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Wind gusts over the ocean can have a great influence on maritime transport and
production operations. However, owing to the scarcity of marine observation data and
the complex causes of wind gusts, the estimation and forecasting of gusts at sea are even
more difficult. In this study, a gust estimation equation applicable to the Bohai Sea is
established based on observation and reanalysis data, with representative observation
stations on the coast and offshore in the Bohai Sea. During the process, partial correlation
analysis and a significance test of correlation coefficient differences were used to further
clarify the influence of average wind speed and vertical wind shear at different heights on
wind gusts. The final gust estimation equation includes a mean wind speed term, a
turbulence term, and a convection term, which are statistically significant contributors; in
addition, there are clear physical meanings. Comparing two gust factor methods in this
study, the average errors and fitting errors of the least squares gust estimation equation are
the smallest. For wind gusts between 10 and 26m/s, the fitting error in the gust estimation
equation is 7.68–12.25% and 21.10–30.08% lower than those of the two gust factor
methods in this study. The gust estimation equation better reflects the difference of wind
gusts typical under different average wind speeds and vertical wind shear conditions, so a
better prediction for wind gusts can be achieved.
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INTRODUCTION

Wind gusts are strong, short-duration wind events that are measured by the average wind speed over
several seconds. Wind gusts exceeding a certain threshold have a significant impact on housing,
transportation, and/or maritime production (Sheridan, 2018; Teoh et al., 2019; Su et al., 2021).
Accurate and timely wind gust forecast information can effectively reduce the loss of life and
property. The formation mechanism of wind gusts is complex and is not only related to average wind
speed and boundary layer turbulence but also affected by surface roughness and atmospheric stability
(Harris and Kahl, 2017). For this reason, the prediction of wind gusts is a difficult problem in
operational weather forecasting (Kahl, 2020). The wind gust factor was an early wind gust forecasting
metric that was calculated as the ratio of themaximumwind speed to the average wind speed within a
set time period. From this metric, the strength of wind speed pulsation was obtained, and the
expected maximum wind gust value was estimated (Sherlock, 1952). The wind gust factor
methodology is still widely used in practical operational forecasting owing to its simplicity and
convenience (Cook et al., 2008; Blaes et al., 2014). However, because of the influence of different
underlying surface conditions, altitude, and weather systems, the wind gust factor varies significantly.
Therefore, in order to obtain more accurate wind gust forecasts, there has been considerable research
on the factors driving wind gusts (Davis and Newstein, 1968; Krayer and Marshall, 1992; Ágústsson
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and Ólafsson, 2004; Yu and Chowdhury, 2009; Kahl et al., 2021).
The wind gust factor methodology considers only the general
relationship between the average wind speed and wind gusts and
ignores the effects of the vertical distribution of upper-level wind
speeds on surface wind gusts. When the vertical wind shear near
the surface is large, strong turbulent momentum flux will occur,
and this strong turbulent momentum flux will increase the
surface wind gusts. Strong vertical wind shear in the
troposphere is conducive to the development of convective
weather, and when convective weather occurs, downdrafts in
the troposphere reach the surface, thereby increasing the surface
wind gusts (Brasseur, 2001; ECMWF, 2016; Minola et al., 2020).
Therefore, by considering the effects of turbulence and
convection on the average surface wind speed, which the wind
gust factor method ignores, more accurate wind gust predictions
can be obtained.

Compared with the average wind speed, strong wind gusts
offshore have a greater impact on the safety of both maritime
shipping and offshore production operations. However, the lack
of observational data at sea, either high-altitude observations or
ground-level observations, limits the accurate representation of
the initial marine meteorological conditions in numerical models.
This restricts the development of objective forecasting methods
over the oceans. However, the underlying conditions at the sea
surface are relatively uniform, which provides favorable
conditions for the development of wind gust forecasting at sea
(Leston et al., 2018).

