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High organic matter abundance is necessary for large-scale hydrocarbon accumulation
and enrichment in shale oil. Comparing conventional marine basins with lacustrine ones,
the formation of organic matter in the latter usually changes rapidly with strong
heterogeneity, which brings great challenges to identify sweet spot prediction and
resource evaluation. In addition, water columns with different redox conditions also
affect the burial and preservation of organic matter during the deposition of lacustrine
shales, especially under the impact of ephemeral critical geological events such as volcanic
activities. Therefore, determining the properties and the influencing factors on the water
columns is one of the key scientific issues in revealing the differential enrichment of organic
matter in such basins. By comparing the petrological and geochemical characteristics of
organic-rich shales between a typical freshwater and a saline lacustrine basin, this study
analyzes the depositional environment and water column properties during the burial and
preservation of organic matter in the Ordos and Junggar basins. The results demonstrate
that volcanic activity intensifies the degree of hypoxia during the formation of organic-rich
matter, which in turn affects organic matter preservation. The sulfate reduction index (SRI)
indicates that the organic-rich shale of the Chang seven Member (Ch7) of Yanchang
Formation in the Ordos Basin and the Lucaogou Formation (P2l) in the Jimsar Sag of
Junggar Basin in freshwater-saline environments have a certain intensity of sulfate
reduction (BSR) (SRI <1.375). The organic matter consumed by BSR is lower than the
preserved organic matter, resulting a higher TOC content. However, excessive volcanic
activity or the input of hydrothermal fluids caused strong BSR (SRI >1.375) of the
Fengcheng Formation (P2f) in saline lake of the Mahu Sag in Junggar Basin. This
indicates that a large amount of organic matter was degraded and consumed, causing
more iron oxides (and other iron-containing minerals) dissolve gradually to form pyrite,
reducing the TOC content. This study enabled us to understand the shale oil enrichment,
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sweet spot prediction and evaluation, and propose a better theoretical and practical model
for hydrocarbon accumulation in shale formations, to guide future exploration efforts.

Keywords: volcanic activity, the freshwater and saline lakes, Fengcheng Formation, Lucaogou Formation, Chang 7
Member, organic-rich shale

HIGHLIGHTS

1) The geological and geochemical characteristics of the organic-
rich shales in the Ordos and the Junggar basins were analyzed.

2) The volcanic impacts on the formation of organic-rich shales
from the freshwater to saline lakes was compared.

3) Volcanic activity is more favorable to the formation and
preservation of organic matter in freshwater-saline
lacustrine basins.

INTRODUCTION

The formation of organic-rich shale is resulting interaction
between global and regional key geological events in the
lithosphere, hydrosphere, atmosphere, and biosphere (Aller,
1994; MacKenzie, 2004; Ridgwell and Zeebe, 2005; Ridgwell
and Hargreaves, 2007; Kim et al., 2015; LaRowe et al., 2020;
Makeen et al., 2020). In this regard, considering the size of the
basin in relation to such events, lacustrine depositional basins
are much smaller than marine ones. This means organic matter
preservation would be more sensitive to variations in this basin
compared to marine basins. Therefore, it can be said
deposition, burial and preservation of organic matter in
lacustrine basins should be more complicated. This process
becomes more challenging when volcanism is involved. This is
due to the fact that major source rocks in the world are
deposited with volcanic ash layers, i.e., the Bazhenov
Formation in the West Siberia in Russia, the Bakken
Formation in the Williston Basin, the Eagle Ford Formation
in the Gulf Coast Basin, the Wufeng-Longmaxi Formation in
the Sichuan Basin, the Ch7 Formation in the Ordos Basin, the
P2l Formation in Jimsar Sag of Junggar Basin in China (Zhang
et al., 2008; Zhang et al., 2009; Zhi et al., 2021; Dawson, 2000;
Daviesg, 2004; Zhang et al., 2015; Yu et al., 2016; Zhang et al.,
2011; Shen et al., 2019a; Shen et al., 2019b; Shen et al., 2019c;
Yang et al., 2019; Ji et al., 2021; Liang et al., 2021; Liang et al.,
2019). Volcanic activity is accompanied by high temperature
and high-pressure mantle hydrothermal fluid flow, which
changes the physical characteristics of the layers during the
deposition of organic matter. The volcanic activity carries a
large amount of CO2, CH4, and other gases, providing carbon-
rich sources that will eventually move upward to the ground or
the surface of the ocean. In addition, the volcanic activity
releases huge amounts of nutritious elements such as N, Si, P,
and other important trace metal elements such as Fe, Zn, Mn,
Ni, V, etc., which will alter the surface and the water of the
ocean’s chemical properties. The nutritious elements will enter
the water in the basin and cause algae and bacteria to bloom,

