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This paper aims to propose an efficient landslide susceptibility prediction (LSP) model
based on the frequency ratio method and C5.0 Decision Tree (C5.0 DT) model. Taking
Ruijin City as the study area, local landslide inventory and 12 environmental factors are
collected. Then the nonlinear correlations between landslide inventory and environmental
factors are established by frequency ratio (FR) method. Thirdly, the FR values of these
environmental factors are taken as the input variables of the C5.0 DT/SVM models;
landslide samples and non-landslide samples are set as the output variables with values of
1 and 0, respectively. The mathematical relationship between input variables and output
variables is established by C5.0 DT/SVM models. Finally, the performance of LSP of both
models is evaluated by the Area Under Receiver Operation Characteristic Curve (AUC).
Results show that: 1) The landslide susceptibility mapping (LSM) of the C5.0 DT and the
SVM models are similar on the whole, high and very high susceptibility levels are mainly
distributed in the north and in the edge of the study area. 2) The AUC values of C5.0 DT and
SVM are 0.886 and 0.819, respectively. Both models have good LSP accuracy, however,
the overall LSP accuracy of the C5.0 DT model is better than that of SVM. 3) It is significant
and reliable to carry out LSP based on frequency ratio method and C5.0 DT model.

Keywords: landslide susceptibility prediction, C5.0 decision tree, support vector machine, frequency ratio, LSP
accuracy

1 INTRODUCTION

China’s geological environment is fragile and geological disasters occur frequently. Especially in the
southwest and south area of China, landslides are densely distributed, causing serious casualties and
heavy economic losses (Fu et al., 2017; Zheng et al., 2019b; Yang et al., 2020a). Therefore, landslide
susceptibility prediction (LSP) is very important, which can provide a scientific and effective basis for
the prevention and control of landslide geological hazards, road planning, and the formulation of
appropriate risk mitigation strategies in the southwestern and southern areas of China (Akgun et al.,
2012; Bai et al., 2015; Jiang et al., 2017; Lin et al., 2021; Huang et al., 2022a).

The study of LSP is to estimate the spatial probability of landslide occurrence in a certain area so as
to effectively provide early warning to high landslide-prone area and reduce the occurrence of related
safety accidents (Bui et al., 2020). LSP models are generally classified into deterministic, heuristic and
machine learning models (Huang et al., 2017b; Huang et al., 2020b). At present, there are many LSP
methods, including Remote Sensing (RS) research on surface deformation area to predict the
occurrence of landslides (Chang et al., 2020; Dai et al., 2021; Zhu et al., 2022), and to establish a LSP
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model coupled with multiple connection methods. Among them,
the connection method of landslide inventory and environmental
factors, and the determination of LSP models play an important
role in the LSP modelling (Huang et al., 2020a). The LSP
modelling mainly includes three processes: one is landslide
inventory and division of prediction units; the second is the
core process including selecting appropriate basic environmental
factors and establishing models, and the final step is the LSP
results testing (Dou et al., 2019).

At present, the LSP models coupled with various connection
methods mainly include analytic hierarchy process (AHP) model
(Ma et al., 2021), information value (IV) model (Zhao B. et al.,
2021), mathematical statistics (Kouhartsiouk and Perdikou 2021)
and machine learning models, where the machine learning
models applied to LSP usually refer to C5.0 Decision Tree
(C5.0 DT) (Mao et al., 2017), logistic regression (Shahabi
et al., 2015), artificial neural network (Huang et al., 2019),
extreme learning machine (Huang et al., 2017a), support
vector machine (SVM) (Marjanović et al., 2011), gray
correlation degree (Yu et al., 2021), random forest (Sun et al.,
2020), clustering algorithm (Guo Z. et al., 2021), semi-supervised
multilayer perceptron model (Huang et al., 2020b), etc. In
general, the machine learning models are considered to have
higher LSP performance than those of the heuristic models and
conventional statistical models, due to their efficient nonlinear
prediction abilities of machine learning models (Xiao et al., 2021;
Wang et al., 2022). The most suitable model for LSP is
inconclusive. Among many models, C5.0 DT and SVM models
have widely-recognized nonlinear prediction performance
(Chang et al., 2020; Li W. et al., 2021; Su et al., 2021). Both
models have achieved ideal LSP results.