The Bohai Sea is a relatively small inland sea in northern
China, which has a substantial network of in situ observing sites,
such as coastal observation sites, buoys, and oil platforms.
Therefore, this study will use the gusts and mean wind
observation data of these stations and the upper-air wind field
data from reanalysis data to establish a gust estimationmodel that

can be applied to the Bohai Sea. Through this model, the wind
gusts can be more accurately estimated for varying average wind
speeds and vertical wind shear conditions to provide a new
method for wind gust forecasting in the Bohai Sea.

DATA

In this article, we use hourly wind speed data from surface
observations taken by the China Meteorological
Administration during 2017–2019 and wind field data on
1,000, 925, and 850 hPa from the ERA5 reanalysis data to
establish an hourly wind gust forecast model for the Bohai
Sea. The spatial resolution of the ERA5 reanalysis data is
0.25 × 0.25. A bilinear interpolation method is used to
interpolate the upper-air data to the locations of the selected
coastal and representative offshore stations shown in Figure 1.
There are nine representative stations selected from the coastal
and offshore areas in this study. The average elevation of the
selected stations is 10 m, so the wind speed observation data do
not need to be corrected in height.When using wind speed data to
calculate wind gusts, the wind speed should be averaged over a
10-min interval (Harper et al., 2010; WMO, 2012). However, the
numerical prediction model used in weather forecasting mainly
outputs the wind speed at the forecast time. Therefore, in order to
apply the established wind gust estimation equation in
operational forecasting in the future, the average wind speed
at the observation time is used instead of the 10-min average wind
speed. In this study, it is a 2-min average and is recorded as
integer values.

FACTOR ANALYSIS

In general, the speed of wind gusts rises with the increase of the
average wind speed. The observational data from 2017 to
2019 show that when the average wind speed is between
14 and 16 m/s, the corresponding average value of observed
wind gusts is approximately 19 m/s, and when the average
wind increases to 22–24 m/s, average wind gusts can reach
28 m/s. Since there is only one parameter, there is a direct
relationship between the average wind speed and the gust
prediction. However, in practice, different gusts can occur at
any specific average wind speed (Figure 2). Therefore, as the
average wind speed is an important factor in gust estimation, it
alone is not an accurate predictor for the wind gust speed.

Turbulence is the main characteristic of the atmospheric
boundary layer and plays an important role in the transfer of
heat, momentum, and water vapor between the surface and the
upper atmosphere (Gousseau et al., 2012). Strong vertical wind
shear is conducive to the enhancement of turbulence (Kim et al.,
2003). The height of 1,000 hPa is close to the ground, so this study
attempts to use the difference between the wind speed of
1,000 hPa (F1000) and that at 10 m (F10) to estimate the
vertical wind shear in the near-ground layer. Figure 3 is an
array boxplot of different average wind speeds from 2017 to
2019 under the conditions of F1000-F10 > 0 and F1000-F10 ≤ 0. As is

FIGURE 1 | The distribution of representative stations in coastal and
offshore areas.
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shown in Figure 3, by comparing the gust distribution in the two
cases, it can be seen that under the same average wind speed, the
larger gust is more likely to appear in the case of F1000-F10 > 0.
The case of F1000-F10 > 0 may correspond to a stronger

turbulence, which would be associated with larger surface
wind gusts.

When a severe convective weather system occurs, downdrafts
in the troposphere will transport momentum downward and

FIGURE 2 | Boxplots of average wind speed and wind gust from 2017 to 2019. The boxplot corresponds to the minimum, 25th percentile, 50th percentile (red
lines), 75th percentile, and maximum values from bottom to top, respectively. Red crosses in the figure represent outliers that are more than 1.5 quartiles away from the
75th percentile or 25th percentile of the box.