FIGURE 1 | Location of the study wells: (A) The Well YY1 in the Ordos
Basin; (B) The Well JX25 in Jimsar Sag, the Well MY1 in Mahu Sag, and
Shuiqu outcrop, Junggar Basin (Modified from Zhang et al., 2008 and Zhi
et al., 2019).
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which will change the biological conditions of the water
column. Therefore, it can be concluded that the formation
of organic-rich shale is the result of various physical, chemical,
and biological forces that come together as geological events.

It is relatively achieved for the understanding formation conditions
and controlling factors of the organic matter preservation in marine
environments. Most studies show that geological events such as
volcanism can accelerate the formation of organic-rich matter by
changing the reducing properties of water column (Berner, 1982;
Hedges, 1987; Hedges, 1992; Hedges and Keil, 1995; Cui et al., 2016).
Several studies have shown that from Archean to Neoproterozoic and
even Phanerozoic, anoxic and ferruginous or euxinic water conditions
for a long time has been dominant in the oceans globally (Chang et al.,
2010; Yuan et al., 2014; Canfield et al., 2018; Bekker et al., 2010; Li et al.,
2010; Konhauser et al., 2017; Li et al., 2018). Under such conditions,
the degradation of organic matter by bacteria is inhibited, which is
more conducive to the burial and preservation of organic carbon
(Raiswell and Berner, 1986; Raiswell and Canfield, 1998; Shen et al.,
2002; Shen, Knoll and Walter, 2003; Poulton, Fralick and Canfield,
2004; Poulton and Canfield, 2005; Canfield et al., 2008; Raiswell et al.,
2008; Planavsky et al., 2011; Shen et al., 2011; Clarkson et al., 2014;
Guilbaud et al., 2015; Clarkson et al., 2016; Thomas and Li, 2020).
During the formation of organic-rich shales in lacustrine basins in
China, the water column has been also anoxic in a wide range of time
and space (Huang and Wang, 2015; Liu et al., 2018, 2020; Liu et al.,
2021; Yuan et al., 2021), especially when there has been volcanic or
hydrothermal input. However, it needs to be further studied with the
relationship between petrological and geochemical characteristics of
the organic matter with variations in minerals, elements and isotopes
in the basin.

Therefore, in this research paper, we take the typical organic-
rich shale in the Ordos Basin and the Junggar Basin as the
research objects (Figure 1.), explore the synergistic mechanism
between the anoxic environment and organic matter enrichment
(deposition, burial and preservation), in order to provide a
theoretical basis for more economical exploration and
development of shale oil in lacustrine basins.