For the above-mentioned machine learning such as C5.0 DT
and SVM, it is necessary to connect the landslide susceptibility
index and environmental factors. There is a complex nonlinear
correlation between environmental factors (Zhu et al., 2022).
According to many studies (Chang et al., 2020; Huang et al.,
2021a; Li W. et al., 2021; Guo Z. et al., 2021), the accuracy of the
LSP model without considering the nonlinear connection is
slightly lower than that of the coupled model considering the
connection. The connection methods include the weight of
evidence (Wu R. et al., 2020), IV model (Zhao B. et al., 2021)
and the frequency ratio (FR) method (Nanda et al., 2020). FR
method is used to characterize the spatial relationship between
landslide distribution and condition factors. Machine learning
model based on FR method is commonly used in LSP(Li et al.,
2020; Huang et al., 2021b; Zhu et al., 2022). Therefore, this study
intends to use the FR method to establish the nonlinear
relationship between landslides and environmental factors. For
the LSP modelling by the FR-C5.0 DT/SVM models, firstly, the
FR values of the environmental factors are set as the input
variables of the C5.0 DT and SVM models, then the C5.0 DT
and SVMmodels for LSP are further established through training
and testing the input-output variables.

In this study, Ruijin City in China is taken as the research area.
A total of 12 basic environmental factors are obtained by remote
sensing and ArcGIS 10.3 software. The C5.0 DT/SVMmodels are
then used for LSP in Ruijin City. Then, the area under receiver

operating characteristic curve (AUC) is used to assess the
accuracy of LSP results of the C5.0 DT/SVM models (Panchal
and Shrivastava 2021).

2 LANDSLIDE SUSCEPTIBILITY
PREDICTION MODELLING

2.1 Research Framework
In this study, the FRmethod is used to connect the C5.0 DT/SVM
models with the environmental factors of landslide inventory to
perform the LSP and analyze their results. The main contents
(Figure 1) include:

1) Based on the landslide inventory Information and geological
environment, a total of 12 basic environmental factors are
acquired (Jiang et al., 2018b; Xiao et al., 2021).

2) The nonlinear correlation between each environmental
factors and the relative density of landslides is established
by FR method, and the importance of various environmental
factors are quantified (Huang et al., 2022b).

3) The FR values of these environmental factors are taken as the
input variables of the C5.0 DT/SVM models, the output
variables are landslide and non-landslide (marked as 1 and
0, respectively). The mathematical relationship between input
variables and output variables is established (Liu et al., 2021).

4) The input-output variables are randomly divided by 70 and
30% as training dataset and test dataset, respectively. Training
dataset is used for model training and building, test dataset is
used to evaluate the generalization capability of the final
model (Sun et al., 2020).

5) The performance of LSP of the two models is evaluated based
on various indicators such as ROC (Xiao et al., 2020).

2.2 Frequency Ratio Method
The FR method can reflect the response relationship between
landslides and basic environmental factors, and characterize the
relative influence degree of each attribute interval of
environmental factors on the occurrence of landslides (Zhang
Y.-x. et al., 2020). If FR values are greater than 1, it indicates that
the corresponding environmental factors are conducive to
promoting the occurrence of landslides. If FR values are close
to 1, it indicates that the relationship between the environmental
factors and the occurrence of landslides in the corresponding
interval is weak. If FR values are less than 1, it indicates that
landslides are not likely to occur in this attribute interval. Based
on the FR method and the natural break method, the
environmental factors are divided into eight attribute interval
levels, and the discrete lithology factors are classified according to
the actual state as the interval classification basis. The formula for
calculating the FR values of each environmental factor is:

FR � Ai/A
Bi/B (1)

where Ai is the number of landslide grids in the interval for each
type of environmental factor, A is the total number of landslide
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grids in the area, Bi is the total number of grids for each type of
environmental factor in the corresponding interval, and B is the
total number of grids in the study area, and FR represents the FR
values of environmental factors.

2.3 C5.0 Decision Tree Model
The decision tree (DT)model is a concise predictionmodel, and it
is also a very powerful and comprehensive machine learning
algorithm (Gkioulekas and Papageorgiou 2021). It has been
widely used in practical applications such as radar signal
identification and classification, medical diagnosis, etc. The DT
model is used to analyze and establish the most suitable label
value of each pixel eigenvalue node, and then classify the data set
according to the label value. The size of the data set has no
influence on the size of the DT model, and a large number of data
can be used to centrally construct decision trees. This study
intends to use the C5.0 algorithm to construct a classification
model, which is to conduct classification and regularization of a
large number of data sets and then convey knowledge. Compared
with other algorithms, it is more suitable for processing large
data sets.

When the model is engaged in classification, each classifier is
assigned a leaf and it is assigned to the class with the largest
number. After the regression tree processing in the algorithm, the
missing data is pruned and the classification tree reclassifies the
data to generate the optimal binary tree. Then, the optimal
segmentation value of the node is selected by citing the Gini
coefficient of the economics category. The formula is:

ω(X) � Gini(X)
∑n

1ai
(2)

where n is the number of branches, and ai is the number of leaves
when the branch is i.