FIGURE 3 | Boxplots of gusts under different average wind speeds when F1000-F10 > 0 and F1000-F10 ≤ 0 from 2017 to 2019: (A) 2 m/s ≤ F10 < 4 m/s; (B)
2 m/s ≤ F10 <4 m/s; (C) 2 m/s ≤ F10 < 4 m/s; and (D) 2 m/s ≤ F10 < 4 m/s.
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affect surface wind gusts. However, severe convective weather has
the characteristics of small spatial scale, short life, and strong
suddenness. The prediction of severe convective weather is still a
difficult problem (Grabowski et al., 2019), and it is even more
difficult to quantitatively calculate the surface gusts caused by
severe convective weather. In the gust forecast product of the
European Center for Medium-Range Weather Forecasts
(ECMWF) model, the maximum positive wind speed
difference between 850 and 950 hPa is used to represent the
gust caused by convective weather, so as to realize the quantitative
calculation of convective gust (ECMWF, 2016). In this study, the
vertical wind shears between the 850- and 1,000-hPa surfaces
(F850-F1000) and between the 850 and 925-hPa surfaces (F850-F925)
are used to characterize the effects of convection.

CORRELATION ANALYSIS

Since the average surface wind speed and vertical wind shear both
can affect the intensity of surface wind gusts, the relationship
between them needs to be further clarified. The simple correlation
coefficient only shows the degree of linear relation between two
variables and does not fully clarify the relationship between those
independent variables and the dependent variables in multiple
regression analysis. Therefore, a partial correlation analysis needs
to be performed, which considers other impact factors and
temporarily ignores their influence, to study the relationship
between the two remaining factors (Baka et al., 2004). When
the partial correlation coefficient is first order, there are only two
influence factors. The influence of one independent variable is
being controlled, and the relationship between the other
independent variable and the dependent variable is calculated
according to the following (Hu and Wu, 2020):

rab c � rab − racrbc��������������(1 − r2ac)(1 − r2bc)√ (1)

where rab c is the partial correlation coefficient between
dependent variable a and independent variable b when
controlling the effect of the independent variable c, and rab,
rac, and rbc are the simple correlation coefficients between a and
b, a and c, and b and c, respectively. When there are three impact
factors, it is necessary to control the influence of two of them to
calculate the relationship between the remaining one and the
dependent variable. Therefore, it is necessary to calculate the
second-order partial correlation coefficient according to the
following (Ashok et al., 2007):

rab cd � rab c − rad crbd c�����������������(1 − r2ad c)(1 − r2bd c)√ (2)

where rab cd is the correlation between dependent variable a and
independent variable b when controlling the effects of the
independent variable c and d.

The vertical wind shear is divided into four cases, and the
partial correlation coefficients of the wind shear variables under
the four different vertical wind shear conditions from 2017 to
2019 are calculated. By using partial correlation analysis to

compare the effects of F850-F925 and F850-F1000 on surface
gusts, it is found that the effects of F850-F925 is smaller than
that of F850-F1000 (not show), so F850-F1000 is finally selected to
represent the gust caused by convective weather (Table 1). The
partial correlation coefficients in Table 1 are all significant at the
95% level. These results show that the partial correlation
coefficient of the average wind speed is the largest regardless
of the vertical wind shear conditions, indicating that the average
wind speed is themost important factor affecting the surface wind
gusts. When F1000-F10 > 0, the partial correlation coefficients are
0.314 and 0.346 (Case 1 and Case 2), which are much larger than
0.072 and 0.135 when F1000-F10 ≤ 0 (Case 3 and Case 4). When
F850-F1000 > 0 (Case 1 and Case 3), the partial correlation
coefficients are 0.07 and 0.103, which are also greater than
0.016 and 0.02 when F850-F1000 ≤ 0 (Case 2 and Case 4).

The partial correlation coefficients are calculated from the
corresponding sample data. However, before comparing different
correlation coefficients, a statistical test should be performed to
make sure whether the difference between different correlation
coefficients is statistically significant or possibly caused by
sampling differences or random chance. In 1915, Fisher
proposed the Fisher Z transform, which can convert
correlation coefficients that do not conform to normal
distribution into variables that conform to normal distribution
(Needham, 1978). The formula is calculated as follows:

zr � 1
2
ln(1 + rr

1 − rr
) (3)

where rr is the correlation coefficient of a sample data and zr is
the transformed correlation coefficient. Using this transformed
correlation coefficient, Snedecor (1980) proposed a method to
test the differences between two correlation coefficients. The
procedure is as follows: Define

z � zr1 − zr2
VAR(zr1 − zr2) (4)

where Zr1 and Zr2 are the transformed correlation coefficients and
VAR(Zr1–Zr2) is calculated by the following:

VAR(zr1 − zr2) �
������������
1

n1 − 3
+ 1
n2 − 3

√
(5)

where n1 and n2 represent the sample sizes of variables z1 and
z2 in the data, respectively. The numbers of samples under

TABLE 1 | Partial correlation coefficients of forecast factors under different vertical
wind shear conditions from 2017 to 2019.