GEOLOGICAL SETTING

The organic-rich shales of the Chang seven Member of Yanchang
Formation (Ch7) in the Ordos Basin was formed in a freshwater
lacustrine basin (Zhang et al., 2008; Zhang et al., 2009; Qiu et al.,
2014). The Ordos Basin in the Late Triassic underwent a
fundamental transition from neritic seas to lake deposits. During
the depositional period of the Ch7, the basement of the Ordos Basin
sank altogether, and the development of the lacustrine basin reached
its peak. The water column of the lacustrine basin was significantly
deepened, with a maximum water depth of 60 m. The depositional
environment is quiet, the water was stagnant, and the deposition rate
was low (Zhang et al., 2008; Zhang et al., 2009; Qiu et al., 2014;
Andrew, Bradley, and Moldowan, 2007; Zhao et al., 1996). The Ch7
shale is about 100m thick and the biogenic origin of the organic
matter ismainly aquatic planktonic algae with rare terrestrial organic
components (Yang and Zhang, 2005; Zhang et al., 2015). The Ch7
contains multiple layers of volcanic tuff of varying thickness, and the

cores are mainly gray, gray-yellow, gray-white, and occasionally
gray-green and gray-brown, indicating that the water column of the
Ch7 has been a reducing sedimentary environment (Qiu et al., 2014;
Liu et al., 2021). The majority of previous studies have employed a
classical approach to model preservation of the organic matter in the
study area with little attention to the anoxic conditions of the water
and its consequences.

The Lucaogou Formation (P2l) was deposited in a fresh-saline lake
with shallow to semi-deep lake and delta facies at the margins of the
basin. The burial depth of the formation is about 2500–4500m
(Kuang et al., 2012,2014; Zhi et al., 2019;Wang L. B. et al., 2020). The
Lucaogou Formation consists of different lithologies, with a large
amount of terrigenous sediments and carbonates and a small amount
of pyroclastic rocks, forming a mixed sedimentary system with a
thickness of about 90–350m (Jiang et al., 2015). Most prolific and
highest producing layers are known as the “upper sweet spot” (P2l2

2)
and the “lower sweet spot” (P2l1

2), that are divided by a thick
mudstone layer (Kuang et al., 2012,2014). The crude oil that is
being produced in the upper and lower sweet spots is mainly heavy
oil, with a density of 0.88–0.92 g/cm3.

The Fengcheng Formation (P2f) in the Mahu Sag of the
Junggar Basin is a typical organic-rich shale formed in a
saltwater lacustrine basin. The depositional period of the P2f
was the period of vigorous development of the western foreland
basin system. The main lithology of the P2f is a multi-source
mixture of fine-grained sedimentary startas that are deposited in a
semi-deep-deep alkaline lake setting. In addition, the P2f is
characterized by endogenous chemical deposits because of the
arid and hot evaporative environments, as well as from volcanic
materials provided by peripheral volcanic activities during the
development of the foreland basins. Therefore, the formation can
be considered as a combination of both conventional and
unconventional oil and gas reservoir system (Zhi et al., 2021).
Previous studies have confirmed that the source rocks of the P2f
had a high degree of alkalization during the formation period (Liu
et al., 2020; Zhi et al., 2021). Moreover, the paleoclimate of the P2f
experienced a transition from semi-arid to wet, followed by semi-
arid and arid, and finally semi-arid conditions. Furthermore, the
water column in the basin experienced at least two periods of
volcanic/hydrothermal activities (Zhang Y. Y. et al, 2018). Some
researchers believe that the hydrothermal currents are the sole
reason for the formation of lacustrine basin alkali water
environment (He et al., 2018; Zhang et al., 2019), while others
speculate the combination of evaporation and hydrothermal
currents should be responsible (Chang et al., 2016; Yu et al.,
2016; Zhang Z. J. et al, 2018; Wang Y. et al, 2020; Zhi et al., 2021).
At the same time, the iron and sulfur elements input by volcanic
activity also aggravated the degree of hypoxia during the
deposition and preservation of organic matter. However, the
investigation of anoxic water conditions in lacustrine basins
requires further studies to fully address these ambiguities.

