (Figure 3A). The first expansion coefficient of the

SSTA field from winter SVD analysis is further normalized

and defined as the winter SIOD index, which shows a close

relationship with the autumn SIOD index (r = 0.43, over the

99% confidence level) and winter LGB precipitation index

(r = −0.47, over the 99% confidence level) (Table 1). This is

probably contributed by the “memory” characteristics of

SST that persist the anomalous signal over a long period and

FIGURE 1
Spatial properties of the leading singular value decomposition (SVD) mode of the detrended sea surface temperature (SST) in the southern
Indian Ocean (SIO) during austral autumn (March, April, and May) (A) and precipitation in the Lambert Glacier basin (LGB) during austral winter (June,
July, and August) (B). The dotted areas show the correlation coefficients significant over the 90% confidence level. (C) Time series of the austral
winter precipitation index in LGB (red line) and autumn southern Indian Ocean dipole (SIOD) index (blue line) from 1979 to 2019.

TABLE 1 Correlation coefficients between the detrended indices of winter precipitation in the LGB region and SIOD. Values in brackets indicate the
partial correlation coefficient excluding the ENSO signal.

Autumn SIOD index Winter SIOD index

Winter precipitation index −0.59a(−0.58a) −0.47a(−0.47a)

Autumn SIOD index 0.43a(0.43a)

aSignificant at the 99% confidence level.
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impact the climate in the following season through the

atmosphere–ocean interaction (Li 2016).

Further analysis demonstrated that the correlation coefficient

between the autumn SIOD index and winter LGB precipitation

index reduced from −0.59 to −0.49 when the winter SST index

signal was excluded by the partial correlation analysis. The

correlation coefficient between the winter SIOD index and

winter LGB precipitation index reduced from −0.47

(significant over the 99% confidence level) to −0.3 (significant

at the 90% confidence level) when the autumn SIOD index signal

was excluded. The results implied that the autumn SSTA signal is

critical and can be prolonged into the following winter via the

oceanic memory, and the winter SSTA is the “bridge” that links

cross-seasonal propagation of the autumn SSTA signal.

Earlier studies indicated that ENSO has the potential to

modulate the climate over East Antarctica (Li et al., 2015;

Zhang et al., 2021). We further conducted the partial

correlation analysis to investigate the individual effect of SSTA

by eliminating the linear effect of the Niño 3.4 index during

1979–2019. The correlation patterns between the autumn SIOD

FIGURE 2
Spatial properties of the leading SVD mode of the detrended SST in SIO (A) and precipitation in LGB (B) during the winter season from 1979 to
2019.

FIGURE 3
(A) Correlation map between the detrended autumn SIOD index and winter SSTA from 1979 to 2019. (B) Partial correlation map between the
detrended autumn SIOD index and winter SSTA excluding the ENSO signal. The dotted areas show the correlation coefficients significant over the
90% confidence level.
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index and winter SSTA (Figure 3B), and both season SIOD

indices and winter precipitation (Figure 4) are still robust

after removing the ENSO signal. This suggests that the

autumn SSTA could greatly affect the variability of winter SST

and LGB precipitation even in the year with the strong ENSO

signal. It was verified by the significant correlation coefficients

between the indices after removal of the ENSO signal (Table 1).

The correlation coefficient between the time series of the SIOD

index and precipitation index can still be up to −0.58 (over the

99% confidence level, Table 1). The aforementioned results

confirm the stable contribution of SIOD in SIO and the weak

modulation of ENSO in the linkage between SIOD and

precipitation over the LGB region. Thus, it is inferred that the

SSTA in SIO is a more important factor that influences the

interannual changes in winter precipitation over LGB during

1979–2019. Therefore, the ENSO signal has been removed from

the results suggested in the following sections.

3.2.2 Atmospheric response to the southern
Indian Ocean dipole in austral winter

The glacial air mass over the Antarctic inland is very dry, and

the marine air intrusions from the surrounding Southern Ocean

into Antarctica play a key role in East Antarctic precipitation

(Kurita et al., 2016). In this process, large-scale atmospheric

circulation anomalies and the coastal cyclones are thought to

directly affect the poleward moisture transport. Next, we

investigate the physical process responsible for the influence

of the winter SIOD on the winter precipitation in the LGB region.

As shown in Figures 2 and 3, the SIOD performs ameridional

seesaw pattern, which can increase the meridional SST gradient,

having the potential to modulate the local baroclinicity, stimulate

the eddy activity, and regulate the westerlies jet and meridional

circulation (Marshall and Connolley, 2006; Liu et al., 2015; Liu

et al., 2020) in the high latitudes over the Southern Hemisphere.

The response of the circulation to the extratropical thermal

forcing associated with the SIOD can extend to Antarctic

coastal and inland areas in terms of atmospheric rivers

(Gorodetskaya et al., 2014).

Figure 5A reveals that the positive SIOD causes the

strengthened westerlies throughout the troposphere and lower

stratosphere between 40°–55°S, relating to the enhanced mid-

latitude jet. Accompanying with the positive SIOD, anomalous

air rising (sinking) in high (mid-) latitudes (Figure 5B) will

increase local baroclinicity and enhance cyclogenesis (Marshall

and Connolley, 2006). The 500 hPa geopotential height is

characterized by positive anomalies in mid-latitudes and

negative anomalies in high latitudes of SIO (Figure 6A). The

MSLP anomalies show an almost identical spatial pattern, but the

location of the negative center shifts eastward (Figure 6B)

compared to 500 hPa anomalies. The negative MSLP anomaly

across 55°–70°S and 90°–120°E was previously used to consider

SIO low, a quasi-stationary climatological feature located to the

north of Prydz Bay (Xiao et al., 2005; Yang et al., 2019). The SIO

low is likely a part of the large zonal-wavenumber-three

circulation pattern that affects the surface winds and

meridional heat transport across the Southern Ocean

(Raphael, 2004; Raphael, 2007; Eayrs et al., 2021). The

aforementioned analysis suggests that the positive SIOD tends

to enhance the cyclogenesis in high latitudes and deepen the

SIO low.