Predictor Partial correlation coefficient

Case 1 Case 2 Case 3 Case 4

F1000-F10 > 0 F1000-F10 > 0 F1000-F10 ≤ 0 F1000-F10 ≤ 0

F850-F1000>0 F850-F1000≤0 F850-F1000>0 F850-F1000≤0

F10 0.886 0.878 0.934 0.936
F1000-F10 0.314 0.346 0.072 0.135
F850-F1000 0.070 0.016 0.103 0.020
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four different vertical wind shear conditions in this study are
85,453, 49,929, 24,365, and 10,333 (Case 1–Case 4,
respectively). When the absolute value of Z exceeds 1.96,
the differences in the correlation coefficients of the two
variables are statistically significant at the 95% confidence
level. When the absolute value of Z is less than 1.96, the
correlation coefficients are not significantly different.

The above procedure is used to test the difference of
correlation coefficients for the different vertical wind shear
conditions. The results show that only two of the correlation
coefficient differences are not statistically significant. The first
is F10 for the two cases where F1000-F10 is nonpositive and the
partial correlation coefficients are 0.934 and 0.936, and the
second is F850-F1000 for the two cases where F1000-F10 is
positive and the partial correlation coefficients are
0.016 and 0.020. The significance test shows that the
correlation coefficient between different samples can be
compared, and the larger the correlation coefficient is, the
greater the influence on the gusts will be. When F1000-F10 > 0,
the impact of F1000-F10 on gusts is greater than that of F1000-
F10 ≤ 0. The corresponding physical meaning of this
correlation is likely related to the fact that the positive
vertical wind shear in the near-ground layer can stimulate
strong turbulence, thereby enhancing gusts. When F850-F1000
is greater than 0, it also has a greater impact on gusts, and its
corresponding physical meaning is that the positive vertical
wind shear is more likely to cause downdrafts in the
troposphere to affect the surface gusts.

Therefore, the influence of F1000-F10 ≤ 0 and F850-F1000 ≤ 0 will
be ignored when establishing the gust estimation equation, and
the equation established in this way has a clearer physical
meaning. The influence of different factors on surface wind
gusts is more clearly revealed using partial correlation analysis
and the significance test of correlation coefficient differences,
which provide a basis for the establishment of a wind gust
estimation equation.

ESTIMATION EQUATION

The multiple linear gust estimation equation established from a
multiple regression analysis can be written in the form of a
piecewise function, as follows:

Fgust �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a1F10 + b1(F1000 − F10) + c1(F850 − F1000) F1000 − F10 > 0; F850 − F1000 > 0
a2F10 + b2(F1000 − F10) F1000 − F10 > 0; F850 − F1000 ≤ 0
a3F10 + c3(F850 − F1000) F1000 − F10 ≤ 0; F850 − F1000 > 0
a4F10 F1000 − F10 ≤ 0; F850 − F1000 ≤ 0

(6)

where ai, bi, and ci are the coefficients of the three different
influencing factors under the ith vertical wind shear condition.
Using the least squares method to solve the regression
coefficients, we obtain the results presented in Table 2. The
problem of collinearity among predictors in multiple linear
regressions is an unavoidable problem. Severe collinearity can
affect the fitting and may even lead to erroneous conclusions. The
variance inflation factor (VIF) is an important metric to test for
collinearity among the predictors. It is generally considered that if
VIF > 10, there is a serious collinearity problem among the
predictors (Al-Ashkar et al., 2021). The formula for calculating
VIF is as follows:

VIFi � 1
1 − R2

i

(7)

where R2
i is the square of R of independent variable i and the

remaining independent variables in the linear regression. It can
be seen in Table 2 that the range of VIFs in the different
forecasting models ranges from 1.0 to 2.021 ≪ 10, indicating
that there are no serious collinearity problems for any of the
forecasting factors. Therefore, the estimation equation can be
fitted by using the least squares method, and there is no need to
use either a partial least squares or ridge regression method to
eliminate collinearity (Delsole, 2007; Smoliak et al., 2015; Lala
et al., 2020).

