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The pre-Mesozoic Sandaoqiao gas field, northern Tarim Basin, Western China, hosts a
typical deep fractured dolomite reservoir. Taking this area as an example, this study carried
out identification research on the fracture development section of the Cambrian Sinian
deep (5,700–6200m) thick (60–80m) fractured dolomite reservoirs. The core scale
identification and numerical analysis method of heavy gauge finite difference (R/S-FD)
are used to identify the fracture development section. In the process of applying this
method to the study area, by comparing the fracture development identification results of
continuous and complete coring sections, three logging curves with high fracture
sensitivity (AC/DEN/CAL) are selected. The adjusted R/S-FD analysis method can
effectively identify the fracture development section of the fractured dolomite reservoir.
Among them, five fracture development sections were identified in well Q1, with an average
thickness of 6.8 m. The fracture development section is in good consistency with the
reservoir interpretation section of conventional logging. Well, Q101 identified 11 fracture
development sections with an average thickness of 2.5 m. The results show that the gas
logging section lags behind the fracture development section, mainly corresponding to the
lower part of the identified fracture development section. The thickness and distribution of
the longitudinal fracture development section of the two wells are obviously different. The
research shows that the R/S-FDmethod can well identify the fracture development section
of a fractured dolomite reservoir.
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INTRODUCTION

Carbonate reservoirs are one of the most important reservoir
types in the world (Zhu et al., 2020). Dolomite reservoir is one
of the common carbonate reservoir types (Antonellini and
Mollema, 2000; Ma et al., 2008; Guo et al., 2020). Compared
with limestone, this kind of reservoir facies is more brittle and
has weak dissolution (Zheng H. et al., 2007; Zheng R. C. et al.,
2007; Davies and Smith, 2011). The main reservoir space of
the Cambrian Sinian reservoir in the sandaoqiao gas field is
mainly fractured, and a typical fractured dolomite reservoir is
developed. Structural fractures directly affect the quality and
production of dolomite reservoirs.

Fractures in reservoirs are the key to high and stable
production of oil and gas reservoirs, especially for tight
sandstone, shale, and carbonate reservoirs (Chen et al.,
2021; Lai et al., 2020; Song et al., 2015; Zhou et al., 2020;
Liu et al., 2022; Zhou et al., 2022). The development degree
and distribution characteristics of fractures directly affect the
physical properties and production of oil and gas reservoirs.
In recent years, fractures have always been the focus of
reservoir research (Luo et al., 2012; Yin and Wu., 2020;
Zhao et al., 2021; Wang et al., 2022). Identifying the
characteristics of fracture development sections in
underground reservoirs vertically is one of the research
contents (Prioul and Jocker, 2009; Santos et al., 2015;

Fernández-Ibanez et al., 2018; He et al., 2020; Wang et al.,
2021; Yin et al., 2020).

There are many ways to identify the fracture development
section longitudinally (Hong et al., 2020; Lan et al., 2021;
Zheng et al., 2020; Li, 2022). These methods include geological
outcrop, core, logging data, and seismic data (Aghli et al.,
2016; Bates et al., 1999; Lai et al., 2017; Liu et al., 2019; Yin
et al., 2018a; Li H. et al., 2020; Li, 2022). Considering the
recognition accuracy, recognition range, representativeness,
cost, and other factors, the use of conventional logging curves
is more practical and economical (Miranda and Andrade,
1999; Zhao et al., 2011; Ding et al., 2012; Ding et al., 2013; Xue
et al., 2014; Yang et al., 2017; Yin et al., 2018b; Afshari et al.,
2018). R/S method uses several conventional logging curves
sensitive to fracture response to identify fracture development
sections (Mandelbrot and Wallis, 1969; Li et al., 2018; Xiao
et al., 2019a; Xiao et al., 2019b; Li et al., 2019; Zhao et al.,
2019). The finite difference method improves the accuracy
and effect of the R/S method. R/S-FD method is used to
identify the longitudinal fracture development section of a
single well, and its application in shale and tight sandstone
reservoirs is relatively mature (Wang et al., 2018; Xiao et al.,
2019a; Li et al., 2019). This study applies this method to a deep
fractured dolomite reservoir for the first time. The results
have also been verified by other reservoir interpretation
methods.