2.4 Support Vector Machine Model
The SVM model increases the dimension of the independent
variable on the basis of the kernel function. And it finds the
optimal hyperplane with the largest category distance, then the
support vector is used on the hyperplane to construct the model
(Huang et al., 2020c). The input variables are linearly separable by
transforming the nonlinear data into an n-dimensional
hyperplane space based on a kernel function. Based on a set of
linearly separable data, including 12 basic environmental factors
and their corresponding output quantities
(xi, yi), i � 1, 2, 3 . . . , n, the corresponding output categories
are yi � {0, 1}. Then the landslide inventory is distinguished
by the maximum gap of the n-dimensional hyperplane space.
Its formula is:

yi � 1
2
‖λ‖2 (3)

For linear inseparable data, the slack variable ξi is used to
control the classification error, the constraint condition for
correct classification is yi(λxi + b)≥ 1 − ξi, and the wrong
classification is yi(λxi + b)≥ 1 − ξi, the distance formula of the
hyperplane is

L � 1
2
‖λ‖2 − 1

sn
∑n
i�1
δi (4)

where ||λ||2 is the norm of the normal hyperplane, and L is the
Lagrange multiplier. In addition, the Radial basis kernel function
is used as kernel function of SVM model.

2.5 Accuracy Evaluation of Landslide
Susceptibility
The ROC curve is widely used in the overall accuracy evaluation of
binary classification in the LSP modelling due to its satisfactory
performance (Vakhshoori and Zare 2018). ROC curve is threshold
independent curve. Its main advantage is that it is independent of
the number and spacing of thresholds used for calculation (Fawcett
2006). Assuming n classes of the landslide susceptibility indexes,
n+1 thresholds can be defined, where the first threshold value (i =
1) is lower than the minimum susceptibility index observed in the
most stable category, and the last threshold value (i = n+1) is higher
than the maximum susceptibility index in the most sensitive
category. Each threshold forms a confusion matrix in which
four types of pixels are defined: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) pixels. According
to the number of pixels in each threshold, two statistics can be
calculated, namely TPR (true positive rate) and FPR (false positive
rate), as shown as:

TPR � TP

TP + FN
(5)

FPR � FP

TN + FP
(6)

TPR and FPR are plotted on the Y-axis and X-axis of the ROC
curve, respectively. Then the AUC is calculated as:

AUC � ∑n+1
i�2

1
2

����������
(xi − xi+1)2

√
•(yi + yi+1) (7)

The success rate of the model can be displayed through the
participation of AUC values in the training data set, meanwhile,
the prediction rate of the test data set can be displayed
(Vakhshoori and Zare 2018).

3 ANALYSIS OF STUDY AREA AND BASIC
ENVIRONMENTAL FACTORS
3.1 Introduction to the Study Area and
Landslide Inventory
Ruijin is a city under the jurisdiction of Jiangxi Province
(Figure 2). It is located on the west side of the southern end
of the Wuyi Mountains. Ruijin City has a humid subtropical
monsoon climate with concentrated rainfall in summer. Ruijin
City is dominated by low mountains and hills, with an area of
1,967.85 km2, which is 80.35% of the whole area. The main
landform types include dissolved karst area, eroded moderate
and low mountainous area, eroded and denuded hilly area, and
river valley accumulation terraces. The rock in the study area is
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severely weathered, fault folds are developed, the territory is
mountainous and rainy, and landslides are densely distributed,
causing serious casualties and economic losses (Jiang and Huang
2016; Huang et al., 2020c).

According to the statistics of Disasters Prevention
Departments, the cumulative number of landslides reached
370 by the end of 2014. The distribution area of these
landslides and potential landslides are converted into 5515
landslide unit grids based on ArcGIS 10.3 software (Zhao Z.
et al., 2021). Landslides mainly occur in the north and west of the
study area, while landslides in the south and the central plain are
sparse. The occurrence of landslides is characterized by the dense
gullies and is concentrated in moderate terrain relief.

3.2 Landslide Data Sources
The relevant basic data sources in the study area are: 1) historical
landslide inventory map of Ruijin City and relevant data recorded
in the field. 2) The Digital Elevation Model data (DEM) is freely
downloaded by the Earth Observation Center of the Chinese
Academy of Sciences. Then, the DEM is processed through
ArcGIS 10.3 software to obtain topographic factors such as
slope, aspect, plane curvature, profile curvature, and terrain
relief. 3) The lithology factor in the study area is obtained
from China Hydrogeological map with 1:100,000 scale. 4) The
Landsat-8 remote sensing images are freely downloaded by the
Earth Observation Center of the Chinese Academy of Sciences.
They are used to obtain surface coverage factors such as NDVI,
NDBI, and MNDWI.

In addition, since the overall terrain relief in Ruijin City is
moderate, and the territory is mostly hills, the 30 m resolution
grid can well reflect the distribution of hills and plains (Ismail et al.,
2016). Therefore, the landslide inventory selects a grid with 30m
resolution as the LSP unit. Since the data of the 366 landslides are not

FIGURE 1 | The flow chart of research framework.