As shown in Table 2, in the case when F1000-F10 ≤ 0 and F850-
F1000 ≤ 0 (Case 4), the only significant influencing factor in the
wind gust estimation equation is F10. In this case, the R2 of the
estimation equation is 0.987, which is the largest of all estimation
equations. R2 is the goodness of fit, and the closer the value is to 1,
the better the fitting effect is. In this case, only using F10 as a
predictor achieves a better forecast of the wind gusts, and the
standard error of the estimated value is the smallest of all cases
(1.437 m/s). When F1000-F10 > 0 and F850-F1000 > 0 (Case 1), there
are three factors in the estimation equation. In this case, the R2 of
the gust estimation equation is the smallest (0.951). Among the
four gust estimation equations, the average wind speed has
influence with a regression coefficient ranging from 1.292 to
1.385. The regression coefficients of F1000-F10 are 0.403 and 0.439,
and the regression coefficients of F850-F1000 are 0.168 and 0.137.
The regression coefficient of any particular factor is not very
sensitive to the specific wind shear case, so we integrated the
piecewise functions to make the gust estimation equation more
concise and easy to use for operational forecasts. The procedure
adopted in this study is to replace all the data for F1000-F10 ≤ 0 and
F850-F1000 ≤ 0 with 0, merge all the sample data together, and use
the least squares method to re-solve the regression coefficients for
the different influencing factors. The VIF values between the
influencing factors in the combined data are 1.446, 1.408, and
1.344, so there is no serious collinearity problem between the
factors. The R2 of the integrated gust estimation equation is 0.963,
and the standard error of the estimated value is 1.703 m/s. The

TABLE 2 | Model overview.

Case no. Model factors Regression
coefficients

R2 Standard error VIF

1 F10 1.385 0.951 1.729 1.858
F1000-F10 0.403 — — 1.956
F850-F1000 0.137 — — 2.021

2 F10 1.336 0.963 1.776 1.644
F1000-F10 0.439 — — 1.644

3 F10 1.307 0.974 1.490 1.744
F850-F1000 0.168 — — 1.744

4 F10 1.292 0.987 1.437 1.000

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9200485

Hu et al. Wind Gust Estimation Equation

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


coefficients in the integrated gust estimation equation are 1.332,
0.437, and 0.153, which are basically equivalent to the average
values of the coefficients of different influence factors in formula
6(1.33, 0.421, and 0.153, respectively). The final form of the wind
gust estimation equation is as follows:

Fgust � 1.332F10 + 0.437max(0, F1000 − F10) + 0.153max(0, F850

− F1000)
(8)

where max(0, F1000 − F10) and max(0, F850 − F1000) includes
only positive values of F1000-F10 and F850-F1000, respectively.

The wind gust estimation equation involves the wind speed on
the 1,000-hPa surface. However, when the height of the 1,000-hPa
surface is less than 10 m, F1000-F10 and F850-F1000 have no real
physical meaning. Therefore, in this study, when the height of the
1,000-hPa surface is less than 10 m, the 1,000-hPa surface height
data from the ERA5 reanalysis data is used to calculate the
relationship between the 1,000- and 850-hPa wind speeds and
the 10-m wind speed. However, the situation when the height of
the 1,000-hPa surface is below 10 m and F1000-F10 is positive
accounts for only ~1.7% of all samples during 2017–2019, and the
average value of F1000-F10 is ~1.95 m/s. This situation primarily
occurs when F10 is relatively small (1–3 m/s), with a frequency of
roughly 51.6% of the time. The proportion of cases when the
height of the 1,000-hPa surface is below 10 m and F850-F1000 is
positive is approximately 2.2%, of which roughly 64.7% of the
magnitudes of F850-F1000 are less than 5 m/s. In general, when the
height of the 1000-hPa surface is below 10 m, F1000-F10 and F850-
F1000 have relatively little meaning and have little effect on the
wind gust estimates.