FIGURE 1 | (A) Structural location of sandaoqiao gas field. (B) Stratigraphic elements and well location distribution map of the Cretaceous bottom boundary. The
red line is the main fault, and the purple line is the Sinian pinch-out line. (C)NW-SE direction section AA’ stratigraphic structure diagram. The green line is the trajectory of
key well Q1.
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GEOLOGICAL SETTING

The Tarim Basin is located in western China and is an important
developing oil- and gas-producing area. The Sandaoqiao gas field
is located in the northern Tarim Basin (Figure 1), in the western
part of the Yakela Faulted Uplift (Han et al., 2016; Yang et al.,
2018). The Kuqa depression is located to the north, and the
Halahatang depression is located to the south. The Sandaoqiao
gas field is generally located in the compression-derived
structural slope of the far margin uplift of the foreland basin.
The Sinian system of the Cambrian system was severely eroded
with the formation of a structural compression fold, forming a
buried hill drape structure (Li Y. et al., 2020; Wang et al., 2021),
with a reservoir characterized by a denuded residual buried hill
(Figure 1). The Cambrian Sinian strata are pinched out on the
Yakela Faulted-Uplift oriented in the NW direction (Han et al.,
2015). The Carboniferous strata overlying the Sandaoqiao gas
field are compact and stable, with good caprock conditions, which
prevented the surface water from leaching and dissolving
Cambrian Sinian strata during the regional long-term
denudation period. These conditions have formed a

condensate gas reservoir producing area with a Carboniferous
cap rock and developed structural fractures.

In the study area, the depth of the Cambrian Sinian system
is 5,700–6,200 m, which is deep-ultradeep. The thickness of the
Cambrian Sinian strata is uniform. From the late Paleozoic to
Mesozoic, this stratum experienced multiple superimposed
weak-strong thrusting fault events, accompanied by strong
weathering and denudation. The Mesozoic Cretaceous strata
cover formed a denudation residual buried hill drape structure.
The lithology is characterized by the development of deeply
fractured dolomite reservoirs (micritic and powdery).
According to the measured physical property data, the
porosity and permeability of dolomite reservoirs in the
study area are relatively low. Structural fracture is the main
reservoir space. The properties of the structural fractures are
considered the key factors in determining the reservoir space
and seepage performance.

Characteristics of Tectonic Stress
In the geological history period, the study area was mainly
affected by NW strong compressive stress and pre-Mesozoic

FIGURE 2 | Fracture parameter statistics of Q1 well based on imaging logging. (A) The azimuth distribution of fractures was identified by imaging logging in the Q1
well. (B) The distribution of fracture tendency is shown in the rose diagram. (C) Statistical distribution of fracture dip angle. (D) The distribution of fracture strikes is shown
in the rose diagram. Imaging logging shows that there are 36 fractures in well Q1, with an average dip angle of 76° and an average dip of 314°.
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strong denudation, forming a buried hill drape structure with
strata pinching out in the NW direction.

According to the analysis results of imaging logging and other
logging data, the azimuth of the fast shear wave is NE, and the
induced fractures thus strike NE. It is comprehensively inferred
that the horizontal principal stress direction is NE. The NE
trending fault strike (Figure 2) is roughly consistent with the
current horizontal principal stress direction.

Fracture Characteristics
According to the seismic data, the main faults in the study area
are NE-trending, and most of them terminate in the upper

Cambrian strata. They are mainly high-angle and oblique
parallel reverse faults with lower-order faults.

The fracture development of the core sections of wells Q1 and
Q101 in fine crystalline powder dolomite has resulted in mainly
high-angle and half-filled fractures (Figure 3), and conjugate
fractures are found locally. The total length of the observed core is
50.3m, and the average coring rate is 76%. We analyzed and
photographed all coring sections. Dissolution pores are rare.

The cast thin sections show that the dolomite dissolution in
this section is very weak (Figure 4). We observed and analyzed a
total of 16 cast thin sections, 7 ordinary thin sections, and 10 SEM
analysis reports. The typical fracture development parts in the
study area are selected for sampling. It is clear that the fractured
dolomite reservoir is the main feature in this section of the

FIGURE 3 | Fracture development characteristics from core sections in
the Sandaoqiao gas field. (A,B), well Q1, Z, 5,754.8 m, gray fine-grained
dolomite, half-filled fracture; (C), well Q101, ∈, 5,758 m, light-red-oil-trace
dolomite, high-angle fracture; (D), well Q101, ∈, 5,761.04 m, gray-black-
oil-trace silty siliceous dolomite, high-angle fracture development, half-filled;
(E), well Q101, ∈, 5,761.08 m, gray-black-oil-trace silty siliceous dolomite. (F),
well, Q1, Z, 5,753.98–5,754.14 m, two intersecting oblique fractures with a
width of 0.1–0.5 mm; (G); well, Q101, ∈, 5,757–5,757.19 m, gray-black
calcareous dolomite, 1 inclined fracture, approximately 8 cm in length and
0.1 mm in width.