FIGURE 2 | The DEM and landslide catalog in Ruijin City.
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TABLE 1 | FR values of each environmental factors.

Environmental factors Variable value Type Grids in the study
area

Proportion of grid
in the whole
area (%)

Grids in landslide Proportion of grid
in landslide (%)

FR values

Elevation (m) 139.7–239.4 Continuous 730520 26.59 1963 35.60 1.34
239.4–308.4 647040 23.52 1561 28.31 1.20
308.4–373.6 558255 20.30 978 17.73 0.87
373.6–446.5 369909 13.45 579 10.50 0.78
446.5–534.7 231806 8.43 256 4.64 0.55
534.7–642.1 121420 4.41 103 1.87 0.42
642.1–780.2 66007 2.40 44 0.80 0.33
780.2–1117.8 25734 0.94 31 0.56 0.60

Aspect (°) −1 Continuous 499 0.02 0 0 0.00
0–22.5 337.5–360 324819 11.81 669 12.13 1.03

22.5–67.5 297924 10.83 578 10.48 0.97
67.5–112.5 354479 12.89 945 17.14 1.33
112.5–157.5 359791 13.08 806 14.61 1.12
157.5–202.5 332830 12.10 708 12.84 1.06
202.5–247.5 332144 12.07 631 11.44 0.95
247.5–292.5 378011 13.74 660 11.97 0.87
292.5–337.5 370194 13.46 518 9.39 0.70

Slope (°) 0–3.6 Continuous 569215 20.69 64 1.16 0.06
3.6–7.0 489765 17.81 551 9.99 0.56
7.0–10.6 532423 19.36 1435 26.02 1.34
10.6–14.0 439314 15.97 1413 25.62 1.60
14.0–17.6 338236 12.30 1071 19.42 1.58
17.6–21.6 221050 8.04 621 11.26 1.40
21.6–26.8 121804 4.43 292 5.29 1.20
26.8–51.2 38884 1.41 68 1.23 0.87

Plane curvature 0–10.2 Continuous 448120 16.29 1530 27.74 1.70
10.2–18.8 523668 19.04 1438 26.07 1.37
18.8–27.8 429736 15.62 989 17.93 1.15
27.8–37.7 347077 12.62 639 11.59 0.92
37.7–48.2 272740 9.92 363 6.58 0.66
48.2–59.1 223773 8.14 137 2.48 0.31
59.1–70.6 204976 7.45 126 2.28 0.31
70.6–81.5 300601 10.93 293 5.31 0.49

Profile curvature 0–1.5 Continuous 671143 24.40 873 15.83 0.65
1.5–3.2 695512 25.29 1623 29.43 1.16
3.2–4.8 534956 19.45 1231 22.32 1.15
4.8–6.6 378810 13.77 843 15.29 1.11
6.6–8.7 243825 8.86 507 9.19 1.04
8.7–11.0 137931 5.01 272 4.93 0.98
11.0–14.4 68397 2.49 137 2.48 1.00
14.4–30.5 20117 0.73 29 0.53 0.72

Lithology Pt2 Discrete 28700 1.04 70 1.27 1.22
Z、Pt3 692349 25.17 1579 28.63 1.14

∈ 335994 12.21 371 6.73 0.55
O 10175 0.37 19 0.34 0.93
S 66549 2.42 324 5.87 2.43
C 262308 9.54 143 2.59 0.27
P 67776 2.440 126 2.28 0.93
T 389314 14.15 982 17.81 1.26

J、K 556796 20.24 452 8.20 0.40
Q 318940 11.59 1367 24.79 2.14

Terrain wetness index 2.4–5.0 Continuous 908630 33.03 2400 43.52 1.32
5.0–6.5 963107 35.01 2081 37.73 1.08
6.5–8.4 525704 19.11 785 14.23 0.74
8.4–10.8 223510 8.13 175 3.17 0.39
10.8–14.2 97941 3.56 59 1.07 0.30
14.2–22.8 31281 1.14 15 0.27 0.24
22.8–32.7 449 0.02 0 0 0.00
32.7–41.4 69 0 0 0 0.00

Gully density (km/km2) 0–0.2 Continuous 356258 12.95 343 6.22 0.48
0.2–0.4 429400 15.61 750 13.60 0.87
0.4–0.6 469701 17.08 847 15.36 0.90

(Continued on following page)
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enough used as the input variables of the model (Huang et al.,
2022c). Therefore, the “surface to raster” tool in ArcGIS 10.3 is
further used to convert the 366 landslide areas into 5,515 landslide
units. At the same time, the whole study area is divided into
2,750,691 units.