PERFORM VALIDATIONS

In this study, according to the definition of the gust factor
method, two wind gust factors are calculated using the hourly
wind speed observation data from 2017 to 2019. The first is the

gust factor calculated based on different average wind speeds
(GF1), and the second is the gust factor calculated based on the
overall sample (GF2). As shown in Figure 4, GF1 monotonically
decreases with the increase of average wind speed. When the
average wind speed is 0–2 m/s, GF1 is 3.6155. When the average
wind speed increases to 22–24 m/s, GF1 is 1.2314. At each average
wind speed, GF2 is 1.5.

The gust estimation equation arising from the multiple
regressions (MR) and the gust factors GF1 and GF2 are used
to hind cast the data from 2017 to 2020 and compare their mean
errors and fitting errors. The fitting error is estimated by the
following:

RMSE �
������������
1
n
∑n
i�1
(yi − ŷi)2√

(9)

where yi is the observational wind gust data and ŷi is the
hindcasted wind gusts from MR, GH1, or GF2. As is shown in
Figure 5A, the amplitude of the mean error from MR is lower
than that from GF1 at all wind gust speeds except 6–10 m/s. In
some cases, the mean error from the MR is less than half that of
GF1. When the wind gusts are above 10 m/s, the estimated
value of the wind gusts estimated from GF1 are obviously
smaller than the observed gusts, and the difference enlarges
with the increase of wind gusts. When the observed gusts are
22–24, 24–26, and 26–28 m/s, the estimated gusts from
GF1 are 32.9, 52.4, and 63% smaller, respectively, than the
observed value by more than 2 m/s. The reduction in mean
error in the MR model translates into a reduction in both the
underestimation of strong wind gusts and the overestimation
of low wind gusts. In comparison, the gust hindcasts from the
GF2 model show a negative mean error for wind gusts below
14 m/s and a positive mean error when they are above 14 m/s.
The estimations from the GF2 model are independent of the
average wind speed, so the hindcasts are overestimates for
weak wind gusts and underestimates for strong ones. Except in
a few cases, the magnitude of the mean error of the MR model
is smaller than that of the GF2 model (Figure 5B).

FIGURE 4 | The gust factors as a function of average wind speed (GF1) and overall sample (GF2) calculated from the data from 2017 to 2019.
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However, the mean error comparison does not prove that the
estimation capability of the MR model is better than that of the
GH1 or GF2 model. Table 3 shows the reduction of percentage in

the fitting error of the MR model related to the fitting error in the
GF1 and GF2 models. In Table 3, except when the observed wind
gusts are between 2 and 4 m/s, the fitting error reduction rate of
MR relative to that of the GF1model is negative, and all others are
positive. For wind gusts between 12 m/s and 22 m/s, the fitting
error in the MR model is 10.99–12.25% lower than that of the
GF1model. For wind gusts between 4 and 26 m/s, the fitting error
reduction of the MR model is more than 20% relative to that of
the GF2 model.

Figure 6 shows the scatter diagrams of absolute errors of the
MR and GF1 models. As can be seen, when the absolute error of
GF1 is small, the absolute error of MR is also small, so that the
scattered points near the origin are densely packed. As the
absolute error of GF1 increases, the scattered points begin
shifting to the left of the diagonal, indicating that the MR
error is less than that in GF1. Figure 7 shows the scatter
diagrams comparing the absolute error of the MR and
GF2 models. The results in Figure 7 are basically the same as
those in Figure 6; the absolute error in the MR model has fewer
large deviations in the gust than the GF2 model does.

FIGURE 5 | Comparison of mean error in the multiple regression model to that in the (A) gust factor and (B) gust factor 2 models from 2017 to 2019.