FIGURE 4 | Fracture development characteristics from cast thin
sections and SEM in the Sandaoqiao gas field. (A), well Q1, Z, 5,741.4 m,
argillaceous dolomite; 3% continental debris, 1% siliceous, and 1%
muscovite. Three microcracks were filled with siliceous material and 1
microcrack was filled with dolomite. (B), well Q1, Z, 5,754.8 m, silty
argillaceous dolomite, 2% siliceous, and 1% muscovite. The face rate is less
than 1%. Onemicrocrack with a width of 0.01 mm. (C), well Q1, Z, 5,756.1 m,
silty argillaceous dolomite, 2% siliceous, and 1% muscovite. The face rate is
less than 1%. One straight microcrack with a width less than 0.01 mm; one
microcrack along the suture, with a width less than 0.01 mm; (D), well Q101,
∈, 5,821.5 m, the dolomite grains are 0.04–0.10 mm, granular and inlaid.
Microcracks are developed. Dolomite; (E), well Q101, ∈, 5,822.2 m, dolomite-
filled fractures, part of which have clay on the surfaces, dolomite with poor
crystallization, generally semi-automorphic-heteromorphic; (F), well Q1,
Z,5,741.4 m, gray micrite dolomite, argillaceous dolomite, dolomite with poor
crystallization, generally semi-automorphic-heteromorphic.
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Sandaoqiao gas field. The scanning electron microscopy (SEM)
results showed that there were microcracks in some parts of the
section. This dolomite is generally subhedral heteromorphic,
without obvious dissolution.

METHODOLOGY

R/S-FD Method
The numerical analysis method used in this study is based on
the R/S method. In R/S analysis, R is the range, that is, the
difference between the maximum cumulative deviation and
the minimum cumulative deviation, representing the
complexity of the time series; S is the standard deviation,
that is, the square root of the change, representing the average
trend of the time series (Hurst. 1951; Pang and North, 1996).
The ratio of the range to the standard deviation (i.e., the
rescaling range R/S) represents a dimensionless time series
and the fluctuation intensity (Xiao et al., 2019a; Yang et al.,
2020).

R(n) � max
0< u< n

⎧⎨⎩∑u
i�1
Z(i) − u

n
∑u
i�1
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⎧⎨⎩∑u
i�1
Z(i)

− u
n
∑u
i�1
Z(j)⎫⎬⎭ (1)
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��������������������
1
n
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n
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j�1
Z(j)⎤⎥⎥⎦2√√

(2)

The concave section of the R(n)/S(n) curve can be regarded as
the location of fracture development. To avoid recognition error,
the R/S-FD method uses the finite difference method to calculate
the second derivative of these discrete data (Xiao et al., 2019a).
The zone with a positive second derivative can be identified as a
fracture development section. F is the multiplication of the K
value of the multigroup logging curve, which represents the
accumulation of the fracture development probability of
multigroup logging data identification.

The basic data of the R/S-FDmethod is a conventional logging
curve. Firstly, the crack sensitivity curve suitable for the study
area is selected by various methods. On the basis of referring to
several commonly used fracture sensitivity curves, this study first
uses the fracture development of the coring section to restrict the
curve selection and selects three fracture sensitivity curves (DEN,
AC, and CAL) to calculate the K value. Considering that the
sampling interval of logging data is mostly 0.1 or 0.125 m, it is of
certain indicative significance to optimize the fracture sensitivity
curve by using whether there are fractures in the core section with
a certain length (0.3–0.5 m). Then calculate the R/S value of the
logging data of the study interval, and carry out the finite
difference calculation (Figure 5). Finally, the calculated F
value is used to identify the fracture development section.

Data Selection and Calculation
The following factors are considered in the selection of the
numerical analysis method. The pre-Mesozoic Cambrian
Sinian system in the study area is the main body of a large set
of dolomites with single and continuous lithologic structures.
Unlike tight sandstone/shale sections, the dolomite reservoir in
the study area does not include lithology mutation surfaces such
as sand-mud interbedding surfaces. The reservoir as a whole is a
fractured dolomite reservoir with undeveloped pores (based on
the 50.3 m coring data of four wells in the Sandaoqiao gas field
and imaging logging data, the pores are undeveloped). The
interference of holes is eliminated. The logging curve is
complete, and the quality of the logging core data is good. The
combination of R/S logging and core analysis is suitable.