SAMPLES AND METHODS

We select Well YY1 of the Ch7 of Yanchang Formation in Ordos
Basin, and Well JX25 of the P2l in Jimusar Sag, Well MY1 of the
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P2f in Mahu Sag of Junggar Basin as research objects (Figure 1).
The macroscopic sedimentary petrological observation of cores
and field geological Shuiqu Profile, thin section analysis, TOC and
TS tests were carried out on the research object. 120 samples were
obtained from Well YY1 at 200–250 m in the Ordos Basin, 150
sampling points were obtained from the cores at 3461–3818 m of
Well JX25 in the P2l of the Jimusar Sag, and 117 sampling points
were obtained from cores at 4,585–4,950 m fromWell MY1 in the
P2f of the Mahu Sag.

The TOC was calculated according to the test results of Rock-
Eval, the TS data was tested by the CS 900 high frequency infrared
analyzer, the trace element Zr data of the wells JX25 andMY1 was
tested by ICP-MS, and the Zr data of the YY1 well was intensively
tested sieved by the handheld XRF instrument. Here, the water
salinity and redox properties were evaluated in combination with
trace element indicators; then we calculated the sulfate reduction
index SRI value and evaluated the BSR intensity for judging the
relationship between organic matter consumption and
preservation, and lastly compared the formation and
preservation mechanisms of organic-rich shale in freshwater
and saline lacustrine basins by the influence of volcanic activity.

RESULTS

Petrological and Geochemical
Characteristics
Shiqu geologic profiles, core observations and thin section review
was integrated by mineralogy and elemental analysis of the
samples to identify fluid flow in deeper parts of the basin that
is believed to be affected by volcanic activity. In the field
geological Shuiqu outcrop of the Junggar Basin (Figure 1), the
volcanic ash of the syn-sedimentary period was found to be
significantly developed with different thicknesses. These volcanic
ashes are yellow-brown, dark gray, light gray, gray-white, and
purple-red due to different oxidizing or reducing environment
depositional environments. However, in the core samples there

are often thin interlayers of fused tuff or tuffaceous mud shale and
tuffaceous siltstone with a thickness of about 2–3 mm. Tuff
structures can be observed in these thin interlayers, but pure
tuff layers are usually difficult to distinguish (Figure 2).

XRDanalysis results show that there are different contents of heavy
minerals such as zeolite and glauber’s salt vary among the samples. In
the P2f and the P2l formations there are abundant tuffaceous silty
mudstone, tuffaceous dolomitic mudstone and volcanic dust, where
most of them are transported by the water flow. The Ch7 is mostly
comprised of pure tuff with the thickness ranging from a few to a
dozen centimeters, with a yellow to brown fluorescence under the
microscope (Figure 3). These intervals are affected by volcanism that
were rich inU,Mo, and other elements. The Zr content ofWell YY1 is
between 30.06 and 347.30 ppm (an average of 115.26 ppm), of Well
JX25 is between 14.46 and 542.38 ppm (an average of 154.23 ppm), of
Well MY1 is between 28.21 and 326.43 ppm (an average of
77.11 ppm) (Figure 4). Moreover, the rare earth elements (REE)
have an obvious negative Eu anomaly, implying the deposition rate is
relatively slow in the semi-deep and deeper parts of water. This
condition could have been relatively favorable for the deposition and
accumulation of organic matter.

Geochemical Features of TOC-TS
TheTOCcontent of 289 samples obtained from theCh7 ofWell YY1
in the Ordos Basin. ranges from 0.25 to 27.88 wt%, with an average
of 4.14 wt%. The TS content is between 0.00 and 10.9 wt% (an
average of 1.27 wt%), the TOC/TS ratio ranges from 0.25 to 56.71
(an average of 6.57), and the SRI value ranges from 1.01 to 4.04 (an
average of 1.19). The TOC content of 151 samples obtained from the
P2l of Well JX25 in the Jimusar Sag ranges from 0.07 to 11.79 wt%
(an average of 3.74 wt%). The TS content is between 0.00 and 6.30 wt
% (an average of 0.42 wt%), the TOC/TS ratio ranges from 0.24 to
160.00 (an average of 22.33), and the SRI value ranges from 1.00 to
2.90 (an average of 1.10). The TOC content of 117 samples obtained
from the P2f of Mahu Sag, Junggar Basin ranges from 0.08 to 4.17 wt
%, with an average of 0.81 wt%. The TS content ranges from 0.0068
to 4.56 wt%, (an average of 1.46 wt%), the TOC/TS ratio ranges from