TABLE 3 | Reduction rate of the multiple regression model relative to the gust
factor 1 and gust factor 2 fitting error in 2017–2019.

Wind speed (m/s) Reduction rate (100%)

GF1 GF2

2–4 -7.36 12.66
4–6 0.09 27.73
6–8 1.48 28.12
8–10 2.47 26.99
10–12 7.68 26.74
12–14 10.99 26.26
14–16 12.25 24.80
16–18 11.67 24.23
18–20 11.66 25.47
20–22 11.18 28.98
22–24 8.98 30.08
24–26 8.89 21.10
26–28 11.67 13.67
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FIGURE 6 | The scatter diagrams of absolute errors of the multiple regression method (MR) and the wind gust factor method (GF1) for four different observed gust
magnitudes: (A) 14–16 m/s, (B) 16–18 m/s, (C) 18–20 m/s, (D) 20–22 m/s. The color in the scatter in the figure indicates the number of repeated scatter points.

FIGURE 7 | The scatter diagrams of absolute errors of the multiple regression method (MR) and the wind gust factor method (GF2) for four different observed gust
magnitudes: (A) 14–16 m/s, (B) 16–18 m/s, (C) 18–20 m/s, (D) 20–22 m/s. The color in the scatter in the figure indicates the number of repeated scatter points.
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By comparing the mean error, fitting error, and the scatter
diagrams of the absolute error between the gust estimation
equations method and the two gust factor methods, it is clear
that the regression estimation equation is considerably better
than the other two gust factor methods. This is because the
regression considers both average wind speed and wind shear at
different heights.

SUMMARY AND DISCUSSION

In this study, based on both observational and ERA5 reanalysis
data, the relationship among average wind speed, vertical wind
shear at different levels in the lower atmosphere, and surface wind
gusts is determined by the analysis of partial correlation and the
development of wind gust estimation equation suitable for Bohai
Sea using the least squares method. By comparing the gust
estimation equation and the two gust coefficients, the results
are as follows:

1. The average wind speed term F10 and the wind shear terms
F1000-F10 and F850-F1000 are selected to establish an estimation
equation for wind gusts in the Bohai Sea. While average wind
speed is the dominant factor in the surface wind gust
estimation, the near-surface wind shear is also an
important term. Owing to the low frequency and
intermittency of convective weather systems, the effects of
convection as estimated using the wind shear across
850–1,000 hPa are relatively small.

2. Based on the significance test of the correlation coefficient
difference, it is clear that the positive vertical wind shear has a
greater impact on the ground gust than the negative vertical
wind shear. The gust estimation equation ultimately includes
the importance of vertical wind shear, which is more
physically meaningful.

3. Compared with the two gust factor methods presented in this
study (GF1 and GF2), the mean error and fitting error of the
least squares regression gust estimation equation (MR) are the
smallest. For wind gusts between 10 and 26 m/s, the fitting
error in the gust estimation equation is 7.68–12.25% and
21.10–30.08% lower than those of the two gust factor
methods in this study. The least squares regression gust
estimation equation includes the effects of the average wind

speed and different vertical wind shear conditions, so a better
prediction for the wind gusts can be achieved.

The surface 10-m wind speed and 1,000- and 850-hPa wind
speed data predicted using the numerical model can be
applied in the gust estimation equation to realize the gust
forecast. In this study, the gust estimation equation was
established based on the Bohai Sea. If the gust estimation
equation is applied to other sea areas, it is necessary to reselect
representative stations to calculate the regression coefficients
of different influencing factors. The regression coefficients of
different sea areas will be slightly different. The gust
estimation equation in this study considers only the
average surface wind speed and vertical wind shear and
does not consider the influence of temperature at different
heights on gust. At the same time, the method is a linear
regression method, which does not take the nonlinear
relationship among different influencing factors and gusts
into consideration. In future work, the influence of thermal
factors will be considered, and the forecasting model of gust
will be constructed using a nonlinear method, so as to further
improve the forecasting ability of gust.
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