Taking well Q1 as an example, the double logarithm curve of
R/S value and serial number is made, and seven kinds of logging
curves are selected for this analysis (Figure 6). The sensitivity of
different good logs to fracture development varies. At the same

FIGURE 5 | Process of identifying fracture development section based
on R/S-FD method.

FIGURE 6 | Double logarithm curve of the R/S calculation results of
multiple logging curves in well Q1. In this method, the concave section of the
curve is identified as the fracture development section. AC is the acoustic log,
DEN is the density log, CAL is the caliper log, SP is the spontaneous
potential log, GR is the natural gamma log, RS is the shallow lateral resistivity
log and RD is the deep lateral resistivity log.
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time, the difference in lithofacies between study areas will make
the analysis effect of different logging curves different.

Seven kinds of logging curves are selected in the analysis of
wells Q1 and Q101: the CAL, AC, and DEN curves, which are
widely used in R/S analysis, and other control curves RS, RD, SP,
and GR. After comparing and analyzing the calculation results of
the confirmatory fracture development section and logging curve

in the coring section, CAL, AC and DEN are selected as the
research objects (Table 1). That is, the F value used in this study is
a product of the CAL, AC, and DEN K values (K_CAL/K_AC/
K_DEN). In the fracture development section, the identification
result with good applicability is obtained.

F � KACpKDENpKCAL (3)

TABLE 1 | Recognition effect of various logging curves on the fracture development depth of the coring section.

Well Name Coring depth
section/m

Core length/m Fracture development Recognition (corresponding ѻ/Non-corresponding ×)

AC DEN CAL RS RD SP GR

Q1 5,741.1–5,741.4 0.3 Yes Ѻ ѻ ѻ ѻ ѻ × ѻ
Q1 5,745.6–5,746 0.4 Yes Ѻ ѻ ѻ ѻ ѻ ѻ ѻ
Q1 5,747.3–5,747.7 0.4 Yes Ѻ ѻ ѻ ѻ ѻ × ѻ
Q1 5,749–5,749.3 0.3 Yes Ѻ ѻ ѻ × × × ×
Q1 5,753.7–5,754 0.3 Yes Ѻ ѻ ѻ × × × ѻ
Q1 5,754.5–5,754.8 0.3 Yes Ѻ ѻ ѻ × × × ѻ
Q1 5,756.1–5,756.4 0.3 Yes Ѻ ѻ ѻ ѻ ѻ ѻ ѻ
Q1 5,757.8–5,758.2 0.4 Yes Ѻ ѻ ѻ × × ѻ ѻ
Q1 5,759.7–5,760 0.3 Yes Ѻ ѻ ѻ ѻ ѻ ѻ ѻ
Q1 5,763.8–5,764.1 0.3 Yes Ѻ ѻ ѻ × × × ×
Q101 5,757.8–5,758.1 0.3 Yes Ѻ ѻ ѻ ѻ ѻ ѻ ×
Q101 5,760.6–5,761.1 0.5 Yes Ѻ ѻ ѻ ѻ ѻ ѻ ѻ

Table 1 shows that the commonly used fracture sensitivity curves AC, DEN, and CAL are consistent in the identification of fracture development section in the core section. The other four
kinds of curves show a relatively low recognition rate for the fracture development section.

FIGURE 7 | Results of fracture development section identified with the R/S-FD method in well Q1. The red and white double arrows show the corresponding
relationship between the fracture development section and the conventional logging interpretation section.
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The calculation method used in this study is adjusted on the
basis of the R/S-FD method. Based on the particularity of the
dolomite value, the value range is adjusted, and the K value
calculated by the logging curve at this depth is smaller (this may
be related to the particularity of dolomite logging curves, with a
small number of especially large or small values). Because K
represents the fluctuation in logging data, we homogenize the
interval of k > 0 to 1-2, which makes the probability of fracture
development accumulate positively. If k = 0, then F = 0; if K≠0,
then F is the product of the K values of the CAL, AC, and DEN.
Thus, the fracture development section can be clearly identified.