Finally, the grid units of the whole study area are classified into
data layers representing environmental factors: 1) topographic
and landform factors, including elevation, slope, aspect, plane
curvature, profile curvature, terrain relief and gully density; 2)
hydrology environmental factors, including terrain wetness index
and MNDWI; 3) land cover factors, including NDVI and NDBI;
4) basic geotechnical factors, such as lithology.

3.3 Basic Environmental Factors and
Frequency Ratio Analysis
The interaction of various environmental factors leads to landslide
occurrence (Wang et al., 2014; Huang et al., 2016; Zheng et al.,
2020). By studying the evolution characterization of the landslide

plane in Ruijin City, 12 representative environmental factors, such
as elevation, slope, terrain relief, NDVI, NDBI, are selected as the
input variables of the C5.0 DT and SVMmodels. According to the
natural break method, each environmental factor is divided into
eight attribute interval levels, and the discrete lithology factor is
classified according to the actual state. Thus, the FR values of the
attribute intervals divided by FR method for each environmental
factor are obtained, as shown in Table 1.

3.3.1 Topographic Factors
As shown in Table 1 and Figure 3A, when the elevation is
between 139.7 and 308.4 m, the FR values are greater than 1,
which indicates that the area is favorable for landslides
occurrence. On the contrary, when the elevation is between
308.4 and 1117.8 m, the FR values are less than 1 or close to
1. This shows that the relationship between the attribute intervals
of this environmental factor and the occurrence of landslides is
weak. The areas with elevations between 308.5 and 1117.8 m are
not contributed to landslide occurrence.

TABLE 1 | (Continued) FR values of each environmental factors.

Environmental factors Variable value Type Grids in the study
area

Proportion of grid
in the whole
area (%)

Grids in landslide Proportion of grid
in landslide (%)

FR values

0.6–0.8 471136 17.13 790 14.32 0.84
0.8–1.0 413179 15.02 1193 21.63 1.44
1.0–1.2 338047 12.29 916 16.61 1.35
1.2–1.5 200346 7.28 615 11.15 1.53
1.5–2.6 72624 2.64 61 1.11 0.42

Terrain relief 0–29.6 Continuous 454732 16.53 161 2.92 0.18
29.6–54.1 456555 16.60 1478 26.80 1.61
54.1–76.0 564745 20.53 1562 28.32 1.38
76.0–97.9 483338 17.57 994 18.02 1.03
97.9–122.4 379836 13.81 634 11.50 0.83
122.4–150.8 239799 8.72 503 9.12 1.05
150.8–186.8 128344 4.67 175 3.17 0.68
186.8–328.7 43342 1.58 8 0.15 0.09

NDVI 0.40–0.60 Continuous 17412 0.63 18 0.33 0.52
0.60–0.68 55627 2.02 23 0.42 0.21
0.68–0.73 109216 3.97 172 3.12 0.79
0.73–0.77 233155 8.48 531 9.63 1.14
0.77–0.80 498261 18.11 1138 20.63 1.14
0.80–0.83 711401 25.86 1537 27.87 1.08
0.83–0.86 724179 26.33 1455 26.38 1.00
0.86–1 401440 14.59 641 11.62 0.80

NDBI 0.03–0.13 Continuous 512160 18.62 752 13.64 0.73
0.13–0.16 766433 27.86 1499 27.18 0.98
0.16–0.19 641254 23.31 1607 29.14 1.25
0.19–0.22 338433 12.30 834 15.12 1.23
0.22–0.26 217537 7.91 451 8.18 1.03
0.26–0.31 149173 5.42 259 4.70 0.87
0.31–0.35 85133 3.10 97 1.76 0.57
0.35–1 40568 1.47 16 0.29 0.20

MNDWI 0–0.13 Continuous 132113 4.80 206 3.74 0.78
0.13–0.27 256111 9.31 415 7.52 0.81
0.27–0.39 375374 13.65 750 13.60 1.00
0.39–0.50 449343 16.34 1009 18.30 1.12
0.50–0.62 464964 16.90 1077 19.53 1.16
0.62–0.74 435803 15.84 858 15.56 0.98
0.74–0.86 363305 13.21 744 13.49 1.02
0.86–1 273678 9.95 456 8.27 0.83
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Both aspect and slope are also extracted from DEM data. Slope
can effectively reflect the physical relationship between landslides
and basic topographic elements (Huang et al., 2021a). As shown in
Table 1, when the aspect is smaller than 202.5° or the slope is higher
than 7.0°, landslides occurrence is more likely to happen. The plane
curvature can reflect all the ridge lines and valley lines on the surface
in the horizontal direction, and the profile curvature can describe the
slope in the vertical direction, both of which are generally considered
as important factors affecting landslides (Hong et al., 2019). As
shown inTable 1, when the plane curvature is smaller than 27.8° and
the profile curvature is in the range of 1.5°–8.7°, landslides are more
likely to occur in this area.