FIGURE 2 |Cores samples of volcanic ash from the Ch7 of Yanchang Formation inWell YY1 (A), 230.64 m; (B), 243.48 m, the volcanic ash is mainly grayish white),
the P2l in Well JX25 (C), 3680 m; (D), 3686.39 m, the volcanic ash is difficult to identify with the naked eye, mainly yellow-brown centimeter-millimeter scale), the P2f in
Well MY1(E), 4,867.97 m; (F), 4,905.81 m, tuff structure), and the Shuiqu outcrop (G), outcrop location see Figure 1, the volcanic ash is layered and mainly yellowish
brown or grayish white).
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0.02 to 41.01 (an average of 1.53), and the SRI values range from 1.02
to 35.88 (an average of 3.88).

The vertical variation of all samples in the corresponding
single well is shown in Figure 4.

DISCUSSION

TOC/TS Variations Influenced by Volcanic
Activity
Pyrite formed during early diagenesis because of the reaction of
iron-bearing clastic minerals in fine-grained sediments with H2S
in the sedimentary environment (Goldhaber and Kaplan, 1974).
During this reaction, the recycling of sulfur is an integral part of
the formation of pyrite. Earth’s surface carbon and sulfur cycles,
together constitute the main controlling factor for atmospheric
O2 concentration over geological time (Garrels and Perry, 1974;
Holland, 1978). To maintain a relatively stable O2 concentration
in the atmosphere, the total storage capacity of sulfur or carbon
must be in equilibrium with the oxidation capacity of both

elements. This balance can be simply expressed as the
following equation (Garrels and Perry, 1974; Lerman, 1981):

15CH2O + 8CaSO4 + 2Fe2O3 + 7MgSiO3 → 4FeS2 + 8CaCO3

+ 7MgCO3 + 7MgCO3 + 7SiO2 + 15H2O (1)

Where, CH2O represents sedimentary material (reducing
carbon), CaSO4 means deposited gypsum plus anhydrite
(sulfur oxide), FeS2 represents sedimentary pyrite (reducing
sulfur), and CaCO3 represents sedimentary carbonate minerals
(carbon oxides).

According to reaction (1), regardless of how pyrite is formed in
the shale, the increase in the amount of pyrite in the reservoir
must be achieved by reducing the organic carbon storage. If the
content of pyrite in sediments increases, there is a corresponding
decrease in organic carbon burial. The amount of pyrite formed
in shale is controlled by the amount and activity of organic matter
that can be broken down by bacteria, the concentration of sulfate
in the water column, and the amount of active iron (Berner, 1984;

FIGURE 3 | Typical volcanic ash thin section in the study area. (A) Two phases of lenticular clay-volcanic crystals developed in horizontally laminated shale, positive
grain sequence, the Ch7

2 sub-member, 226 m, Well YY1; (B) Crystalline volcanic ash layer, the Ch7
2 sub-member, 228.44 m, Well YY1; (C) Volcanic debris in P2l,

3552.82 m,Well JX25; (D) Acicular pyrite formed by volcanic hydrothermal fluids in P2l, 3639.41 m,Well JX25; (E) Volcanic ash is distributed in silicified strips, tuffaceous
dolomitic mudstone, 4,705.51 m, P2f, Well MY1; (F) Volcanic dust tuff, 4,708.69m, P2f, Well MY1.
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Boesen et al., 1988; Middelburg, 1991; Morse and Berner, 1995).
Therefore, with the same organic carbon content, the C/S ratio of
organic-rich sediments in freshwater sedimentary environments

should be higher than that in marine sediments. When the
organic carbon content is higher, the difference in the C/S
ratio of freshwater sediments and marine sediments would be

FIGURE 4 | Vertical distribution column of TOC-TS and Zr element in the Ch7 of Yanchang Formation in Well YY1 (A), the P2l in Well JX25 (B), and the P2f in Well
MY1 (C).
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distinct. Thus, the C/S ratio can be used as an indicator of
paleosalinity (Berner and Raiswell, 1984).