RESULTS

Characteristics of the Fracture
Development Section
The dolomite section of well Q1 has developed thick fractures (a
60 m section), which can be divided into five sections, with an
average thickness of 6.8 m and an average fracture spacing of

5.6 m (Figure 7). The fracture development section of well Q1 is
relatively thicker and denser. The fractures of the core of well Q1
are high-angle and half-filled. The vertical distribution of the
fracture development section in well Q101 is relatively uniform
(an 80 m section), which can be divided into 11 sections, and the
thickness of these fractures is thinner than those in well Q1, with
an average length of 2.5 m and an average spacing of 4.1 m
(Figure 8). Relatively speaking, the fracture development
section of well Q101 is thinner and more dispersed.

Correlation Between the Fracture
Development Section and Actual
Production Data
The R/S-FD method is used to analyze the fractured dolomite
reservoir of the Cambrian Sinian system in the Sandaoqiao area.
The results show that the comprehensive identification results of
multiple logging curves are in good correspondence with the
actual observation results of cored sections, traditional numerical
logging interpretations, and gas logging displays.

FIGURE 8 | Fracture development results identified with the R/S-FD method in well Q101. The red and white double arrows show the corresponding relationship
between the fracture development section and the gas logging display section.
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The fracture development section identified by well Q1 shows
a good correspondence with the reservoir section interpreted by
traditional logging data. The identified fracture development
section corresponds to logging interpretation reservoir section
Nos. 11–15 (Figure 7). The lower gas logging section of the
dolomite reservoir in the Q101 well has a good correspondence
with the identified fracture development section, corresponding
to gas logging section Nos. 19–25 and in the lower part of the
identified fracture development section, lagging behind the
fracture development section (Figure 8). This correspondence
shows that the R/S-FD method has certain applicability in
fractured dolomite reservoirs.

DISCUSSION

Fracture Types
The fracture types in the fracture development section identified by
the R/S-FD method are noteworthy information (Xiao et al., 2019a).
Through the identification results of Q1 and Q101 wells, combined
with core, imaging logging, and other data, it is considered that most
of the identified fractures are medium high angle fractures, semi filled
and unfilled. Part of the fractures generated under the compression of
the early formation are completely filled in the later stage. Because the
filling material is similar to the composition of the reservoir, it is less
abnormal in density logging and caliper logging. The identification
effect of this method on this kind of fracture is general.

Controlling Factors
The difference between the two wells in the characteristics of
longitudinal fracture development sections is affected by
many factors, mainly including lithology, structural
position, structural stage, and so on (Zhao et al., 2019). In
addition, compared with the two wells, well Q1 shows higher
and more stable oil and gas production. This difference may
be due to the greater thickness of the average fracture
development section of well Q1.

Method Applicability
The R/S-FD method also shows its limitations in the application
of different strata in different areas (Xiao et al., 2019a; Li et al.,
2019; Yang et al., 2020). Firstly, the stratum thickness used to
identify the fracture development section should not be too thick.
With the increase of thickness, reservoir heterogeneity is also
increasing, which will make the anomalies identified by the R/S
method contain a variety of other information. Secondly, the
lithology of the study interval should be unified as far as possible.
The sudden change in lithology will bring complex changes to the
logging curve, which will reduce the accuracy of R/S recognition.
In the application of the dolomite stratum, it is generally
considered that a thickness less than 100 m is more suitable.
In the fracture identification of the 300 m reservoir section of well
Q102, the results show that the spacing of fracture development
sections is too large, and there is no good corresponding result in
the comparison with the coring section and production means.

CONCLUSION

1. In this study, the adjusted R/S-FD method is applied to
fractured dolomite reservoirs in the deep layer
(5,700–6200 m) of the Cambrian Sinian system (60–80 m),
and good recognition results are obtained. In the process of
applying this method to the study area, by comparing the
fracture development identification results of continuous and
complete coring sections, three logging curves with high
fracture sensitivity (AC/DEN/CAL) are selected.

2. The adjusted R/S-FD analysis method can effectively
identify the fracture development section of the fractured
dolomite reservoir. Among them, five fracture development
sections were identified in well Q1, with an average thickness
of 6.8 m. The fracture development section is in good
consistency with the reservoir interpretation section of
conventional logging. Well, Q101 identified 11 fracture
development sections with an average thickness of 2.5 m.
The results show that the gas logging section lags behind
the fracture development section, mainly corresponding to
the lower part of the identified fracture development section.
The difference between the two wells in the characteristics of
longitudinal fracture development sections is affected by
many factors, mainly including lithology, structural
position, structural stage, and so on.
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