Characteristic parameters such as gully density and terrain
relief are also extracted from DEM, as shown in Figures 4B,C.
The gully density expresses the degree of ground cutting and
fragmentation, and local landforms play an important role in
determining the susceptibility of landslides (Conforti and Ietto
2019). As shown in Table 1, when the gully density is between 0.8
and 1.6, it is more likely for landslides occurrence. Terrain relief is
also one of the important factors that trigger landslides. It
describes the undulation of the terrain surface (Qiu et al.,
2017), which is prone to landslides at 29.6–150.8.

3.3.2 Basic Geological Factors
Some studies have pointed out that lithology also plays an
important role in affecting the occurrence of landslides
(Conforti and Ietto 2019; Zhou et al., 2022). The evolution
degree of cracks in soil layers of different lithology groups is
quite different, and cracks have a great influence on the
progressive failure process of soil landslides (Zheng et al.,
2019a; Yang et al., 2020b; Jiang et al., 2020). This study adopts
the latest geotechnical evaluation method, and analyzes the
Mesoproterozoic Erathem (Pt2), Neoproterozoic Erathem
(Pt3), Cambrian (∈), Ordovician (O), Silurian (S),
Carboniferous (C), Permian (P), Triassic (T), Jurassic and
Cretaceous (J、K), Quaternary (Q) and Waters (W) to
improve the accuracy of LSP. As shown in Table 1, FR values
are greater than 1 in the Pt2, Pt3, S, T, and Q lithology. Therefore,
Pt2, Pt3, S, T, and Q lithology are prone to landslides.

3.3.3 Hydrological Environment and Land Cover
Factors
The hydrological environment and the surface cover factors affect
the shear strength of the soil. The decrease of the shear strength of
the soil slope is also an important reason for the occurrence of

FIGURE 3 | Environmental Factors: (A) Elevation, (B) Slope, (C) Aspect, (D) Plan curvature, (E) Profile curvature, (F) Lithology.
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landslides (Guo et al., 2019; Yang et al., 2019; Fu et al., 2020). The
MNDWI and the terrain wetness index reflect the
characterization of the surface moisture distribution in the
study area, which can effectively indicate the influence of
hydrological environmental factors on landslide susceptibility
(Li Z.-L. et al., 2021). The FR values of MNDWI in nearly
90% of the units are positively correlated with the MNDWI,
indicating that the water body has a great influence on the
occurrence of landslides. As shown in Table 1, when the
terrain wetness index is between 2.4 and 6.6, FR values are
greater than 1, and the FR values are negatively correlated
with the terrain wetness index.

NDVI usually reflects the coverage of local vegetation (Zhang
H. et al., 2020), indicating that the occurrence of landslides is
affected by vegetation coverage. Studies have shown that the
spatial distributions of landslides and other geological hazards are
highly correlated with human engineering activities such as road
excavation and slope cutting (Zheng et al., 2018; Guo C. et al.,
2021). NDBI is used to characterize the surface building density
(Ridwan et al., 2021), which reflects the influence of human
activities on landslide occurrence. As shown in Table 1, when
NDVI is within 0.73–0.87 and NDBI is within 0.06–0.28, the FR
values are greater than 1, and landslides are more likely to occur.

4. RESULTS OF LANDSLIDE
SUSCEPTIBILITY PREDICTION MODEL
4.1 Landslide Susceptibility Predicted by
C5.0 Decision Tree and SVM Models
Based on the 30 m resolution, the environmental factors in the
study area are divided into 2,750,691 grids. The unit also ranks
the main 10 basic environmental factors according to their
contribution. The landslide interface will change continuously
with the increase of the safety factor, meanwhile, its shear outlet
will be directly or indirectly constrained. For complex landslides,
directly intercepting the non-landslide area without considering
the distribution of potential landslides does not meet the safety
regulations for landslide control. Therefore, 366 landslide
surfaces and potential landslide area that have occurred are
taken and converted into 5,515 grid units.

Further, the susceptibility of the grid units extracted from the
landslide area are assigned to 1, which is unstable areas.
Meanwhile the same number of non-landslide grid units are
randomly selected in the whole study area. The non-landslide
grid units are assigned to 0, which are stable area. The assigned
landslide and non-landslide susceptibility values are taken as the

FIGURE 4 | Environmental factors: (A) Terrain wetness index, (B) Gully density, (C) Terrain relief, (D) NDVI, (E) NDBI, (F) MNDWI.
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output variables of the LSP model, and then those landslide-non-
landslide grid units are divided at a proportion of 7:3 in SPSS
software, 70% of which are trained by SVM and C5.0 DT models,
30% are tested on SVM and C5.0 DT models.