Berner and Raiswell (1983) and Leventhal (1995) proposed
that if the TOC/TS values are between 2.0 and 3.6, the sediments
are formed under normal seawater conditions, and if TOC/TS is
greater than 10, the sediments are formed under freshwater
conditions (Berner and Raiswell, 1984). Therefore, based on
the relationship between TOC and TS in modern sediments,
four categories can be recognized between these boundries: TOC/
TS = 2, TOC/TS = 3.6, TOC/TS = 10, representing freshwater,
freshwater-seawater transition, saline wate, and euxinic
depositional environments respectively.

The TOC content of the Ch7 and the P2l is mostly greater
than 2%, and the samples are mainly distributed in the
freshwater-seawater transition and the saline water regions.
However, the TOC of the P2f in the Mahu Sag is generally less
than 2 wt%, and there is a clear positive correlation between
the organic carbon content and the sulfur content in the shale.

This positive correlation could have happened by the redox
reaction between sulfate and organic matter in the early
diagenesis process when the supply of sulfate is sufficient.
Therefore, the depositional period of the P2f in the Mahu Sag
was euxinic. However, there was no obvious correlation
between organic carbon content and sulfur content when
the TOC was greater than 2 wt%. The TOC and TS contents
of the Ch7 shale in the Ordos Basin vary notably (see Figure 4),
but the TOC of the Ch7 shale exhibits a correlation with TS.
The Ch7 shale data points are mainly located in the region of
the plot that represents the freshwater-brackish water
depositional environment. Finally, due to the influence of
volcanic activity, the sulfate concentration of the water in
the local interval is close to the normal seawater
concentration (Figures 5B, C).

Based on Figure 5, the data from the Ch7 Shales (A) in the
Ordos Basin and the P2l Shales (B) in the Jimusar Sag are mostly
characterizing the freshwater and the freshwater-seawater
transitional depositional environment; the shales of the P2f,

FIGURE 5 | Crossplot of TOC vs TS of the Ch7 (A) the P2l (B) and the
P2f (C).

FIGURE 6 | Crossplot of SRI vs TOC of shale in the Ch7 (A), the P2l (B),
and the P2f (C)
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a majority of the data in Figure 5C is referring to the euxinic
sedimentary environment, which means the water column
could have been euxinic at the time. This suggests that the
intervention of external sulfates during the sedimentary
process made the water column to become saline, which
could have been affected by the frequent volcanic eruptions
in the orogenic belt during the same period. Due to the
sufficient sulfate concentration in the P2f, the organic matter
burial and preservation (enrichment) process is susceptible to
the transformation via bacterial sulfate reduction (BSR). The
concentration of sulfate in the lacustrine waters of the P2l in the
Jimusar Sag and the Ch7 is limited, which could have been
unfavorable for the occurrence of BSR. However, a large
amount of sulfate is injected into the water column as long
as the volcanic activity was ongoing, which could have
increased the sulfate concentration in the paleo-lake and
also trigger the occurrence of BSR.

Volcanic Activity and BSR Intensity
Lallier-Verges et al. (1993) expressed the bacterial sulfate
reduction (BSR) strength in terms of the sulfate reduction
index (SRI). The sulfate reduction index (SRI) refers to the
ratio corresponding to the initial organic carbon content to
the residual organic carbon. Initial organic carbon refers to the
sum of organic carbon lost by sulfate reduction degradation and
residual organic carbon. Residual organic carbon is the total
organic carbon (TOC wt%) of present-day. The organic
carbon lost to degradation is defined as the total sulfur divided
by 1.33, calculated from the stoichiometry of the sulfate reduction
equation proposed by Berner and Raiswell (1984):