FIGURE 4
Partial correlation map between the detrended winter precipitation anomalies and autumn SIOD index (A) and winter SIOD index (B) excluding
the ENSO signal during 1979–2019. The dotted areas show the correlation coefficients significant over the 90% confidence level.
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Figure 7A confirms that the dipole pattern of the SSTA in SIO

excites the generation of local eddy activity and creates a seesaw

pattern in the circulation fields. In detail, a positive SIOD favors

an anomalous anticyclonic circulation over mid-latitudes of SIO

and an anomalous cyclonic circulation from 60°–120°E over the

high latitudes of SIO. The cyclonic circulation associated with the

strengthened SIO low induces an anomalous northward air flow

on the western flank (50°–90°E) and southward air flow on the

eastern flank (110°–120°E) of the SIO low. Generally, southward/

northward winds associated with cyclonic circulation tend to

transport/prevent marine moisture to Antarctica (Xiao et al.,

2005; Kurita et al., 2016; Yu et al., 2018; Wang et al., 2020; Yang

et al., 2021). Figure 7B further verifies that the positive (negative)

phase of SIOD corresponds to the northward (southward)

transport of the moisture flux in LGB. In this region,

anomalous northward air flow could strengthen the local

katabatic wind which favors more frequent dry and cold wind

from the inland and prevents incursions of warm and wet air

mass from the mid-latitudes of SIO to the coastal region. In

contrast, the negative SIOD pattern prefers to transport warm

and wet marine air to the LGB region. Therefore, the

configuration of anomalous atmospheric circulation and

moisture transport induced by the winter positive (negative)

SIOD decreases (increases) winter snowfall in the LGB region.

The results indicate that the winter SIOD could excite the

atmospheric circulation anomalies to generate anomalous

meridional wind over SIO and East Antarctica. The

strengthened northerly (southerly) winds may conduce to

suppress the moisture transport from open water to the East

Antarctic continent, determining the winter snowfall amount

in LGB.

FIGURE 5
Partial correlation map between the detrended winter SIOD
index and winter zonal wind (A), vertical velocity (shading), and
vertical wind (vectors) (B) averaged over 30°–120°E without the
ENSO signal from 1979 to 2019. The dotted areas show the
correlation coefficients significant over the 90% confidence level.
The white contours represent the climatology of wind in winter.

FIGURE 6
Partial correlation maps between the detrended winter SIOD index and winter geopotential height at 500 hPa (A) and mean sea-level pressure
(B) without the ENSO signal from 1979 to 2019. The dotted areas show the correlation coefficients significant over the 90% confidence level.
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4 Conclusion

In this work, we have investigated the influence of the

austral autumn SST anomalies in SIO on the winter

precipitation over the LGB region in East Antarctica.

Positive (negative) SIOD in autumn is usually associated

with decreased (increased) winter snowfall in the LGB

region. The possible mechanism of the cross-seasonal

impact can be explained by the “coupled

oceanic–atmospheric bridge” process (Nan and Li 2005a;

Nan and Li 2005b; Liu et al., 2015; Liu et al. 2016; Liu et al.

2018; Li et al., 2019; Liu et al., 2020; Liu et al., 2021) in the

SIO. The results suggest that the SIOD serves as a

“memorizer” to preserve the information of the autumn

SSTA and prolong it into the winter season, a process that

relies on the large thermal inertia of the ocean. Also, the

positive (negative) winter SIOD can induce anomalous eddy

activity and anomalous meridional wind in high latitude

over SIO, which favors the development of cyclonic

(anticyclonic) circulation and deepening (weakening) of

SIO low in the high-latitude SIO. The anomalous

northward (southward) air flow on the western flank of

the SIO low tends to prevent (transport) marine moisture

from mid-latitude SIO and eventually results in decreased

(increased) snowfall in the LGB region in winter. Thus, the

SIOD acts as an “ocean bridge,” and the responsive

atmospheric circulation in the mid-high SIO acts as an

“atmospheric bridge,” which allows the cross-seasonal

propagation of autumn SIOD to influence the LGB

precipitation during the following winter.

Such teleconnection and cross-seasonal influences of the ocean

and atmosphere signals from the SIO provide an additional source of

predictability for the East Antarctic climate, especially for the LGB

region. This study suggests that the autumn SIODprovides a source of

prediction for the forecast of winter precipitation in the LGB region.

However, how to build a predictionmodel based on the autumnSIOD

and improve the skill of the prediction of winter precipitation in East

Antarctica are still a problem and therefore need further study. Few

studies (Zhang et al., 2021) suggested that ENSO has a significant

effect on surface mass balance in the East Antarctic ice sheet, but our

results suggest that the effect of ENSO on winter snowfall in the LGB

region is not significant which agrees with Bromwich et al. (2000) and

Yu et al. (2018). This is probably due to the huge area and complex

topography of the East Antarctic region. Future studies should

therefore investigate the relative contributions of SIOD and ENSO

to climate variability in different regions of the Antarctic continent

through model simulations to provide more insights into Antarctic

climate predictability.
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FIGURE 7
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the correlation coefficients significant over the 90% confidence level.
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