Finally, the trained and tested SVM/C5.0 DT models are
applied to the 12 environmental factors. Then, the LSM of the
whole Ruijin City can be predicted. In ArcGIS 10.3 software,
combined with the relationship between each environmental
factor and the landslides, the predicted landslide susceptibility
indexes are divided into five levels from low to high by using
the natural break method (Kaur et al., 2018; Guo Z. et al.,
2021).

4.2 Mapping Analysis of Landslide
Susceptibility
The LSM based on the C5.0 DTmodel is shown in Figure 5A and
Table 2. The predicted area proportions of the very low, low,
moderate, high and very high landslide-prone area are
respectively 54.75, 14.69, 3.34, 18.38, 8.82%. The FR values of

very low, low, moderate, high and very high susceptible levels
predicted by the C5.0 DT model are 0.07, 0.47, 0.92, 2.35, 4.88,
respectively. The very high and high landslide-prone areas only
accounted for 27.21% of the whole study area, but their
corresponding FR values are contained for 86.29% of the total
FR values.

The LSM predicted by the SVM model is shown in Figure 5B
and Table 2, and the predicted area proportions of the very low,
low, moderate, high and very high landslide-prone areas are
30.78, 21.45, 16.59, 14.89 and 16.27%, respectively. The FR
values of the predicted landslide susceptibility from very low
to very high landslide-prone areas are 0.08, 0.34, 0.71, 1.47, and
3.47, respectively. While the very high and high landslide-prone
areas only account for 31.17% of the whole study area, their
corresponding FR values account for 78.42% of the total FR
values.

Comparing the two models, the FR values increase along
with the increase of the landslide susceptibility level. However,
the proportion of FR values in high and very high susceptibility
levels of C5.0 DT model are greater than that of SVM model. It

FIGURE 5 | LSM: (A) C5.0 DT, (B) SVM.

TABLE 2 | FR values of LSP grades in C5.0 DT and SVM models.

Model Susceptibility levels Susceptibility indexes Grid in study area Proportion
of grid (%)

Grids in landslide Proportion of grid
in landslides (%)

FR values

C5.0 DT Very low 0–0.14 1506219 54.76 210 3.81 0.07
Low 0.14–0.37 404185 14.69 377 6.84 0.47
Moderate 0.37–0.59 91926 3.34 169 3.06 0.92
High 0.59–0.81 505631 18.38 2383 43.21 2.35
Very high 0.81–1 242730 8.82 2376 43.08 4.88

SVM Very low 0–0.14 846690 30.78 142 2.57 0.08
Low 0.14–0.31 590034 21.45 397 7.20 0.34
Moderate 0.31–0.49 456571 16.60 651 11.80 0.71
High 0.49–0.67 409805 14.90 1210 21.94 1.47
Very high 0.67–1 447591 16.27 3115 56.48 3.47
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shows that the LSP accuracy of the C5.0 DT model is higher
than that of the SVM model, and that the landslide
susceptibility indexes predicted by the C5.0 DT model are
more consistent with the basic environmental factors of the
study area.

As shown in Figure 5 and Table 2, most of Ruijin City is in the
low and very low landslide-prone areas. The high and very high
landslide-prone areas predicted by the two models are generally
similar. But the high and very high landslide-prone areas
predicted by the SVM model are significantly larger than C5.0
DT model, as a result, C5.0 DT model is better refined. And the
high and very high landslide-prone areas are mainly concentrated
in the north of the study area, while the high and very high
landslide-prone areas in the south are sparse. The main reason
distribution of landslides is that the terrain of Ruijin City is
dominated by basins, surrounded by dense hills. The hills on the
northern part of the city are the most dense, and the terrain is

complex and the river network is concentrated. The weak surface
slides down as a whole, which is conducive to the occurrence of
landslides.

5 DISCUSSION

This study discusses the LSP accuracy of the C5.0 DT and SVM
models, the analysis of the basic environmental factors, and the
application prospects of the LSP models.

5.1 ROC Curve for Landslide Susceptibility
Predicted Accuracy of C5.0 Decision Tree
and SVM Models
The prediction results of 70% of the training samples and 30% of
the test samples of the C5.0 DT and SVM models are arranged
from small to large, and are further used as the threshold for
precision analysis in turn. The sample points greater than or
equal to this threshold are defined as landslide points. The
proportion of the correct landslide prediction points to the
total number of landslide points is the model’s sensitivity
which reflects the model’s ability to detect landslides; the
proportion of the wrong landslide prediction points to the
total number of non-landslide points is the model’s specificity
which is reflects the model’s ability to correctly identify landslides
(Paryani et al., 2021).