SRI � (TOC + Closs)/TOC (2)
Closs represents the amount of organic carbon lost by

degradation in sulfate reduction:

Closs � TS(%)/1.33 (3)
SRI � (TOC + TS/1.33)/TOC � 1 + 0.75 × TS/TOC (4)
The SRI ratio reflects the strength of the BSR effect. The higher

the BSR intensity lead to the higher the SRI values. SRI is based on
the assumption that all hydrogen sulfide produced is either fixed
in sulfide precipitation in sediments or synthesized in organic
compounds. Therefore, SRI should be regarded as the lowest
degradation consumption index of organic carbon relative to the
consumption of organic matter by BSR. In general, the SRI and
TOC of freshwater sediments and sediments in the Sulfur
Tranquil Sea (Black Sea) show a good power exponential
relationship. With the increase of the SRI index, TOC
gradually decreases, denoting that the greater the intensity of
the BSR should correspond to the greater consumption of organic
matter. The SRI in the Sulfur Tranquil Sea is generally greater
than that in the freshwater sediments, which indicates that the
Sulfur Tranquil Sea is more prone to BSR than the freshwater
sediments. Westrich and Berner (1984) discussed that the sulfate
reduction rate is fundamentally dependent on the quantity and
quality of organic carbon. Therefore, organic carbon is the major
controlling factor for sulfide formation in normal marine

sediments. The sulfated Tranquil Sea (Black Sea) has the
strongest sulfate reduction intensity, followed by normal
seawater deposition and the freshwater depositional
environment. The main reason for this condition is that the
sulfate concentration in seawater is higher than that in freshwater,
so there is enough S source to supply BSR. The high SRI index of
the Sulfide Tranquil environment is because the redox interface
has elevated from the bottom of the water-rock interface to the
top of the water-rock interface in this depositional environment,
resulting in an anoxic environment at the bottom of the water
column, rich in H2S (Shen et al., 2011). This leads to an increase
in the intensity of sulfate reduction, which increases the
consumption of organic matter. The study between TOC and
TS in modern sediments explains that the boundary between
sulfide and normal fresh-salt water deposits is TOC/TS = 2.0, SRI
= 1.375 (Figure 6). When SRI <1.375, the TOC value decreases
rapidly with the increase of SRI, indicating that BSR consumes
organic matter faster. When SRI >1.375, the BSR intensity
increases, and TOC is mostly lower than 2%, inferring that the
strong BSR process could continue to consume the organic
matter, decreasing the TOC content.

Volcanic Activity Affects the Organic-Rich
Matter Formation and Preservation
From the cross plot of TOC and TS, the Ch7 of Well YY1 in the
Ordos Basin and the P2l in Jimusar Sag are mainly characterized
by freshwater, transitional, and saltwater depositional
environment; while the P2f is mainly characterized by the
sulfide sedimentary environment. This shows that the sulfate
concentration of the water column was changed from freshwater
to a transition of a saline water environment, which means that
the intervention of external sulfate during the deposition process
could have increased the salinity of the water column and caused
the sulfate concentration to change. Outcrops and cores of
organic-rich shale indicate that there are centimeter-micron-
scale pozzolanic interlayers in this shale, while such features
are more abundant in the thicker high-quality oil shale.

There is not any clear relationship between SRI and TOC
content. The SRI index is less than 1.375, signifying that the
sulfate reduction intensity is relatively weak, and the TOC is
mostly less than 10 wt%, which may represent two different water
environments. When the SRI is less than 1.1, the water column
represents the freshwater depositional environment however, the
SRI is between 1.1 and 1.375, exhibits a brackish water-saline
water deposition, with a weak negative correlation between SRI
and TOC (Figure 6). The TOC content of freshwater-deposited
shale is generally lower than the one formed in a saline
environment. This means organic matter in shale is affected
by the depositional environment. This change in salinity could
be related to the injection of sulfate by volcanic activity. For
example, Algae are abundant in the Ch7 shale, and cyanobacteria
to green algae and nanofossils are also abundant in tuff-
containing layers (Zhang et al., 2016; Ji et al., 2012). These
organic-rich laminations have been interpreted as having a
short-term “boom-extinction” signature that typically occurs
near tuffaceous lamellae. The tuff development section of the
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Ch7 corresponds to the volcanic eruption period in geological
history. A large amount of nutrients brought by volcanic activity
is introduced in a relatively short period of time, which induces
the formation of blooming aquatic organisms. The flourishing of
aquatic organisms leads to the formation of hypertrophic organic
matter sedimentation zones within a certain period, resulting in
higher conditions of paleoproductivity. At the same time, large
amounts of sulfur-containing gases such as SO2 and H2S were
emitted by the volcano, that eventually entered the lacustrine
basin in the form of acid rain, to greatly increase the SO4

2-

concentration in freshwater lakes. Since the average sulfate
concentration in freshwater environments is less than one
percent of what is observed in seawater (Berner, 1984), low
sulfate concentrations would limit BSR. When the volcanic
activity increases the sulfate in the lake water, it provides a
sufficient source of sulfur for the BSR action. BSR uses various
organic matter as carbon sources and sulfate ion (SO4

2-) to
generate H2S, enhancing the reducibility of water. The SRI
index is less than 1.375, indicating that the BSR is weak and
has limited consumption of organic matter.

As the biological flourishing and sulfate enrichment caused by
volcanic activity, there is a dynamic balance between the
consumption of organic matter and the accumulation of
organic matter by BSR, which is manifested as the changing
relationship between high TOC and high TS. The overall SRI
index is less than 1.375, implying that the degree of preservation
of organic matter is stronger than its consumption. This situation
is conducive to the formation of organic-rich shale. Meanwhile,
the layers with relatively high TOC and low TS would
characterize that in the freshwater the sulfate concentration is
low, the overall SRI index is less than 1.1, and the BSR effect
would have been weak. Achieving a balance between a lower
consumption rate of organic matter and a relatively high
preservation rate of organic matter is generally beneficial to
the enrichment of organic matter. Therefore, for freshwater-
brackish lacustrine basins, suitable volcanic activity provides
nutrients to not only promote biological growth but also to
improve paleoproductivity. Moreover, the sulfate injected by
volcanic activity triggers the BSR and produces H2S, which
enhances the reducibility of the water column, and is
beneficial to the preservation of organic matter.

CONCLUSION

1) By selecting the typical freshwater and saline lacustrine basins
- the Ordos and the Junggar, we systematically analyzed the
petrological, mineralogical, and organic-inorganic
geochemical characteristics of the organic-rich shales,

compared the degree of hypoxia, the action mechanism,
and the controlling factors of the formation of organic-rich
shale at the bottom of the sedimentary water column in
lacustrine basins under the influence of volcanic activity. In
addition, we clarified the synergistic mechanism that caused a
varying degree of organic matter enrichment in freshwater
and saline lacustrine basins.

2) Under the influence of volcanic activity, the SRI index of
shales in freshwater-saline basins (the Ch7 and the P2l) were
found generally less than 1.375, and the TOC is relatively
higher than the value of the shales in sulphated basins (P2f),
indicating that more organic carbon was preserved but not
consumed; the SRI index of the P2f shales in the Mahu Sag was
measured generally greater than 1.375, and the TOC is
relatively lower, which meant that the BSR overreacted and
consumed a large amount of organic matter, reducing the
TOC content.

3) The volcanic activity not only carries nutrients to improve
paleoproductivity but also forms a higher sulfate
concentration that triggered BSR. BSR produces H2S to
form a reducing environment, which is favorable to the
preservation of organic matter. However, the consumption
of organic matter by excess BSR is greater than the effective
preservation of organic matter, which resulted in the loss of
organic matter.
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