FPR is the value of 1-specificity; TPR is the value of
sensitivity. The ROC curve mainly uses 1-specificity and
sensitivity as the abscissa and ordinate, and its LSP
accuracy results are shown in Figure 6. The AUC value of
C5.0 DT is 0.886, while the AUC value of SVM is 0.819. The
larger the AUC value, the better the overall prediction
performance of the LSP model (Jiang et al., 2018a; Huang
et al., 2021b; Paryani et al., 2021). Both C5.0 DT and SVM
models have good LSP accuracy, however, the overall LSP
accuracy of the C5.0 DT model is better than that of SVM.

5.2 Analysis of Environmental Factors
As shown in Figures 3, 4 and Table 1, for the basic environmental
factors affecting the landslide susceptibility in Ruijin City. It is
conducive to the occurrence of landslides, when the

FIGURE 6 | ROC curves for LSP of C5.0 DT and SVM models.

FIGURE 7 | Relative importance of environmental factors, (A) C5.0 DT, (B) SVM.
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environmental factors are in these ranges where, the elevation is
139.7–308.5 m, the slope aspect is smaller than 202.5°, and the
slope is high At 7.0°, the terrain wetness index is 2.5–6.6, the
MNDWI is 0.39–0.62 or 0.74–0.86, the NDVI is 0.73–0.86, the
NDBI is 0.16–0.27, and the lithology are Mesoproterozoic Pt2 (1),
Late Paleoproterozoic (Z), Pt3, Silurian S, Triassic T, Quaternary
Q. The influence degree of environmental factors on landslide
susceptibility can more intuitively reflect the main environmental
factors considered by different models and provide a theoretical
reference for the LSP (Wu Y. et al., 2020; Chang et al., 2020; Zhao
et al., 2020; Pan et al., 2021).

In this study, SPSS Modeler and R Studio software are used to
analyze the main 10 environmental factors in the C5.0 DT and
SVM models, and the importance of each factor is ranked. As
shown in Figure 7, the environmental factors with higher
importance in the SVM model are slope, lithology, elevation,
gully density, terrain relief, etc. The environmental factors with
a higher contribution degree considered by the C5.0 DT model
are terrain relief, lithology, gully density, slope, etc. The top five
environmental factors are the same for the C5.0 DT and SVM
models, but the slope is more important in the SVM model, and
the terrain relief is more important in the C5.0 DT model. This
also leads to the difference in the LSP between C5.0 DT and
SVM models. Comprehensive analysis shows that the LSP
accuracy of the C5.0 DT model is greater than the results of
the SVM model.

5.3 Landslide Susceptibility Predicted
Results of C5.0 Decision Tree and SVM
Models and Their Application Prospects
Based on the analysis of the LSM and ROC curve in Ruijin City,
the 366 landslides are concentrated in the high and very high
susceptibility areas. Furthermore, the high and very high
landslide areas are concentrated in the north and west of the
study area. There are more landslides in the north and less in the
south, more landslides in the edge and less in the middle. In the
concentrated area of landslides, the altitude is low, the lithology
formation is young, and the slope is relatively high. The
obtained 12 types of basic environmental factors are
representative. At the same time, the LSP of FR method
based SVM and C5.0 DT is accurate, which have strong
operability.

The reliability and LSP accuracy of the C5.0 DT model are
higher than those of the SVM. The LSP result of C5.0 DT model
can effectively give early warning to high landslide-prone area
and reduce the occurrence of related safety accidents. Therefore,
this study considers the C5.0 DT model to be an accurate and
reliable LSP model. With the rapid development of big data
platform, cloud computing, GIS and other technologies,
machine learning have bright and broad application
prospects in landslide susceptibility prediction (Dou et al.,

2019; Merghadi et al., 2020). At the same time, C5.0 DT
model is simple and clear, and has the advantages of easy
learning, good reliability and high LSP accuracy (Abraham
et al., 2021; Huang et al., 2021b).

6 CONCLUSION

This study explores the LSP results based on the FR method and
C5.0 DT/SVM models in Ruijin City, and draws the following
conclusions:

1) Both C5.0 DT and SVM models have high LSP accuracy, and
the predicted landslide susceptibility maps are similar to each
other on the whole. In addition, the landslides are mainly
distributed in ravines and valleys. Especially, the landslides are
likely to occur in the areas of moderate slope and large terrain
relief.

2) The top contributing environmental factors calculated by the
C5.0 DT/SVM models are terrain relief, lithology, gully
density, slope and elevation. Factors that have minor effects
on landslide susceptibility are the aspect, terrain wetness
index, etc.

3) The C5.0 DT is an accurate and reliable LSP model. The LSP
accuracy of C5.0 DT model is higher than that of the SVM
model in LSP. It is concluded that we can predict accurate
landslide susceptibility through combining the FR values and
the C5.0 DT model.
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